This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Insight into the Electronic Effect of Phosphine Ligand on Rh Catalyzed CO₂ Hydrogenation by Investigating the Reaction Mechanism

Shao-Fei Ni, Li Dang*

Department of Chemistry in Southern University of Science and Technology, Shenzhen, 518055, P. R. China

E-mail: dang.l@sustc.edu.cn

Keywords: Density functional theory. CO₂ Hydrogenation. Outer Coordination Sphere Effect. Thermodynamic hydricity.

Abstraction

Catalytic efficiency of CO₂ hydrogenation is a big challenge in catalysed CO₂ recycling and H₂ conservation. Detailed mechanism of [Rh(PCH₂XCH₂P)₂]⁺ (X⁺ = CH₂, N-CH₃, CF₂) catalyzed CO₂ hydrogenation is studied to obtain the insight into the electronic effect of the substituents at diphosphine ligand on the catalytic efficiency. The most favorable reaction mechanism is found to be composed by three steps: 1) Oxidative addition of dihydrogen onto the Rh center of the catalyst; 2) the first hydride abstraction by base from the Rh dihydride complexes; 3) the second hydride transfer from the Rh hydride complexes to CO₂. It was found that the transition state for the first hydride abstraction from Rh dihydride complex is the TOF-determining transition state (TDTS) in the most favorable mechanism. The energetic span (δE) of the cycle is suggested related to the thermodynamic
hydricity of the Rh dihydride complex. Model catalyst \([\text{Rh}(\text{PCH}_2\text{CF}_2\text{CH}_2\text{P})_2]^+\) with strong
\(\sigma\) electron withdrawing group on the diphosphine ligand provides higher hydricity in Rh
dihydride complex and lower activation energy when compared with the other two catalysts.
Our study shows that it is the \(\sigma\) electron withdrawing ability rather than the electron
donating ability that enhanced the catalytic efficiency in catalyzed \(\text{CO}_2\) hydrogenation. This
finding will benefit the ligand design in transition metal catalyst and lead to more efficient
methods for \(\text{CO}_2\) transformation.

1. Introduction

More and more \(\text{CO}_2\) is producing with the development of human industry, which
greatly influences the environment and climate by destroying the carbon cycle.\(^1\),\(^2\) People
also noticed that \(\text{CO}_2\) can be used as one of the renewable energy sources due to the vast
amount of carbon resource and low cost.\(^3\),\(^4\) Therefore, \(\text{CO}_2\) fixation and conversion has
attracted substantially increased scientific and industrial attention. Till now, a lot of \(\text{CO}_2\)
conversions leading to useful chemicals or fuels have been achieved.\(^5\),\(^6\),\(^7\) The shortcoming
in traditional \(\text{CO}_2\) transformation methods is high cost, low yield and low efficiency, which
inspires people to utilize and develop catalysts to solve these problems. Biomimetic
enzyme as catalyst for the \(\text{CO}_2\) conversion was used for a long time, but found with low
yield\(^8\) until an efficient whole-cell catalyst was reported by V. Müller in 2013.\(^9\) With the
coming of hydrogen economy tide, the hydrogenation of \(\text{CO}_2\) to produce formic acid or
formate is considered to be a “win-win” method: on the one hand, \(\text{CO}_2\) is consumed; on the
other hand, hydrogen is stored in transportable liquid state. In addition, formic acid and its
salts are widely used in a variety of chemical, pharmaceutical, and industry areas. In fact,
the actual discovery of the possibility to synthesize formates from CO₂ and H₂ in the presence of bases and Pd as a catalyst dates back to 1914 by Carter et al. In 1935, the reaction was also realized by Adkins et al. with heterogeneous Raney nickel as the catalyst. In mid-1970s, Hashimoto et al. firstly used the famous Wilkinson catalyst RhCl(PPh₃)₃ and the Ru analogue RuCl(PPh₃)₃ to catalyze the homogeneous hydrogenation of CO₂. Precious metals Ru-¹³,¹⁴,¹⁵,¹⁶, Rh-¹⁷,¹⁸,¹⁹,²⁰,²¹, and Ir-based catalysts are always been listed among the most active catalysts for CO₂ hydrogenation. A great breakthrough of unprecedented TON (3,500,000) and TOF(150,000 h⁻¹) was achieved by using the Ir(III) as the metal center of the catalyst by Nozaki et al. in 2009. An unprecedented reaction rate of 1,892,000 h⁻¹ at 132 °C was also realized Ru-PNP catalyst in combination with the strong DBU base by Filonenko et al. Nonprecious metal catalysts are not often investigated due to the relatively low activity until 2011, Milstein et al. reported that the trans-[(tBu-PNP)Fe(H)₂(CO)] catalyst showed similar activity to most of the noble metal catalysts. A lot of theoretical studies were also reported to investigate the catalyzed reaction mechanism.

In recent years, more and more attention has been shifted to use different ligands or to change the second/outer coordination spheres of the ligands so that the catalytic efficiency will be enhanced. In 2011, Hazari et al. demonstrated that CO₂ insertion process was facilitated by including a hydrogen bond donor in the second coordination sphere. Another report in 2012 by Himeda and Fujita et al. showed that CO₂ hydrogenation efficiency was relied on the electronic effect of second coordination sphere. Later, they proposed that a pendant base in the second sphere was good to the deprotonation of the
bidentate hydride, thus increasing the reaction efficiency.39 In 2014, Linehan and Shaw et al. studied \([\text{Rh}(\text{PCH}_2X^R \text{CH}_2\text{P})_2]^+\) (\(X^R = \text{CH}_2, \text{N-CH}_3, \text{Amino Acids}\)) catalyzed CO\textsubscript{2} hydrogenation and observed different catalytic activity with different substitutes at the outer coordination sphere of the bidentate phosphine ligand (Scheme 1).42 Among these ligands, N-CH\textsubscript{3} substituted ligand was found giving the greatest enhancement to the catalytic efficiency of the reaction. The electron donating ability of N-CH\textsubscript{3} group is proposed as the key factor to increase the catalytic activity. In addition, Kubiak et al. reported another diphosphine complexes \([\text{Rh}(\text{P}_2\text{N}_2)_2]^+\) and the catalytic activity for CO\textsubscript{2} hydrogenation was examined at 2 atm and 21º. Similar mechanism is proposed and the amino group is also considered as an electron donating group.37 However, people have little theoretical investigations on how the substituents at phosphine ligand affect the catalytic activity of metal phosphine complexes.34,36,40 Here, we are interested in the detailed reaction mechanism and the electronic effect of the substitutes at the outer coordination sphere of the bidentate phosphine ligand. Therefore, density functional theory calculations were carried out to investigate the detailed reaction mechanism of \([\text{Rh}(\text{PCH}_2X^R \text{CH}_2\text{P})_2]^+\) catalyzed CO\textsubscript{2} hydrogenation. Besides the catalysts \([\text{Rh}(\text{PCH}_2\text{CH}_2\text{CH}_2\text{P})_2]^+\) (A1) and \([\text{Rh}(\text{PCH}_2\text{N}^\text{Me}\text{CH}_2\text{P})_2]^+\) (B1) used in the experiment, catalyst model \([\text{Rh}(\text{PCH}_2\text{CF}_2\text{CH}_2\text{P})_2]^+\) (C1) was also investigated in order to compare with A1 and B1.

\textbf{Scheme 1}
2. Computational Details

In current paper, calculations were performed at the ω-B97XD [43] functional using the Gaussian 09 program [44]. The effective core potentials (ECPs) of Hay and Wadt with a double-ζ valence basis set (LanL2DZ) were used for Rh and P [45, 46, 47, 48], polarization functions were also added for Rh (f = 1.350) and P (f = 0.387) [49, 50], whereas the all-electron 6-31++G** basis set was used in describing all other atoms [51, 52, 53]. To reduce the computational cost, model diphosphine ligands are used in which the phenyl groups attached to P atoms are replaced by the methyl groups. The similar simplification is often applied in phosphine ligands previously [54, 55, 56, 57, 58]. Geometric structures of all species in this paper were optimized as gas phase. The harmonic vibrational frequencies and the number of imaginary frequencies confirmed the nature of all intermediates (no imaginary frequency) and transition state structures (only one imaginary frequency). The latter were also confirmed to connect appropriate intermediates, reactants, or products by intrinsic reaction coordinate (IRC) calculations [59, 60]. The gas-phase Gibbs free energies, G, were calculated at T = 298.15 K and 1 atm pressure within the harmonic potential approximation at optimized structures. Based on the gas phase optimized geometries, the solvation effect of tetrahydrofuran were simulated by the IEFPCM solvent model with the united atom topological model (UAKS) applied on radii [61]. The UAKS has been shown to work well
with the prediction of the thermodynamics properties for CO$_2$ hydrogenation by Yang.27

The solution phase Gibbs free energy are calculated by adding solvation energies on the gas phase relative Gibbs free energies. The same methodology has been widely used in many recent theoretical works.62,70 The thermodynamic hydricities of rhodium dihydride complexes are calculated based on the Fu and Liu’s strategy.71 The IEFPCM (UAKS radii) model with acetonitrile as solvent is used during the calculation of thermodynamic hydricities. The 3D molecular structures of all the species shown in the Supporting Information were drawn by using the CYLview program.72 We examined the reaction of CO$_2$ with hydrogen in Eq. 1. In the experiment, the reaction of CO$_2$ with dihydrogen to give formate is endergonic ($\Delta G^\circ \approx 7.9$ kcal/mol) in gas phase and exergonic ($\Delta G^\circ \approx -1.0$ kcal/mol) in aqueous phase.73 In our calculation, the calculated $\Delta G^\circ_{\text{Rxn}}$ for equation 1 is -13.0 kcal/mol in solution phase, which is consistent with the experiment tendency, showing the computational methods in this work are reliable.

$$CO_2 + H_2 + \text{Base} \rightarrow [\text{HBase}]^+ + \text{HCOO}^- \quad \text{Eq. 1}$$

3. Results and Discussion

Preliminary investigation is carried out to test our model and calculation methods used here. The optimized geometry parameters of [Rh(Me$_2$PCH$_2$NMe$_2$CH$_2$PMe$_2$)$_2$]$^+$ (B1) and [Rh(Ph$_2$PCH$_2$NMe$_2$CH$_2$PPh$_2$)$_2$]$^+$ (B1') were compared with that from the x-ray crystal structure in Table S1 (Supporting Information). It is found that the theoretical optimized geometry parameters of B1 are closer to the X-ray crystal structure42 than those of B1'. The steric effect in gas phase [Rh(Ph$_2$PCH$_2$NMe$_2$CH$_2$PPh$_2$)$_2$]$^+$ (B1') is larger than that in solution.
phase and the replacement of Ph groups by Me reduces the steric effect in gas phase, making the simulation more reasonable. These results indicate that the model catalysts and the calculation methods used here are reliable.

Proposed reaction pathways for Rh(diphosphine)$_2$ catalyzed CO$_2$ hydrogenation are shown in Scheme 2, where reaction begins with the addition of H$_2$ to 16e Rh(I) center to form the 18e dihydride Rh(III) complex. Once the dihydride complex formed, the reaction falls into two general categories, the inner sphere pathway (Pathes 1 and 2), and the outer sphere pathway (Path 3). For the inner sphere mechanism, by the nucleophilic attack of Verkade’s base or the electrophilic attack of CO$_2$ to Rh(III) dihydride, the reaction proceeds either via Path 1 or via Path 2 to complete the catalytic cycle. It is worth emphasizing that the inner sphere Path 1 and Path 2 are universal for both X = CH$_2$, N-CH$_3$, and CF$_2$. Path 3 (X = N-CH$_3$) is the outer sphere route in which one hydride in the Rh(III) dihydride complex transfers to the outer sphere N atom, followed by the attack of Verkade’s base or CO$_2$ to hydride on metal center or proton on amine group to reproduce the catalyst. Detailed reaction energy profiles along with these general pathways for A1, B1, and C1 catalyzed CO$_2$ hydrogenation will be shown in the following discussion. Unless otherwise noted, the calculated solvation corrected relative Gibbs free energies ΔG_{sol} (kcal/mol) are presented in the figures and discussed in this paper. The relative Gibbs free energies ΔG_{gas} (kcal/mol), relative electronic energies ΔE_{gas} in gas phase (kcal/mol) and relative electronic energies ΔE_{sol} in solution phase (kcal/mol) are listed in SI.

Scheme 2. Outline of Predicted Reaction Mechanism for CO$_2$ Hydrogenation Catalyzed by [Rh(PCH$_2$XRCH$_2$P)$_2$]$^+$ ($X^R =$ CH$_2$, N-CH$_3$, and CF$_2$)
3.1. [Rh(PCH₂CH₂CH₂P)₂]⁺ (A1) catalyzed CO₂ hydrogenation

[Rh(PCH₂CH₂CH₂P)₂]⁺ (A1) catalyzed CO₂ hydrogenation begins with the H₂ oxidative addition. The energy profiles for two inner sphere based reaction pathways are shown in Figures 1 and 2. In Figure 1, the oxidative addition of H₂ on A1 gives a 18e six-coordinated Rh(III) dihydride intermediate A2 through transition state TSₐ₁₋₂. The Gibbs free energy barrier for this H₂ oxidative addition process is 8.6 kcal/mol. Here, the pre-coordinate of H₂ to A1 leads to the unstable sigma-complex A₁-H₂, which is higher in the solvent corrected Gibbs free energy than that of TSₐ₁₋₂. This may be due to the overestimation of entropy effect because the calculated gas phase electronic energy of A₁-H₂ is only 0.3 kcal/mol lower than that of TSₐ₁₋₂. The slightly unstable dihydride intermediate A2 can be deprotonated by the nucleophilic attack of an external Verkade’s base to form an unstable Rh(I) monohydride intermediate A₅. The reaction barrier for this first hydride abstraction process is 29.1 kcal/mol, which is about 20.0 kcal/mol higher than that for H₂ oxidative addition. From the unstable five coordinated Rh(I) monohydride A₅, CO₂ attackts the remaining hydride by insertion into the electron rich Rh-H σ bond through two definitely
different routes as shown in Scheme 3. One is a “direct” hydride abstraction route based on the weak interaction between the hydride and carbon atom of CO$_2$ (Scheme 3A). The other is the “normal” CO$_2$ insertion mode (Scheme 3B) in which CO$_2$ coordinates with Rh center first and then nucleophilic attack of metal hydride σ bond to CO$_2$ occurs. The last part of Figure 1 shows that the “direct” intermolecular hydride transfer happens via a transition state $\text{TS}_{\text{A6-7}}$ with a barrier of 21.2 kcal/mol to give a metal formate intermediate A7. In “normal” CO$_2$ insertion mode, CO$_2$ occupies the empty coordination site of Rh center by overcoming a barrier of 19.8 kcal/mol and the nucleophilic attack of metal hydride bond to electron deficient CO$_2$ has a barrier of 19.2 kcal/mol. A7 can also be formed after “normal” CO$_2$ insertion. The CO$_2$ insertion step via the “direct” hydride abstraction mode and the “normal” CO$_2$ insertion mechanism are comparable. Here, the metal formate intermediate A7 has two different forms, the H-bound (Rh-(η1-HCOO)) and O-bound (Rh-(η1-OCOH)) metal formate, which have been reported and the rearrangement between these two structures is common.27,32 Once the η1-formate intermediate A7 forms, the succeeding barrierless release of formate with protonated base occurs rapidly and leads to the catalyst regeneration.

From Figure 1, A1 is the resting state of the catalytic cycle. According the energetic span concept introduced by Kozuch and Shaik74,75,76,77, A1 is the TOF-determining intermediate (TDI) and $\text{TS}_{\text{A3-4}}$ for the abstraction of the first hydride from Rh dihydride complex is the TOF-determining transition state (TDTS) in Figure 1. The energetic span (δE) between the TDI and TDTS is calculated to be 29.1 kcal/mol.
However, another possibility to finish the catalytic cycle is that σ-bond metathesis19,20 occurs between Rh-OCHO in A7 and H\textsubscript{2} followed by CO\textsubscript{2} releasing to give A5. We studied this pathway and found there is a barrier of 18.8 kcal/mol (Figure S1) for this σ-bond metathesis to regenerate A5, which is comparable to the one in Figure 1 to regenerate A1. But in this new pathway, the formation of A5 is very important, which cost 29.1 kcal/mol energy. Although A5 can catalyze the CO\textsubscript{2} hydrogenation, the formation of A5 is very difficult and A5 is unstable. That’s why A5 was not observed and PCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}P ligand gives low TOF in the experiment.

Another pathway in which the first hydride of Rh dihydride complex is abstracted by CO\textsubscript{2} and the second one by base to regenerate the catalyst was also studied. The calculated results of this route are shown in Figure 2. From the dihydride Rh(III) complex A2, a hydride transfers from the Rh(III) center to the CO\textsubscript{2} first by the electrophilic attack of CO\textsubscript{2}. Energy of 35.2 kcal/mol was cost for this intermolecular “direct” hydride transfer to form the cation metal formate complex A11, and this reaction barrier is higher than the rate determining step in Figure 1. Note that the “normal” CO\textsubscript{2} insertion mechanism is impossible because the dihydride complex A2 is six coordinated and there is no vacant position for CO\textsubscript{2} to coordinate on metal center. Once the metal formate complex A11 forms, two conceivable routes for the external base assisted second hydride abstraction are studied. One is the dissociation process in which HCOO− released from the Rh center of A11 before the second hydride abstraction by base. This process leads to a very unstable intermediate A12 with 33.3 kcal/mol Gibbs free energy relative to the reactants. The other is the association process in which the second hydride was abstracted by the base in the presence
of HCOO ligand in A13. This process goes through a transition state TS_{A13-14} with relative Gibbs free energy of 32.4 kcal/mol, which is lower than the energy of A12 and the barrier of the previous hydride abstraction process. After the second hydride abstraction, barrierless release of HCOO$^-$ and [HBase]$^+$ occurs in order to finish the catalytic cycle. The TDTS for the pathway in Figure 2 is TS_{A10-11} and the energetic span (δE) is 35.2 kcal/mol, which is about 6.0 kcal/mol larger than that in Figure 1. Therefore, the pathway in Figure 2 cannot compete with the pathway in Figure 1.

Figure 1. Solvent corrected Gibbs free energy profile for $[\text{Rh(PCH}_2\text{CH}_2\text{CH}_2\text{P})_2]^+$ (A1) catalyzed CO$_2$ hydrogenation by the nucleophilic attack of Verkade’s base to the hydride of the Rh dihydride complex.

Scheme 3 Molecular orbital interaction and electron transfer for electrophilic attack of CO$_2$ to metal hydride bond
Figure 2. Solvent corrected Gibbs free energy profile for $[\text{Rh}(\text{PCH}_2\text{CH}_2\text{CH}_2\text{P})_2]^+$ (A1) catalyzed CO$_2$ hydrogenation by the electrophilic attack of CO$_2$ to the hydride of the Rh dihydride complex.

3.2. $[\text{Rh}(\text{PCH}_2\text{NMeCH}_2\text{P})_2]^+$ (B1) catalyzed CO$_2$ hydrogenation
[Rh(PCH₂NMeCH₂P)₂]⁺ (B1) catalyzed CO₂ hydrogenation could have the similar inner sphere mechanism to that for A1 catalyzed CO₂ hydrogenation. The energy profiles are displayed in Figures 3, S2, and S3. Quite similar to the mechanism in A1 catalyzed CO₂ hydrogenation, sigma-complex A1-H₂ is also unstable and the overestimation of entropy effect in solvent makes it a little bit more unstable than TS₉₁₂ in solution phase free energy. B1 catalyzed reaction occurs H₂ oxidative addition to Rh(I) center but through the TS₉₁₂ (9.4 kcal/mol) to form the 18e dihydride Rh(III) complex B₂. Here, the higher H₂ oxidative addition reaction barrier than that in Figure 1 by 0.8 kcal/mol may be resulted from amine group which is introduced to the second coordination sphere. By overcoming the transition state TS₉₃₄ with a barrier of 26.0 kcal/mol, the first H-abstraction occurs by the nucleophilic attack of external Verkade’s base and the unstable intermediate B₅ forms. After the first H-abstraction occurs, both “direct” hydride abstraction and “normal” CO₂ insertion into Rh-H to abstract the second hydride are studied. The barriers for the “direct” hydride abstraction and “normal” CO₂ insertion mechanism are 24.4 and 22.0 kcal/mol, respectively, indicating that the “normal” CO₂ insertion mechanism is more favorable due to an empty coordination site in metal center of B₈ for CO₂ to coordinate. However, these two barriers are all lower than that for the first H abstraction (26.0 kcal/mol in Figure 3). Facilely, after the second hydride abstraction by CO₂, rapid release of HCOO⁻ and [HBase]⁺ similar to that in Figure 1 occurs to regenerate the catalyst species, thus finishing the catalytic cycle. From the energetic span model⁷⁴,⁷⁵,⁷⁶,⁷⁷, the TDTS in Figure 3 is TS₉₃₄ and the δE is about 26.0 kcal/mol. The δE is smaller than that in Figure 1 by about 3.1 kcal/mol, suggesting that the hydride in B₁ is easier to be abstracted than that in A₁.
Here, we also studied the possible of σ-bond metathesis from B_7 with H_2 to regenerate B_5. The calculated results in Figure S2 show that the barrier for this metathesis is higher than the one in the process to regenerate B_1 from B_5 in Figure 3, suggesting that B_5 catalyzed reaction cycle cannot compete with the one catalyzed by B_1.

Figure S3 (Supporting Information) shows the alternative pathway for B_1 catalyzed CO_2 hydrogenation in which the first hydride of the dihydride complex B_2 is electrophilic attacked by CO_2 through a transition state $T_{SB10-11}$ (38.7 kcal/mol) and the metal formate complex B_{11} forms. The electrophilic attack of CO_2 on the pendant amine of diphosphine ligand seems possible if considering the frontier molecular orbital analysis of B_2 as shown in Figure S4. The HOMO and HOMO-1 of B_2 are mainly contributed by the diphosphine ligands with pendent amine, while the HOMO-2 of B_2 is the bonding interaction of s orbital of hydride and the d_{z^2} orbital of Rh. Here, CO_2 cannot react with tertiary amine involving the molecular orbital interaction with HOMO or HOMO-1 of B_2 since there is no H in amine group. However the electrophilic attack of CO_2 to Rh-H bond involving HOMO-2 of B_2 is possible but with high reaction barrier as shown in Figure S3. Similar to the mechanism in Figure 2, the following dissociation of the formate leads to unstable rhodium hydride B_{12}. Without the dissociation of the formate, the nucleophilic attack of Verkade’s base to the Rh-H bond occurs in the presence of the coordination of the formate on the Rh center through a barrier of 28.4 kcal/mol, which is lower in energy than that of B_{12} by 5.3 kcal/mol. After that, the formate and protonized base leave the metal center to regenerate the catalyst B_1. Similarly, the TDTS for the reaction pathway in Figure S3 is the $T_{SB10-11}$ corresponds to the first hydride abstraction by electrophilic attack of CO_2 ($\delta E =$
38.7 kcal/mol). Our theoretical investigation indicates that the pathway in Figure 3 is more favorable than the one in Figure S3.

Figure 3. Solvent corrected Gibbs free energy profile for [Rh(PCH$_2$N$^\text{Me}$CH$_2$P)$_2$]$^+$ (B1) catalyzed CO$_2$ hydrogenation by the nucleophilic attack of Verkade’s base to the hydride of the Rh dihydride complex.

For B1 catalyzed CO$_2$ hydrogenation, one may ask about another conceivable route in which one hydrogen of the dihydride B2 transfers to the outer sphere N atom of amine group as base. The composition of HOMO or HOMO-1 of B2 shown in Figure S4 suggests that this H transfer is possible. Delightfully, this intramolecular H transfer occurs by overcoming a barrier of 20.8 kcal/mol (TS$_{B2-15}$ in Figure S5) and an unstable B15 forms with an unsaturated five coordinated Rh(III) center and oversaturated outer sphere amine group. From this unstable intermediate B15, there are five possible routes leading to the
formation of the final product, which are summarized in Figure S6. In general, these pathways are proposed according the sequence of the attack of base and CO$_2$ on the metal hydride or amine proton. In case that the nucleophilic attack of base occurred firstly, two mechanisms with different intermolecular hydride abstraction are feasible. The first one is the hydride abstraction from Rh center to base via the transition state $\text{TS}_{\text{B16-21}}$ as shown in Figure S5. By overcoming a barrier of 39.8 kcal/mol, unstable Rh(I) intermediate B5 forms. From B5, rapid insertion of CO$_2$ to the Rh-H σ-bond and the succeeding barrierless formate elimination leads to the final products as in Figure 3. The TDTS of this route is TSB16-21 and the δE is calculated to be 39.8 kcal/mol, which is dramatically bigger than that of the mechanism in Figure 3 (26.0 kcal/mol). The second one is the hydride abstraction from the N atom to the base shown in Figure S6. This route goes through a very unstable intermediate B17 (28.8 kcal/mol), which is also higher in energy than the total reaction barrier in Figure 3 (26.0 kcal/mol). Therefore, these two routes begin with the base’s nucleophilic attack are both unfavorable and cannot compete with the pathway in Figure 3. As for the electrophilic attack of CO$_2$ on the metal hydride, there are also two possible routes as depicted in Figure S6. In these two routes, intermediates B18 (30.5 kcal/mol) and B19 (29.8 kcal/mol) are necessary to be passed over, which are all in very high energy. All of these calculated results show that the unstable B15 preferred to be converted back to stable B2 rather than being forwardly transformed to regenerate B1 due to unstable intermediates or transition states for hydride abstraction by either base or CO$_2$. This result is consistent with the experimental observation42 that no protonated amine was detected.
In 2011, a hydrogen bond donor in the second coordination sphere has been found to facilitate the CO$_2$ insertion by Hazari et al.36,37 Prompted by this discovery, CO$_2$ insertion into metal hydride bond with the appearance of hydrogen bond donor from outer sphere amine was taken into consideration when we investigate the hydride abstraction from B15 by CO$_2$. A transition state TS_{B20-22} is located as shown in Figure S5, indicating that the hydrogenation of CO$_2$ gives formic acid is finished in one step after one hydride transferred from metal to outer sphere amine. Unfortunately, the total reaction barrier is 42.2 kcal/mol, showing that this reaction pathway is not favorable, too.

From the discussion above, all the five outer sphere pathways derived from the intermediate B15 cannot compete with the mechanism in Figure 3 although B15 is formed via lower activation energy than the energetic span in Figure 3. Therefore, B1 catalyzed CO$_2$ hydrogenation reaction prefers to happen by the three steps in Figure 3. The energetic span δE catalyzed by B1 is 26.0 kcal/mol, which is 3.0 kcal/mol smaller than that catalyzed by A1. This agrees well with the experimental observation that the presence of N-CH$_3$ at the diphosphine ligand of B1 enhanced the catalytic activity.42 In order to figure out whether it is the π electron donating ability of amine group or σ electron withdrawing ability from electronegative N atom that influence the catalytic activity of Rh(diphosphine)$_2^+$, we used a model catalyst [Rh(PCH$_2$CF$_2$CH$_2$P)$_2$]$^+$ (C1) with very strong σ electron withdrawing group CF$_2$ at the diphosphine ligand to compare.

3.3. [Rh(PCH$_2$CF$_2$CH$_2$P)$_2$]$^+$ (C1) catalyzed CO$_2$ hydrogenation
[Rh(PCH2CF2CH2P)2]+ (C1) catalyzed CO2 hydrogenation is similar to the inner sphere mechanism in Figures 1 and 3. C1 catalyzed reaction also begins with the pre-coordinate of H2 to C1. The unstable sigma-complex C1-H2 is higher in solvent corrected Gibbs free energy than that of TS_{C1-2} because of the overestimation of entropy effect. The oxidative addition of H2 to Rh(I) center to form a 18e Rh(III) dihydride intermediate C2. As shown in Figure 4, the barrier for this H2 addition step is 10.0 kcal/mol. This barrier is a little bit higher than H2 addition barriers in Figures 1 and 3, which may be caused by the strong electron withdrawing CF2 group makes the metal center more electron deficient than those in A1 and B1. Thus, the back donating from metal center to H2 is less sufficient in TS_{C1-2} than that in TS_{A1-2} and TS_{B1-2}. The release of the first hydride by the nucleophilic attack of base needs to overcome the transition state TS_{C3-4} with a barrier of 18.0 kcal/mol. Once the monohydride metal complex C5 forms, the second hydride could be abstracted rapidly by the electrophilic attack of CO2 and the metal formate intermediate forms. Here, either “direct” hydride abstraction by CO2 or “normal” CO2 insertion into Rh-H bond overcomes lower reaction barrier than the previous first hydride abstraction step. Obviously, the transition state TS_{C3-4} corresponds to the first hydride abstraction by nucleophilic attack of base is also the TDTS in this route with a calculated energetic span δE of 18.0 kcal/mol. And this energetic span is much smaller than those in Figures 1 and 3, showing enhanced catalytic activity of C1.

Here, we also studied the possible of σ-bond metathesis from C7 with H2 to regenerate C5 as an active species. The calculated results in Figure S7 show that the barrier for this
metathesis is higher than the one in the process to regenerate C1 from C5 in Figure 4, suggesting that C5 catalyzed reaction cycle cannot compete with the one catalyzed by C1.

In Figure S8, the first hydride abstraction by the electrophilic attack of CO$_2$ through TS$_{C10-11}$ needs a very high barrier of 39.3 kcal/mol. The succeeding second hydride abstraction via association mode by nucleophilic attack of Verkade’s base is easier than the first hydride abstraction by CO$_2$. However, the energetic span of this route is obviously smaller than that in Figure 4, which makes the C1 catalyzed reaction prefer to go through the pathway in Figure 4.

Figure 4. Solvent corrected Gibbs free energy profile for [Rh(PCH$_2$CF$_2$CH$_2$P)$_2$]$^+$ (C1) catalyzed CO$_2$ hydrogenation by the nucleophilic attack of Verkade’s base to the hydride of the Rh dihydride complex.
Figure 5. Skeleton diagrams and energies (in eV) of frontier molecular orbitals for Verkade’s base, A2, B2, C2, and bent CO2.

A1, B1, and C1 catalyzed CO2 hydrogenation reactions undergo similar favorable pathways in which H2 oxidative addition occurs first, and the first metal hydride is abstracted by the Verkade’s base followed by electronic attack of CO2 on the second metal hydride from unstable five coordinated Rh complexes. The reactions are assumed beginning with H2 oxidative addition because these reaction barriers are very small when compare with other processes such as H2 addition to Rh-H and Rh-OCHO complexes.
(Figures S1, S2, S7). At the same time, NBO charge distribution in A2, B2, and C2 shows that the H atoms on the metal center are both weak hydridic by carrying less than -0.1 charge (Figure S9), that’s why the weaker hydridic one can be attacked by very strong base. When we analyze the structural parameters of these structures, we found that the M-H bonds are about 1.580 Å and the H-H bonds are about 2.100 Å, showing that H2-Rh complex is not Kubas type, but metal dihydride.

The TDTSs are all corresponds to the first hydride abstraction by the nucleophilic attack of the base. The energetic span δE decrease from 29.1, 26.0 to 18.0 kcal/mol when the reactions are catalyzed by A1, B1, and C1. This can be well understood by the frontier molecular orbitals analysis shown in Figure 5. It is shown in Figure 5 that the p orbital of P atom in the HOMO (highest occupied molecular orbital) of Verkade’s base has the same symmetry as the LUMO (lowest unoccupied molecular orbital) of Rh dihydride complexes, which is the antibonding interaction between the s orbital of hydride and the d_{z^2} orbital of Rh, thus allowing nucleophilic attack. The energy differences between the HOMO of Verkade’s base and LUMOs of Rh dihydride complexes are smaller than those between the LUMO of Verkade’s base and HOMO of Rh dihydride complexes. Therefore the reaction of Verkade’s base and the Rh dihydride complexes occur by the interaction between the HOMO of base and LUMOs of A2, B2, and C2 as a nucleophilic attack. The energy difference between the HOMO of base and LUMOs of C2 is smaller than that of A2 and B2 which makes the nucleophilic attack of Verkade’s base to hydride of C2 more favorable than those of A2 and B2. By contrast, CO2 is usually considered as electron deficient compound. The bent CO2 is more active than the linear CO2 because the lowered LUMO
makes it convenient to experience electrophilic attack. The frontier molecular orbitals of CO$_2$ are obtained from the geometry of bend CO$_2$ in TS$_{C10}$-11. The p orbital of C atom in bent CO$_2$ contributes most in its LUMO, showing this is the most electron deficient site. HOMO-2 of B$_2$ is the bonding interaction of s orbital of hydrogen atom and the d_{z^2} orbital of Rh center. The interaction of LUMO of bent CO$_2$ with the HOMO (A$_2$ and C$_2$) or HOMO-2 (B$_2$) is symmetry allowed. At the same time the energy differences between the LUMO of bent CO$_2$ and HOMOs/HOMO-2 of Rh dihydride complexes are smaller than those between the HOMO of bent CO$_2$ and LUMOs of Rh dihydride complexes accordingly. Therefore, electrophilic attack of CO$_2$ to the Rh dihydride complexes is also possible. However, the energy differences between the LUMO of bent CO$_2$ and HOMOs/HOMO-2 of Rh dihydride complexes (5.21, 5.26, and 5.61 eV for A$_2$, B$_2$, and C$_2$) are significantly larger than the energy differences between the HOMO of Verkade’s base and LUMOs of Rh dihydride complexes (1.79, 1.84, and 1.44 eV for A$_2$, B$_2$, and C$_2$). This comparison confirms that the nucleophilic attack of Verkade’s base to Rh dihydride complexes is more favorable than the electrophilic attack of CO$_2$ to Rh dihydride complexes. The frontier molecular orbital analysis results confirms the calculated energy profiles shown in previous figures that the first hydride abstractions by the base have lower barriers (29.1, 26.0, and 18.0 kcal/mol for A$_2$, B$_2$, and C$_2$) than the electrophilic attack of CO$_2$ (35.2, 38.7, and 39.3 kcal/mol barriers for A$_2$, B$_2$, and C$_2$).

3.4. Origin of substituent Effects on the catalytic activity

Origin of substituent Effects on the catalytic activity of Rh diphosphine complexes for CO$_2$ hydrogenation could be well addressed by the investigation of the relationships
between the electronic structure of the substituents in the bidentate phosphine ligand and
the thermodynamic hydricity of the transition metal hydride. Hydricity including
thermodynamic hydricity and kinetic hydricity has been deeply investigated both
experimentally and theoretically79,80,81 and this parameter is used in the investigation of
CO\textsubscript{2} hydrogenation.82,83 The thermodynamic hydricity describes the hydride donor ability of
the M-H bond. It is obvious that the larger the hydricity of the metal hydride complex, the
stronger the hydride donor ability of metal hydride bond and easier the hydride to be
abstracted by nucleophiles such as base. The thermodynamic hydricity is the standard
Gibbs free energy change (\(\Delta G_{H^\circ}\)) of Rea.1. \([Pt(dmpp)\textsubscript{2}]^{2+}\) is used as a reference complex
to make the charge distribution balanced in both sides of the equation, thus Rea.2 was given,

\[
\left[(PX^R P)\textsubscript{2}RhH\textsubscript{2} \right]^+ \rightarrow \left[(PX^R P)\textsubscript{2}RhH \right]2+ + H^- \quad \text{Rea.1}
\]

\[
\left[(PX^R P)\textsubscript{2}RhH\textsubscript{2} \right]^+ + \left[Pt(dmpp)\textsubscript{2} \right]2+ \rightarrow \left[(PX^R P)\textsubscript{2}RhH \right]2+ + \left[HPt(dmpp)\textsubscript{2} \right]^+ \quad \text{Rea.2}
\]

where the Gibbs free energy change of this isodesmic reaction is \(\Delta G_{\text{exchange}}\). Therefore, the
\(\Delta G_{H^\circ}^{\circ} \left(\left[(PX^R P)\textsubscript{2}RhH\textsubscript{2} \right]^+ \right) \) could be obtained by the Equation 3:

\[
\Delta G_{H^\circ}^{\circ} \left(\left[(PX^R P)\textsubscript{2}RhH\textsubscript{2} \right]^+ \right) = \Delta G_{H^\circ}^{\circ} \left(\left[HPt(dmpp)\textsubscript{2} \right]^+ \right) + \Delta G_{\text{exchange}} \quad \text{Eq. 3}
\]

where \(\Delta G_{H^\circ}^{\circ} \left(\left[HPt(dmpp)\textsubscript{2} \right]^+ \right) = 50.7\) kcal/mol in acetonitrile according to the
experiment.71,84
Here, we use the thermodynamic hydricity of the transition metal hydride A_2, B_2, and C_2 to explain the reasons leading to the differences of catalytic activity. The $\Delta G_H^\circ \left((PX^R P)_2 RhH_2 \right)^+$ of A_2, B_2, and C_2 are calculated to be 73.5, 77.5, and 80.5 kcal/mol, respectively in Table 1. The hydricity order of these three complexes is consistent with the order of energetic span δE for three favorable pathway respectively and in agreement with the σ electron withdrawing order of three substitutes that $\text{CH}_2 < \text{N-CH}_3 < \text{CF}_2$. We should bear in mind that the attack by the Verkade’s base is a nucleophile while CO_2 is an electrophile to insert into metal hydride bond. The increased thermodynamic hydricity from A_2, B_2 to C_2 make the nucleophilic attack of Verkade’s base to hydride more and more favorable; instead, the electrophilic attack of CO_2 to metal hydride bond becomes more and more difficult. These analysis well explain the calculated results that the barrier of the first hydride abstraction by base decreases from catalyst A_1 (29.1 kcal/mol), B_1 (26.0 kcal/mol) to C_1 (18.0 kcal/mol), while the first hydride transfer barriers by the nucleophilic attack of CO_2 increase from catalyst A_1 (35.2 kcal/mol), B_1 (38.7 kcal/mol) to C_1 (39.3 kcal/mol). Therefore, it is the σ electron withdrawing ability rather than the π electron donating ability that lowered the activation barrier of $\text{Rh(diphosphine)}_2^+$ catalysed CO_2 hydrogenation.

Table 1. Calculated thermodynamic hydricity $\Delta G_H^\circ \left((PX^R P)_2 RhH_2 \right)^+$ for dihydride complexes A_2, B_2, and C_2.
Table 1

<table>
<thead>
<tr>
<th>Transition-metal dihydride</th>
<th>$\Delta G^*_H \left(\frac{[\text{PX}_2\text{RhH}_2^+]}{\text{kcal/mol}}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2 : $[\text{H}_2\text{Rh}(\text{PCH}_2\text{CH}_2\text{CH}_2\text{P})_2]^+$</td>
<td>73.5</td>
</tr>
<tr>
<td>B2 : $[\text{H}_2\text{Rh}(\text{PCH}_2\text{NMe}_2\text{CH}_2\text{P})_2]^+$</td>
<td>77.5</td>
</tr>
<tr>
<td>C2 : $[\text{H}_2\text{Rh}(\text{PCH}_2\text{CF}_2\text{CH}_2\text{P})_2]^+$</td>
<td>80.5</td>
</tr>
</tbody>
</table>

4. Conclusion

In this work, detailed mechanism of 16e catalysts $[\text{Rh}(\text{PCH}_2\text{CH}_2\text{CH}_2\text{P})_2]^+$ (A1), $[\text{Rh}(\text{PCH}_2\text{NMe}_2\text{CH}_2\text{P})_2]^+$ (B1), and $[\text{Rh}(\text{PCH}_2\text{CF}_2\text{CH}_2\text{P})_2]^+$ (C1) catalyzed CO$_2$ hydrogenation and the influences of the substituents at the diphosphine ligand to the catalytic activities are examined by DFT calculations. Our calculations show that catalytic reactions start with the H$_2$ oxidative addition to the Rh(I) center of the catalyst to give the 18e Rh(III) dihydride complex, and go ahead with the first hydride abstraction by nucleophilic attack of the external Verkade’s base, finishing by the second hydride abstraction by electrophilic attack of CO$_2$ and subsequent release of formate and protonated base. The TDTS in the most favorable pathway is the first hydride abstraction by the Verkade’s base, while the reactions for H$_2$ oxidative addition and the release of the second hydride proceed faster with lower activation energies. The calculated results show that the energetic span δE decrease from A1, B1 to C1, which agrees well with the experimental result that B1 has better catalytic activities than A1. In contrast to the previous experimental view that the electron donating group N-CH$_3$ at the bidentate phosphine ligand increased the efficiency of the catalyst, we find it is σ electron withdrawing ability that enhanced the catalytic efficiency. This opinion is confirmed by
using C1 as the model catalyst in our theoretical study. The comparison of the different reaction barriers is consistent with the molecular orbital analysis and the order of energetic span is well explained by the thermodynamic hydricity order of Rh dihydride complexes with different substitutes at diphosphine ligand. Our study suggests a new catalyst for CO$_2$ hydrogenation and refreshes the understanding of the electronic effect of substituent at the bidentate phosphine ligand.

Acknowledgement. Financial support from Shenzhen special funds for the development of new energy (No. JCYJ20140714151402764) and the National Natural Science Foundation of China (No. 21573102), L. D. is thankful to Southern University of Science and Technology.

Supporting Information Available: Complete Ref. 44, figures of optimized compounds/intermediates and transition states, tables of relative electronic and free energies in gas phase and relative electronic energy in solution phase, along with cartesian coordinates and electronic energies for all of the calculated structures. This material is available free of charge via the Internet at http://pubs.rsc.org.
References

72 CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, (2009) (http://www.cylview.org)

73 Parameters comes from database of the National Institute of Standards and Technology
(http://webbook.nist.gov/)

78 The skeleton diagrams and energies of frontier molecular orbitals are calculated by B3LYP functional (Single point calculation based on the gas phase optimized geometries at ωb97xd).

