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We examine in this contribution the possible relation between the spatial decay rate of real space delocalization measures and the

insulating- or metallic-like character of molecular and extended systems. We first show that in simple one-electron models, like

the Hückel or tight binding approximations, delocalization indices (DIs) are intimately linked to the first-order reduced density

matrix (1RDM), whose decay rate is known to be exponential in gapped systems and algebraic in gapless ones. DIs are shown to

behave equivalently, with wild oscillations in gapless 1D, 2D and 3D models that do only persist in one-dimensional real cases, as

computed at the Hartree-Fock or Kohn-Sham levels. Oscillations are shown to be directly related to Pauling resonant structures

and chemical mesomerism. DIs in insulating-like moieties decay extremely fast. We propose that examining the decay of DIs

along different directions in real materials may be used to detect facile and non-facile conductivity channels.

1 Introduction

Real space theories of the chemical bond1,2 have provided

a physically sound alternative to the molecular orbital (MO)

paradigm over the last two decades,3 incorporating orbital

invariant descriptors endowed with chemical meaning to the

chemical bonding toolbox. Among several proposals, com-

monly gathered together under the Quantum Chemical Topol-

ogy (QCT) umbrella, the Quantum Theory of Atoms in

Molecules (QTAIM) proposed by Bader and coworkers stands

out by its own.1 This theory is commonly known as the topo-

logical analysis of the electron density, ρ, since the real space

is partitioned using the topology induced by ρ and many of its

insights are obtained from the density itself or from its succe-

sive derivatives (gradient, laplacian. . . ). However, the QTAIM

can also take profit of other reduced density matrices (RDMs).

A key distinguishing feature that separates the QTAIM from

other techniques is its energetic face. All the standard com-

ponents of the Coulomb Hamiltonian may be examined over

QTAIM real space domains, providing a unique route to bind

the physicist and the chemist points of view. In order to do so,

the non-diagonal first order RDM (1RDM) as well as the di-

agonal 2RDM are needed. The first is a standard ingredient of

the orthodox QTAIM, and the second was shown to provide a

measure of electron delocalization in a seminal paper by Bader

and Stephens4. The 2RDM was finally added to the energy-

related descriptors of the QTAIM in the interacting quantum

atoms (IQA) scheme.5
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As the set of systems for which the QTAIM was applied

increased (including molecules, clusters, and solids), it soon

became clear that ρ and/or ∇2ρ contain a wealth of infor-

mation about chemical bonding, and that a simple classifica-

tion of systems into shared-shell or closed-shell types, in quite

good agreement with the standard covalent/non-covalent (in-

cluding ionic) bonding models was possible. This knowledge

is now mainstream, reaching general chemistry textbooks, and

its success encouraged researchers to look for features in ρ pe-

culiar to metallic systems, an enterprise with little initial suc-

cess. The density of conducting materials seemed not differ-

ent from that of standard covalent ones. A proposal that non-

nuclear maxima (or non-nuclear attractors, NNAs), known in

the Li2 molecule since 1956,6 and found in other lithium clus-

ters7,8 might signal metallic behavior was received with hope.

Its chemical image matched well with the qualitative idea that

conducting electrons were transferred to interstitial positions

in crystalline lattices. However, when reliable calculations of

the topology of the electron density in solid alkali metals were

available, this initial hope vanished.9 Only Li displayed NNAs

at equilibrium geometries. Since then, experimental densities

have demonstrated that NNAs may appear in Beryllium,10 but

are absent in the metals of largest conductivity, like Cu, Al,

or Ag. Whatever the origin of NNAs,11 they do not signal

conductivity. Other attempts have shown that the density of

metallic systems is characterized by its interstitial flatness,12

again in agreement with conventional chemical wisdom, but

no salient feature of the density determining conductivity has

ever been found.

From the purely theoretical side, the naı̈ve difference be-

tween electrical conductors and insulators lies in their exci-
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tation spectra,13 i.e. in the nature of their excited states, far

from the real space realm. However, a seminal paper by Kohn

in 196414 showed that insulators and conductors also differ

essentially in the organization of electrons in their ground

state. In the former, the wave function is composed of many-

body building blocks localized in disconnected regions of the

many-particle configuration space. Long forgotten, Kohn’s

theory was reformulated by Resta in 1998,15 in what today

is known as the modern theory of polarization, offering a new

view deeply linked to Berry phases.16 Resta has shown that

the finiteness or divergence of Kohn’s localization tensor (LT)

is the key to conductivity, and that for one-determinant de-

scriptions, the LT is closely related to Boys theory of local-

ization,17 very familiar to the quantum chemical audience.

Application of the LT (or total position spread tensor, TPS)

to chemical problems has been pioneered by Evangelisti and

coworkers.18 An important point for what follows here is that

Resta’s formulation lies in real space. Thus, conductivity may

not leave scars in the plain density, but should lead to a recog-

nizable imprint if we examine other RDMs in real space.

Notwithstanding the role that the TPS should play in this

important problem, in this contribution we will focus on how

the standard real space measures of (de)localization may be

related to metallic behavior in molecular systems. To that end,

we will start recalling some known results based on Kohn’s

nearsightedness principle.19 They show that the decay be-

havior of the 1RDM, ρ(rrr;rrr′), determines the locality of all

relevant observables. We will then relate the 1RDM to the

real space delocalization index (DI or δ) defined within the

QTAIM by Bader and Stephens,4 δA,B. Armed with this, we

will examine the analytical decay rate of δ for Hückel and

tight binding (TB) models of metals and insulators, compar-

ing with simple calculations in toy systems. Our results will

show that, as expected, the decay rate of delocalization mea-

sures differs in insulating- or metallic-like systems, being ex-

ponential in the former and algebraic in the latter. Other in-

teresting links, like that between the well known oscillations

of δ in conjugated molecules, clearly related to resonance and

chemical behavior, and Friedel oscillations in metals will be

put forward.

The paper is organized as follows. Section 2 will be de-

voted to the relation between 1RDMs and delocalization in-

dices. Then we will briefly present the models and compu-

tational details we have used. Sections 4 and 5 will examine

finite and extended analytical models, while we will comment

on single-determinant results on simple systems in Section 6.

We will end with some prospects and conclusions.

2 Decay rate of 1RDMs and delocalization in-

dices

As commented, the decay rate of the density matrix, a funda-

mental issue after Kohn’s insights on nearsightedness19 has

been widely studied in the physical literature, usually un-

der a one-electron picture within density functional theory

(DFT), or within a tight binding (TB) Hamiltonian approx-

imation. For instance, Goedecker20 showed that assuming

the electronic structure of an isotropic 3D metal to be domi-

nated by its free-electron band structure, the 1RDM ρ(rrr;rrr′) =
ρ(|rrr− rrr′|) = ρ(sss) decays algebraically at zero temperature,

ρ(s) =
−kF

π2s2
(cos(skF)− sin(skF))/(skF), (1)

where kF is the Fermi vector modulus, related to the va-

lence electron density k3
F/(3π2) = Nel/V . As it can be seen,

ρ(s) oscillates on decaying like s−2, with zeros at skF ≈
4.49,7.73,10.90, etc. For reasonable valence density values,

it can readily be found that these zeros are close to lattice vec-

tors. As we will see, this oscillatory behavior, which is closely

related to the well known Friedel oscillations of metals,13 has

close relatives in finite molecules.

Taraskin and coworkers21 have refined these results for 1D

to 3D TB metals in simple linear, square, or cubic cells, show-

ing that ρ decays as s−(d+1)/2, d being the dimensionality of

the system. These authors22 have also shown that, for two

bands TB models of insulating lattices the 1RDM falls expo-

nentially with s,

ρ(s)≈ sd/2e−λs, (2)

where the inverse decay length λ depends on the gap, ∆, scal-

ing linearly with it as ∆ → 0. ρ(s) turns out to be anisotropic,

showing its slowest decay along the (1,1) or (1,1,1) diagonals

in 2D or 3D, respectively. Effective λ values have been shown

to lie between 1-5.

Once these results have been presented, we turn to delocal-

ization measures in real space. Several indicators have been

proposed over the years, among which the electron localiza-

tion function (ELF) of Becke and Edgecombe,23 very popular

in theoretical chemistry after the work of Savin and Silvi,24 is

probably best known. Other possibilities like the electron lo-

calizability indicator (ELI) introduced by Kohout,25 valid for

correlated descriptions, also exist. All of these are local de-

scriptors, bearing no decay information, and do not serve our

purposes.

Fortunately, the DI introduced by Bader and Stephens4

within the QTAIM describes how many pairs of electrons are

shared (thus delocalized) between two finite regions A and B

in real space:

DI(A,B) = δA,B = 2

∫
A

drrr1

∫
B

drrr2 ρxc(rrr1,rrr2). (3)
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In this expression, the integrand is the standard exchange-

correlation density, ρxc(rrr1,rrr2) = ρ(rrr1)ρ(rrr2)−ρ2(rrr1,rrr2). δA,B

is a scalar parameter between any two regions (notice that if

A = B we usually talk about a localization index) that due to

the extensivity of ρxc, adds to the total electron population (N),

1/2∑A,B δA,B = N.

The DI may be understood as a simple generalization of

the Wiberg-Mayer (WM) bond order,26,27 to which it re-

duces upon identification of real space averaging with atom-

centered, Mulliken-like basis set condensation. Actually, for

single determinant expansions with one-electron spinorbitals

φi,

δA,B = 2∑
i, j

SA
i jS

B
i j, (4)

where SA
i j =

∫
A dxxx φ∗i (xxx)φ j(xxx) is the domain restricted overlap

integral between spinorbitals i, j. To compare this expression

to the WM bond order, which is usually written as

WAB = 2
A

∑
µ

B

∑
ν

(PS)µν(PS)νµ, (5)

with sums running over primitive functions χµ centered on the

A or B nuclei, and P denoting the density matrix written in

terms of primitives, Pµν = ∑i ciµc∗iν such that φi = ∑µ ciµχµ, it

is useful to turn to a set of orthogonalized primitives χ′
µ. Using

them,

WAB = 2
A

∑
µ

B

∑
ν

P′
µνP′

νµ, (6)

that can immediately be recast as δA,B if the Mulliken conden-

sation

SA
i j =

A

∑
µ

c′iµc′jµ (7)

is made. Although any orthogonalization procedure will de-

stroy the original adscription of primitives to centers, it is very

often the case that orthogonalization tails are not dominant,

and that one can still formally assign the new orthogonal prim-

itives to nuclei. Although this lies at the core of many of the

problems of Mulliken or Löwdin population analyses, it plays

no role in the following.

The chemist bond order is a measure of delocalization that

the DI simply puts into a proper physical context. We will

use the above condensation procedure soon in what follows.

DIs have been widely used, providing a number of interesting

insights. Particularly important in this context is the general

finding that electron correlation tends to decrease the covalent

bond order well below the standard integer numbers used by

chemists.

It is also important to recognize that, being a domain con-

densation of the exchange-correlation density, the DI reflects

the two-domain statistics of electron populations. For instance

δA,B =−2cov(nA,nB) =−2 [〈nAnB〉−〈nA〉〈nB〉] . (8)

Here, nA,nB are the domain electron counts, so that 〈nA〉 is

the average electron population in region A. Delocalization,

as sensed by the DI, is a measure of the fluctuation of elec-

tron populations. In chemical terms, two regions display a

non-vanishing mutual bond order (if we like, they are bonded)

when fluctuations in the electron population of one of them

are sensed in the other, and vice versa.

At this point we also notice that most of the known re-

sults about the decay rates that we have commented above

are based on TB Hamiltonians or effective one-electron for-

mulations within DFT. In such cases, which we can assimi-

late to one-determinant expansions in a theoretical chemistry

context, the exchange-correlation density reduces to its Fock-

Dirac expression,

ρxc(rrr1,rrr2) = ρ(rrr1;rrr2)ρ(rrr2;rrr1)≡ |ρ(rrr1;rrr2)|2. (9)

This means that the decay rate of DIs with A − B distance,

see Eq. 3, should allow us to distinguish between metallic-

like and insulating-like behavior in not only extended but also

finite systems.

It is our purpose to show with the help of Hückel and TB

model hamiltonians that the above insights hold indeed for

molecules and solids. DIs should fall algebraically in metallic-

like systems, possibly showing Friedel-like oscillations, and

exponentially in insulating-like molecules, with decay lengths

depending on the gap.

3 Models, computational details

We will restrict to the simplest possible cases that can be

solved both analytically and modeled via single determinant,

Hartree-Fock (HF) or Kohn-Sham (KS) DFT, expansions. To

simplify as much as possible, we will consider homoatomic

An linear chains of growing size with one electron per node to

model metallic-like cases, and heteroatomic (AB)n ones with

also one valence electron sites to understand insulating-like

behavior. We will obtain DIs from analytical Hückel solutions

with Mulliken condensation, and compare them to HF results

in H and LiH chains obtained with the GAMESS28 code using

6-311G(p) and 6-311+G(p) basis sets, respectively. In these

cases, DIs for QTAIM topological partitions have been com-

puted through our PROMOLDEN29 program.

We have also obtained TB solutions for linear, square, and

simple cubic one-electron per site extended lattices, and com-

pared the decay rate of their DIs to that obtained from hydro-

gen lattices computed through the all-electron, full-potential

linearized augmented plane wave (FP-LAPW) code ELK.30

QTAIM DIs from Elk solutions were obtained through the

DGrid code.31

We will start considering our finite analytical models. Then

we will generalize to 1D-3D extended systems, and finally we

will compare results with HF and KS real data.
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4 Finite analytical models

4.1 The Hückel homoatomic chain

The Hückel homoatomic chain is an excellent semi-empirical

model not only of hydrogen chains, but also of the π skele-

ton of alternate conjugated hydrocarbons, where a p, instead

of an s function is placed at each node. We will freely switch

between the s-H chain and the p-alternate hydrocarbon inter-

pretations in what follows.

Let us label the n nodes of the chain with Latin indices, and

build each one-electron function φµ = ∑i ci
µχi, where χi de-

notes each node’s primitive and the orbital index µ runs from

1 to n. We can both consider open-ended or closed chain con-

formations. Both admit well-known analytical solutions, so to

simplify, we will stay with the open-ended, linear chain case.

This is characterized by a Hamiltonian matrix HHH = αIII +βTTT ,

where α,β are the standard Hückel Coulomb and resonance

parameters, respectively, and TTT i j is a Toeplitz tridiagonal ad-

jacency matrix, with elements equal to 1 whenever |i− j|= 1

and equal to zero otherwise. Toeplitz systems are easily diag-

onalized by discrete Fourier transforms.32 To simplify further,

let us assume that n is even. Then, the eigenvalues of HHH and

its associated spinorbital coefficients are

εµ = α+2βcos
µπ

n+1
.

ci
µ =

√

2

n+1
sin

µiπ

n+1
. (10)

Similar solutions may be obtained for a closed chain, now by

solving a circulant matrix problem.

0.6
160

0.2337

0.7
588

0.1530

0.0000

0.0000

0.0074

α

α

β

0.0000

0.4
444

0.0000

0
.1

1
1
1

0.0908

Fig. 1 Hückel DIs for n = 6 cyclic and open-ended homoatomic

chains.

Using Mulliken’s condensation, δi, j = 2(∑µ ci
µc

j
µ)2 (change

the prefactor from 2 to 4 if the sum runs over occupied or-

bitals). Notice that the DI is built up from trigonometric func-

tions, so a clearly oscillating behavior is expected. Fig. 1

shows all the DIs for both open and closed n= 6 chains, which

may be seen as models of hexatriene and benzene, respec-

tively. DIs obtained with this simple prescription have already

been reported in several model systems.33

There are several points to be commented. First, notice that

the DI between nodes separated by an even number of edges

is exactly zero, which is valid for any value of n and for cyclic

or open chains. A chemically appealing connection between

electron delocalization via DIs and mesomerism thus appears.

The resonance link is very clear when the covariance inter-

pretation of the DI is taken into account. For instance, it is

straightforward to check that on building the standard Paul-

ing resonance structures of the hexatriene analogue, if the

charge of node (atom) 1 (at one edge) is altered, then only

those charges of atoms 2, 4, or 6 will also be found altered in

the possible resonance schemes. This means that only the 1-

even populations will display non-zero covariance, thus non-

vanishing DIs. This interpretation may be generalized to other

dimensions.

The ortho (or 1,2) DI in Hückel’s benzene is 4/9, so adding

the classical σ bond order would add to a total C-C bond order

of 1.44, different from the naı̈ve value 1.5. HF or DFT C-C

DIs in benzene have been calculated many times, giving val-

ues clustered around 1.4. The 1,4 (para) DI, or PDI is quite

large in benzene (although smaller than in the open chain),

and has been successfully related to aromaticity in real calcu-

lations.34

Secondly, DIs in the open-ended chain show the expected

bond order alternation of alternant hydrocarbons, with an

oscillatory pattern of partial double (if the σ component is

added) bonds, in good agreement with chemical wisdom. If

the open chain is taken as a model for Hn, DIs predict the

Peierls distortion (dimerization) of the hydrogen chain.13 If,

on the contrary, it is understood as an alternant hydrocarbon

model, then DIs predict bond length alternation. Finally, this

very simple example shows that DIs decay slowly in chains:

the 1,6 value is as large as 0.0908.

Let us examine now the infinite chain (n → ∞) limit. It is

easy to show that

δi, j =

{

16
π2

j2

(i2− j2)2 (i+ j) odd

0 (i+ j) even
(11)

This analytical expression has several interesting readings.

For instance, the open chain does not lead to bond equaliza-

tion at its ends. The 1,2 and 2,3 DIs tend to 0.721 and 0.259,

respectively. Equalization is however achieved far from the

edges, i.e. when n ≈ n/2, where the DI tends to 4/π2 ≈ 0.405.

As our main objective is regarded, if we take s = | j − i|,
δ(s) → 16/(π2s2) (when non-zero), decaying algebraically

as s−2, in agreement with Taraskin and coworkers.21 Fig. 2

nicely shows the oscillating behavior and the decay of the non-

vanishing envelope for different sizes. Notice that, although

the inverse square decay is only strictly valid at the n → ∞
limit, this is reached very quickly. This means that even for

relatively small sized systems the polynomial decay should be

clearly visible, should these model results extrapolate success-

fully to real systems.

Let us finally recall that according to the eigenvalue expres-
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n=10

Fig. 2 Hückel DI(1,i) for the homoatomic linear chain as its size (n

sites) grows. Different lines correspond to different length chains.

At the end of the chain j = n.

sion shown above, the set of orbital energies is always en-

closed in the α ± β range, evolving in such a way that the

HOMO-LUMO gap ∆ closes as n increases. Expanding with

respect to γ = 1/n, we get that ∆(γ) = 2π(γ − γ2) + O(γ3).
Similar expansions can be performed with the mid-chain first

neighbor DI, so the DI may be used as an indicator of the gap

for large chains, as Fig. 3 shows.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

g
ap

δ

Fig. 3 Evolution of the HOMO-LUMO gap against the midchain

DI for the Hückel homoatomic chain. The length of the chain

increases as the gap approaches zero (and the DI reaches its 4/π2

limit). All data in a.u.

4.2 The Hückel AB heteroatomic chain

A model for a chain insulator may be easily constructed by

interpenetrating two different α homoatomic lattices. Since all

the physics is contained in ∆α = α−α′, we can arbitrarily set

one of them (e.g. α′) to zero. This is a model for the valence

electrons in LiH, for instance. Let us construct a chain with n

(n even) sites, and order them such that the first n/2 are A (α)

and the second n/2 B (with α′ = 0). Then the Hückel matrix

is square-blocked,

HHH =

(

αIII βTTT

βTTT t 000

)

, (12)

where TTT i j is again a Toeplitz tridiagonal matrix. Splitting

eigenvectors into A and B components, the eigensystem is

easily solved with a simple generalization of the Coulson-

Rushbrook35 theorem. The set of eigenvalues is

εµ =
1

2

(

α±
√

α2 +16cos2(µπ/(n+1))

)

,µ = 1,n/2, (13)

where the plus/minus sign differentiates the occupied/virtual

solutions. Similarly,

ciA
µ =

√

2/(2− τ)ci
µ,

ciB
µ =

√

2(1− τ)/(2− τ)ci
µ, (14)

with ci
µ as in the homoatomic chain and τ = α/εµ.

It is not difficult to show that this is a gapped system. In

the infinite n limit, using a 1/n = γ expansion similar to that

used before, ∆(γ) = α + 2π2γ2/α + O(γ3), and the gap ap-

proaches α on growing chain size, the faster the larger the α
value. Fig. 4 shows the evolution of DI(1, j) for the n = 10

heteroatomic chain with three different α values. Notice how

the results collapse on the homoatomic ones if α = 0, and how

the metallic-like oscillations get damped for small values of

α to completely disappear as this parameter increases. This

is a very interesting insight. It is also pretty clear that het-

eroatomic DIs decay much faster than homoatomic ones. All

DIs converge extremely fast to the n → ∞ limit. For instance,

with α = 2, DI(1,2) attains the limiting 0.368 value at n = 8,

with just 4 AB units.

Fig. 4 also shows the onset of the exponential decay of DIs

for even pretty small n values. Our δ1, j = δ(s) falls off expo-

nentially with exponent λ approximately equal to 1.5,1.8 for

α = 3,4 respectively. Our finite chain results support the pro-

portionality between the gap and λ in the small gap limit. In

this case, ∆ ≈ α ≈ 2λ. The faster the decay rate, the larger the

gap. This is a valuable insight in molecular calculations.

5 Periodic analytical models

The calculation of DIs from TB models in one to three dimen-

sions has been pioneered by R. Ponec, who first presented a

simple calculation,36 later extended and reformulated.37 His

second paper actually provides tight binding results under the

Mulliken condensation approximation discussed previously.

DIs from DFT calculations over QTAIM or ELI real space
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Fig. 4 Top: δ1, j for the n = 10 AB heteroatomic chain at α = 0

(black), 1 (green), and 2 (blue). Oscillations rapidly disappear as α

grows from 0. Bottom: Evolution of the logarithm of δ1, j for a

n = 20 chain with α = 3 (solid red with crosses) and 4 (dashed blue

with dots).

domains are available since the work of Kohout and cowork-

ers.25,38 However, all these authors have been more interested

in first or second-neighbor DI values than in the decay rate of

the indices. We will focus here on this second aspect for ho-

moatomic lattices, referring the reader to the above-mentioned

papers for further details.

Imposing periodic boundary conditions (PBC) on a lattice

with one primitive function χ per site allows us to use Bloch’s

theorem13 to immediately write the one-electron Bloch func-

tions as

φkkk = (1
√

N)∑
RRR

χ(rrr−RRR)eikkkRRR, (15)

where RRR runs over real space lattice vectors, N is the total

number of sites, and kkk runs over the first Brillouin zone (BZ).

Under a nearest neighbors TB (or Hückel) hamiltonian, the

above Bloch ansatz leads to the following one-electron eigen-

values:

εkkk = α+β∑
RRRn

eikkkRRRn , (16)

where RRRn only covers nearest neighbors.

In a 1D lattice with lattice parameter a, where −π/a ≤ k <
π/a, we will have εk = α+ 2βcos(ka), which may be com-

pared with our previous finite 1D results. To obtain the DI

between two lattice sites, let us center our reference frame at

one of them (the 0 site, with RRR = 000). The band (orbital coef-

ficient) of this site is independent of k, c0
k = 1/

√
N. That of

site located r lattice parameters away, cr
k = 1/

√
Neikra. Using

then the Mulliken condensation scheme, and integrating over

the BZ,

δ0,r = 4

{

a

2π

∫ +π/(2a)

−π/(2a)
dk eikra

}2

= 4sin2(πr/2)/(r2π2).

(17)

Of course, this result is equivalent to our previous infinite n

limit, and shows that only if r is odd the DI does not vanish.

PBC also leads to bond equalization. All nearest neighbor DIs

are equal to 4/π2, independently of the lattice parameter a.

This is of course a flaw of the TB hamiltonian. It is also rel-

evant to comment on the on-site localization index (half the

diagonal δ0,0 value), which turns out to be equal to 1/2, show-

ing that half of the electron population is localized, half de-

localized over the full lattice. Notice also that the sum rule

1/2∑B δA,B = NA = 1 follows, since ∑∞
i=0 1/(2i+1)2 = π2/8.

Integration over the BZ in a 2D square lattice of lattice pa-

rameter a is again trivial, since the Fermi surface is a perfect

square. Taking an arbitrary site of the lattice as origin O, we

will label any other site with Cartesian coordinates (ra,sa)
with the (r,s) integer pair,

δ0,rs = 4

{

a2

(2π)2

∫
∈FS

dkxdky ei(rakx+saky)

}2

, (18)

which reduces to

δ0,rs =

{

16/(π4(−r2 + s2)2) r+ s odd

0 otherwise.
(19)

Our results show a more complex landscape than that provided

by Taraskin and coworkers, who would describe an inverse

third power decay. Here we show that the decay rate depends

on the direction, following an inverse fourth power law enve-

lope along the (1,0) direction. The localization index of each

site is again equal to 1/2.

The oscillatory pattern found in 1D is seen here to propagate

in 2D. From a given site, the network of nodes with non-zero

DIs resembles a check board. This behavior is clearly related

to the ability of this lattice to be decomposed into two 45◦

rotated interpenetrating alternate sublattices, like in alternate
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hydrocarbons. It seems that DIs between elements of the same

sublattice vanish. Again, this may be understood in terms of

charge fluctuation (covariance) if the allowed Pauling reso-

nance structures are examined. Several interesting investiga-

tions regarding this should be undertaken. On the one hand,

it would be interesting to check the behavior of frustrated lat-

tices. On the other, it would be of great interest to study also

the chemical consequences (as noticed with mesomerism in

1D) of these patterns.

For the time being, it is relevant to shift to the crystalline

coordinates of the sublattices. This can be done by using two

new orthogonal coordinates p = r+ s, q = r− s. With this,

δ0,pq = 4/(π2 p2)×4/(π2q2), (20)

with p,q both odd, and δ = 0 otherwise. We thus see that

the square lattice behaves as a Cartesian product of two 1D

networks. With this expression, it is straightforward to show

that the sum rule adding to the site population of 1 electron is

also fulfilled.

Nodes along the (1,1) diagonal belong to the same sublattice

(r+ s is even, or q = 0). The decay along p =constant-odd or

q = constant-odd diagonals follows an inverse square power

law, and if particular relations between p and q are satisfied

along a nodes sequence, intermediate power laws also appear.

We have found it difficult to obtain an analytical angularly

averaged decay rate.

The non-trivial shape of the Fermi surface in the 3D case

precludes an analytical integration over the BZ. Anyway, if

we label nodes on the simple cubic lattice by the trio (r,s, t),
then

δ0,rst = 4

{

a3

(2π)3

∫
∈FS

dkkkei(r,s,t)akkk

}2

, (21)

which may be reduced to simple numerical quadratures. The

symmetry properties of the above expression allow us to as-

sure that δ0,rst is only non-zero when r + s + t is odd, and

we can again consider the lattice as composed of two inter-

penetrating sublattices such that δ only communicates nodes

belonging to different sublattices. We have no analytical de-

cay rates, but clear numerical evidence points towards faster,

likely inverse sixth power, decay speed. As an example, δ0,100,

the nearest neighbors DI, is equal to 0.112 (to be compared to

0.405 and 0.164 in 1D and 2D, respectively).

Summarizing, extended TB models show algebraic decay

of DIs in gapless homoatomic systems coupled to a very inter-

esting interference cancellation that leads to wild oscillations

that may be traced back to Friedel behavior, from the physi-

cal point of view, or to resonance and mesomerism, from the

chemical one.

6 Single determinant (HF, KS) results

We will discuss here how the analytical models compare to

actual one-determinant (or pseudo-determinant, in the case

of DFT) calculations in hydrogen and lithium hydride toy

systems. We have chosen interatomic separations for which

these methods are known to provide reasonable answers, and

a QTAIM space partitioning. We leave the true role of electron

correlation aside, that we expect to consider soon elsewhere.

All calculations have been performed at fixed geometries. As

we will see, the exact interference cancellation behind zero

DIs disappears as we allow for the primitive functions to over-

lap. However, many of the insights developed from the Hückel

or TB models remain valid.
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δ
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dH−H [bohr]

δ
1,j

 = (j−1)
−f

δ
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j=3

j=4

infinite chain f = 2.33
finite ring f = 2.40

finite chain f = 2.50
f = 2.00

Fig. 5 Logarithmic plot of δ1, j against the H-H distance in the H

1D infinite (black), cyclic finite with 42 atoms (green), and

open-ended finite with 28 atoms (red) hydrogen chain. Linear

fittings are superimposed to clearly observe the algebraic decay rate.

The exponent of the power law decay, f , is to be compared with the

Hückel or TB result, f = 2. This inverse square law is also

represented in blue. The lattice parameter, or nearest neighbor H-H

distance, is set to 1.84 bohr the theoretical limiting equilibrium

parameter for a HF cyclic chain as n grows.

Fig. 5 shows that actual calculations in 1D chains display

deep oscillations, and that δ1,2i+1 values are non-zero, but cer-

tainly much smaller than δ1,2i ones. Both odd and even en-

velopes evolve algebraically, with exponents larger than 2, but

close to it. Several other points may be highlighted. For in-

stance, f decreases approaching 2, as we move from open-

ended finite to cyclic finite, and finally to PBC infinite chains.

This is to be expected, since open finite chains differ consid-

erably from the stringent approximations of the Hückel or TB

models. We have also found that results in finite chains con-

verge very quickly with size, as in the models, and that our

computed values are quite close to those provided by the lat-

ter. For instance, DIs δ1,2(4) computed in the infinite chain

are 0.44,0.04, to be compared with the TB results, 0.39,0.04,
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respectively.

Changing the lattice parameter does only introduce quanti-

tative changes in the picture. For instance, at a = 2.5 bohr,

probably out of the confidence window where KS-DFT is reli-

able for this system (see Fig. 6), the PBC chain f value equals

2.21, slightly closer to 2, the value that it should attain at dis-

sociation values of a.
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δ
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Fig. 6 Logarithmic plot of δ1, j against the H-H distance in the H

1D (blue), 2D square (red), and 3D simple cubic (green) H infinite

lattices for a = 2.5 bohr along the 1, (1,0), and (1,0,0) directions,

respectively.

Changing the dimensionality alters qualitatively the analyt-

ical results. We will show only PBC calculations in square

and simple cubic 2D, and 3D H lattices, both computed at

a = 2.5 bohr. This is the lattice parameter used by Baranov

and Kohout38 (BK) in a seminal study of first neighbors DIs

in solids. We use it here so that the reader may compare our

values with those obtained by BK. Results at a = 1.84 bohr do

not differ qualitatively from those shown here. Fig. 6 depicts

that the decay is algebraic in the three cases, with f values

roughly increasing in 2 units as we change dimension. What

is noticeable is that oscillations disappear in 2D and 3D, while

they widely persist in the TB models. We think that this is

due to the increase in the number of neighboring overlaps that

contribute to cancelling the destructive interference that lies

behind the oscillations found in TB. In 1D, each site’s prim-

itive overlaps with 2 nearest neighbors, while in 2D and 3D

this number increases to 4 and 6, respectively, or even more

if we consider second neighbors. Be it as it may, our results

clearly support an algebraic decay of DIs in gapless systems,

with f values increasing steadily on going from 1D to 3D.

We now turn to insulating materials. This time we will

present HF finite calculations in a (LiH)9 1D chain and a 9×9

LiH square 2D foil, both with fixed Li-H distances equal to

3.0 bohr. In order to avoid as much as possible termination

effects, we have built in each case models in which a Li or a
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δ
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Fig. 7 Top: Semilogarithmic plot of the QTAIM δ1, j against the

node index in a LiH 1D chain (with 9 LiH units, solid line), and a

LiH 2D square foil (9×9, dotted line), both with a = 3.0 bohr. The

red (for Li) and black (for H) colors distinguish which atom is

placed at the center of the model and labelled as node 1. Only the

(1,0) direction is shown in the 2D case. Bottom: Semilogarithmic

plot of Löwdin δ1, j against the node index j in a LiH 1D chain of 17

LiH units, using also a = 3.0 bohr. DI(Li,H) is shown with crosses,

and DI(Li,Li) with squares. Minimum square lines are also shown

just to aid the naked eye.

H atom is placed at the center of the chain (or foil). Fig. 7

(top) shows the QTAIM DIs. As expected, their decay with

distance is extremely fast. So fast, indeed, that we have not

been able to obtain numerically reliable values beyond fourth

neighbors. Notice that the existence of an AB lattice intro-

duces three types of DIs: Li-Li, Li-H, and H-H. This is the

origin of the kinks in the plot. For instance, the second neigh-

bors ( j = 3) DI between Li atoms is almost one order of mag-

nitude smaller than that between H atoms. With such a quick

decay we have not enough data to support an exact exponen-

tial decay, but we can rule out a slow polynomial one. Notice

also that the exponent seems to increase with dimensionality.

This also explains why we have not added 3D data to the fig-

ure: numerical issues render even fourth neighbors unreliable
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for them. Decay rates do also depend on the direction, as ex-

pected, but numerical problems again preclude us from ex-

tracting precise conclusions. Numerical issues are much less

important if instead of QTAIM basins we use Eq. 7 together

with, for instance, Löwdin’s orthogonalization. Fig. 7 (bot-

tom) shows the exponential-like decay of these Löwdin DIs in

a (LiH)17 linear chain. DIs decrease 8 orders of magnitude on

traversing the chain. Although the chemical interpretation of

these Löwdin indices is prone to severe criticisms, they serve

well our purpose of showing the evolution of decay rates.

Overall, analytical and real models support an exponential,

non-algebraic decay of DIs in gapped systems. Further work

is necessary to establish trends.

7 Conclusions and prospects

The search for real space descriptors that could discriminate

metallic from insulating materials has been a recurrent quest

in chemical bonding theory in the last decades. After the refor-

mulation of Kohn’s theory of the insulating state by Resta,15 it

is now known that electrical conductivity does not leave rec-

ognizable scars in the electron density itself. However, the

modern theory of polarization, as the reformulation is known,

points towards a possible link between electron delocalization

measures and the insulating or conducting nature of a material.

Previous knowledge in the physical literature had noticed that

the decay rate of the 1RDM changes from algebraic to expo-

nential when going from metals to insulators in tight binding

models. Here we have shown that since the delocalization in-

dex of real space theories of the chemical bond is dominated

by the square of the 1RDM, it must follow the same behavior,

so a link between bond orders (that is what the DI measures in

isolated molecules) and conductivity appears.

To that end, we have solved several Hückel finite and TB ex-

tended models. As it turns out, even in fairly small molecular

chains the shift from polynomial to exponential decay is evi-

dent when a gap is forced in the system, and the larger the gap,

the faster the decay. Our results show that in metallic-like sys-

tems (because the gap does only close when we go from finite

to infinite systems) the DI decays algebraically, wildly oscil-

lating due to quantum mechanical interference cancellations

that annihilate the DI between nodes belonging to the same

alternating sublattice. These oscillations have been shown to

be intimately linked to Pauling resonant structures and chem-

ical mesomerism, well known in alternant hydrocarbons. The

dimensionality of the system simply changes the decay expo-

nent, larger as we go from 1D to 3D.

Real computations within the Hartree-Fock or Kohn-Sham

single (pseudo)determinant schemes together with a space

partitioning according to the quantum theory of atoms in

molecules, show that DIs decay algebraically in metallic-like

molecular systems, and very like exponentially, or at least ex-

tremely fast, in insulating-like ones. Oscillations persist af-

ter the inclusion of overlap in 1D chains, although the van-

ishing DIs in the analytical models are now small, but non-

zero. Overlap seems to block interference in larger dimen-

sions, making oscillations to disappear (or at least dampen

substantially).

Examining the decay of DIs in real molecules and extended

materials may provide very interesting clues to their conduct-

ing behavior. Since DIs may be computed between any pair

of atoms, their decay may be followed along particular direc-

tions, making it possible to detect facile or non-facile con-

ductivity channels. This may provide relevant information in

material science and molecular electronics.

The impact of electron correlation on these results remains

to be ascertained. We expect it to be small in simple systems

at geometries close to equilibrium, but it should be important,

yielding interesting insights into metal-insulator transitions,

when the single (pseudo)determinant approximation ceases to

be useful. Work along this direction is under way.
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