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On the energetics of cation ordering in tungsten-
bronze-type oxides†

Gerhard Henning Olsen, Sverre Magnus Selbach, and Tor Grande∗

Oxides with the tetragonal tungsten bronze (TTB) structure are well-known ferroelectrics that
show a large flexibility both with respect to chemical composition and cation ordering. Two of the
simplest compounds in this family are lead metaniobate (PbNb2O6 or PN) and strontium barium
niobate (SrxBa1-xNb2O6 or SBN). While PN is a classical ferroelectric, SBN goes from ferroelec-
tric to relaxor-like with increasing Sr content, with a polar direction different from that in PN. The
partially occupied sublattices in both systems give the possibility for cation order–disorder phe-
nomena, but it is not known if or how this influences the polarization and ferroelectricity. Here, we
use density functional theory (DFT) calculations to investigate how cation and cation vacancy or-
dering influences the energetics of these compounds, by comparing both the energy differences
and the barriers for transition between different cation configurations. We extend the thermo-
dynamic model of O’Neill and Navrotsky, originally developed for cation interchange in spinels,
to describe the order–disorder phenomenology in TTB oxides. The influence of order–disorder
processes on the functional properties of PN and SBN is discussed.

1 Introduction
In the family of ferroelectric oxides based on BO6/2 octahedra,
oxides with the tetragonal tungsten bronze (TTB) structure form
the second largest group after the perovskites.1 The simplest of
these compounds is lead metaniobate, PbNb2O6 or PN, which
has a high Curie temperature of 570 ◦C.2 It is, however, only
stable at temperatures above 1200–1250 ◦C, and metastable with
respect to a rhombohedral polymorph below this temperature
range.3–5 A lead-free analogue to PN is strontium barium niobate,
SrxBa1-xNb2O6 or SBN, which is apparently stable in the TTB
structure down to ambient temperature, although with a lower
TC of 70–200 ◦C, depending on composition.6,7

Both PN and SBN have the general formula
(A1) 2(A2) 4C4(B1) 2(B2) 8O30, with five formula units in
the unit cell, and space group symmetry P4/mbm in the aristotype
structure. The A1 and A2 sites form, respectively, pentagonal
and square channels that run parallel to the tetragonal axis, and
which accomodate the Pb2+, Sr2+ and Ba2+ cations. The C
sites form narrow triangular channels, and are usually vacant, as
only a few cations such as Li+ and Nb5+ are small enough for
these sites.8,9 The B1 and B2 sites are symmetrically different
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octahedral positions, and are fully occupied by Nb5+ in both
PN and SBN. With all A-site cations divalent and Nb in the
pentavalent state, as is the case in PN and SBN, charge neutrality
requires that 5 out of 6 A-sites be occupied.

While PN and SBN are similar in terms of structure, there
are fundamental differences in the behaviour of the two com-
pounds. PN is a classical ferroelectric, while SBN is ferroelectric
for barium-rich compositions, but becomes relaxor-like for stron-
tium contents higher than approximately x = 0.6.10 The ferro-
electric transitions are also different in terms of symmetry: While
SBN remains tetragonal at all temperatures, with a spontaneous
polarization in the [001] direction below TC,6 PN has an in-plane
polarization along the [110] direction referred to the aristotype
cell, leading to an orthorhombic distortion in the ferroelectric
state.11 The explanation of this difference, or indeed the mech-
anism for ferroelectricity in general, is not fully understood for
these compounds. It has been suggested that in the ferroelectric
state, the main contribution to the polarization is displacement
of Nb5+ along [001] for SBN, and in-plane displacement of the
A-site cations for PN.12 This difference could be related to the
stereochemically active 6s2 lone pair on Pb2+, in analogy with
the perovskite titanates of lead and barium.13 Nevertheless, the
picture is less clear for TTB’s, due to the significantly more com-
plicated structure.

In addition to the complexity of the crystal structure itself, the
partial occupancies in the tungsten-bronze oxides give rise to the
possibility of cation order–disorder phenomena. Non-convergent
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ordering is well known in spinels with AB2O4 stoichiometry, but
has to our knowledge never been addressed for materials with
the TTB-type crystal structure. In spinels, the cation exchange be-
tween the tetrahedral and octahedral sublattices can be thought
of as a chemical reaction,14 and the cation distribution can thus
be modelled as a simple chemical equilibrium.15–17 The tungsten-
bronzes are similar to the spinels in terms of cation distribution
between two non-equivalent sublattices, so a similar hypothe-
sis should also apply here. Intuitively, the larger ionic radius
of Ba2+ relative to Sr2+ and Pb2+ implies that the former will
preferentially occupy the larger pentagonal sites, which has also
been found experimentally.6,18 However, even this simple effect
of atomic size is not obvious: Large cations preferentially occupy
the larger octahedral sites in 4–2 spinels, while the opposite is ac-
tually true for 2–3 spinels.16 There is therefore no guarantee that
a simple argument based on atomic size also holds for a different
crystal structure such as the TTB-type.

In this study, we examine the differences between the tungsten-
bronze-type oxides PN and SBN by density functional theory
(DFT) calculations. Particular attention is given to the effect of
cation ordering between the A1 and A2 sites, and the effect of
this on energetic stability. This line of thinking has previously
been applied to perovskite relaxors,19,20 but no first-principles
study of cation ordering in TTB materials has to our knowledge
been done.In our work, we seek to study the energetics of order–
disorder effects in the paraelectric state of the materials, where
sufficient cation mobility may occur only during synthesis far
above TC. The influence of cation ordering on polarization and
lattice instabilities due to ferroelectric order is not included in
this study, but will be followed up in future work. For computa-
tional treatment of these effects, we employ a supercell approach
which makes it possible to sample several different cation config-
urations. We analyze the energy landscape between the config-
urations, consider the plausibility of cation ordering in tungsten-
bronze-type oxides, and discuss possible reasons for the relaxor
properties of strontium-rich compounds in the SBN system.

2 Methodology

2.1 Combinatorial aspects

An analysis is made of the different orderings possible in ANb2O6-
type tungsten-bronzes. Starting with a single unit cell containing
45 atoms (5 formula units of ANb2O6), there are 6 sites among
which to distribute 5 cations (or, equivalently and more conve-
nient, six sites among which to distribute 1 vacancy). The four
pentagonal (P) sites are equivalent, as are also the two square
(S) sites (see Figure 1a), so for a single unit cell, there are only
two unique configurations.

A more realistic approach is to look at the possible configura-
tions in a 1x1x2 supercell, by doubling the unit cell in the c direc-
tion. In such a cell, there are a total of 12 A-sites (pentagonal and
square), as shown in Figure 1b. Among these 12 sites, there are
10 atoms and 2 vacancies to be distributed. For the rest of this
discussion we focus on distribution of the vacancies, and count
and name the configurations according to the following scheme:

• The two vacancies can be distributed between square and

a) b)

A1

A2
C

B2

B1

Fig. 1 a) Projection along the c axis of the tetragonal tungsten-bronze
unit cell in the P4/mbm aristotype, with labels for the different cation
sites. The A1 and A2 sites are represented by grey and black spheres,
respectively, while the B1 and B2 sites are shown as grey and white
octahedra. b) Supercell with a doubled c axis, showing only the A1 and
A2 sites with the same colors as in panel a. Figures created with the aid
of VESTA. 21

pentagonal sites in three ways: Both pentagonal (PP), both
square (SS), or one of each (SP).

• If the first vacancy is located on a square site, there are three
possible ways to place the second vacancy on another square
site: On the other square site in the same layer; diagonally
in the layer above; or directly above the first. Hence, there
are three SS configurations.

• If the first vacancy is located on a pentagonal site, there are
five possible ways to place the second vacancy on another
pentagonal site: Two in the same layer (next to the first or
diagonally opposite from it); the same two positions in the
layer above; or directly above the first. Hence, there are five
PP configurations.

• If the first vacancy is located on a square site and the second
on a pentagonal, they can either be in the same layer, or in
different layers. Hence, there are two SP configurations.

• We use a triplet [hkl] to describe the (approximate) vector
between the two vacancies. For example, two pentagonal va-
cancies within the same layer can be designated as PP[100]
or PP[110] configurations, depending on whether the vacan-
cies are “nearest neighbours” within the unit cell, or diago-
nally opposite from each other, respectively.

This scheme leads to a total of 10 unique configurations for each
composition. These are summarized in Table 1, which gives the
systematic name for each configuration, and the local space group
symmetry arising from the cation ordering.22 As the table shows,
the five PP configurations lead to local orthorhombic space group
symmetries, the three SS configurations preserve the tetragonal
symmetry (with SS[110] even preserving the aristotype space
group P4/mbm), and the two SP configurations lead to local mon-
oclinic symmetry. The 10 configurations for a 1x1x2 supercell
also include the two configurations possible for a single unit cell:
PP[001] is identical to a single unit cell with the vacancy on a
pentagonal site, while SS[001] is identical to a single unit cell
with the vacancy on a square site.
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Table 1 The 10 cation configurations possible for the 1x1x2 supercell
considered in this work, showing the systematic name, local space
group symmetry, and a sketch of the configuration (cations represented
by grey spheres, vacant sites white)

PP[100] PP[110] PP[101] PP[111] PP[001]
Pmc21 Cmmm Pmn21 Cmcm Amm2

SS[110] SS[111] SS[001] SP[110] SP[111]
P4/mbm P4/mcn P4/m Pm Pm

In principle it is possible to extend the investigation to even
larger supercells, such as 1x1x3 or 1x1x4, but this was not per-
formed. Possible effects of increasing the supercell size is included
in the discussion.

2.2 Thermodynamic model

To gain insight into the possibility of cation ordering, we ex-
tend the thermodynamic model of O’Neill and Navrotsky16 for
the cation distribution in spinels. The fundamental assumption,
introduced by Schmalzried14 and elaborated by Navrotsky and
Kleppa,15 is that the interchange of cations between two distinct
sublattices can be viewed as a chemical equilibrium:

[Av](A4)Nb10O30 −−⇀↽−− [A1+ xv1− x](A4− xvx)Nb10O30, (1)

where [A] denotes a cation A on an A1 or square site, (A) de-
notes a cation A on an A2 or pentagonal site, and v denotes a
cation vacancy. This also introduces an interchange parameter, x,
which ranges from 0 (all vacancies on square sites, i.e., SS con-
figurations) to 1 (all vacancies on pentagonal sites, i.e., PP con-
figurations). It is then assumed that the free energy of the cation
interchange reaction (1) can be expressed as

∆Gint(x) = αx+βx2 +RT ∑
s

bs ∑
i

xi,s lnxi,s, (2)

where the last term on the right side is the entropy of mixing
for an ideal solution, with xi,s being the fractional occupancy of
species i on site s, and bs the multiplicity of site s. This is a purely
configurational entropy contribution, i.e. it is assumed that all
other entropy changes following reaction (1) are negligible. The
enthalpy consists of two terms, one linear and one quadratic in
the interchange parameter x, as was proposed by O’Neill and
Navrotsky16 as an expansion of the original model by Navrotsky
and Kleppa.15 Effects of volume and non-configurational entropy
are neglected. The energy difference between different configu-
rations with the same degree of cation interchange is not taken
into account at this stage, so all SS configurations are for now as-
sumed to be degenerate, and the same applies for the PP and SP
configurations. A simple differentiation of the entropy part shows

that maximal configurational entropy is obtained for x= 2/3. This
is analogous to AB2O4 spinels, which also have a maximal config-
urational entropy for x = 2/3 when x is the fraction of B cations
on tetrahedral sites (this is referred to as a random spinel).

By writing out (2) for the TTB structure (see ESI† for details),
and differentiating with respect to x, the following expression is
found for equilibrium conditions:

lnK = ln
x(1+ x)

(1− x)(4− x)
=−α +2βx

RT
, (3)

where K can be recognized as the equilibrium constant for the
simplified cation exchange reaction [v]+ (A) −−⇀↽−− (v)+ [A], us-
ing the same notation as in (1). Equation (3) gives the relation
between temperature and degree of inversion once the enthalpy
coefficients α and β are determined. This can be done exper-
imentally by determining x from refinement of diffraction data
at different T , although it could be challenging to obtain high-
quality data at temperatures high enough for the cation mobility
to be appreciable. Here, we will instead estimate the parameters
by calculating the enthalpy term in (2) from first principles for
cation configurations with different x.

2.3 Computational details

A non-polar SBN unit cell was created by starting from structural
data from literature18 and searching for pseudosymmetry23 in
the non-polar space group P4/mbm (127). The end members of
the SBN system, SrNb2O6 (SN) and BaNb2O6 (BN), were mod-
elled by replacing all Sr and Ba in the unit cell with only one
of the two elements, and setting the lattice parameters a and c
to the values extrapolated from the polynomial expressions given
by Podlozhenov et al.18 For PN, lattice parameters from Labbé12

were used, after extracting the pseudosymmetric P4/mbm struc-
ture from the experimental space group Amm2 as described above.

Total energies were obtained by density functional theory
(DFT) calculations with the VASP code,24–27 where the exchange-
correlation energy was calculated with the gradient-corrected
PBEsol functional.28 Core electrons were described by the
projector-augmented wave (PAW) method,29,30 with pseudopo-
tentials treating 10 valence electrons for Sr (4s24p65s2) and Ba
(5s25p66s2), 14 for Pb (5d106s26p2), 13 for Nb (4s24p64d35s2) and
6 for O (2s22p4). Valence electrons were described by wave func-
tions expanded in plane waves up to an energy cutoff of 550 eV,
which gave well converged lattice parameters in test calculations.
Brillouin-zone integration was done on a 2x2x6 Monkhorst-Pack
mesh31 for the 45-atom TTB unit cell, and reduced to a 2x2x3
mesh for the 90-atom supercells. Atomic positions and lattice
vectors were relaxed until the forces on the ions were less than
0.01 eVÅ

−1
.

For estimation of the energy barrier between differently or-
dered configurations, we performed climbing-image nudged elas-
tic band calculations.32,33 For each composition, we considered
two diffusion paths: Between the configurations PP[100] and
PP[101]; and between SS[110] and SS[111]. Both consist of a
single cation diffusing from one layer to another inside the pen-
tagonal and square tunnels, respectively. The minimum energy
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paths (MEPs) were found by considering 3 intermediate images
between the endpoints, and optimizing atomic positions until the

forces on the ions were less than 0.05 eVÅ
−1

.

3 Results
3.1 Energy landscape of cation configurations
We have calculated the total energy of BN, SN and PN in all 10
configurations considered above, and the results are shown in
Figure 2. Both the energy of the initial structures, and the energy
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Fig. 2 Relative energy per unit cell (A5B10O30) of the different
configurations for a) BN, b) SN and c) PN. The blue bars labeled
“Aristotype” show the energies of the intial structures, with space group
symmetry as described in Table 1. The red and yellow bars show the
additional energy contribution from relaxation of ionic positions and unit
cell volume, respectively. The zero level is set at the highest initial
energy for each composition (configurations PP[001] or SS[001]).

after optimisation of ionic positions and lattice parameters, are
shown. The two configurations that correspond to a single unit
cell, PP[001] and SS[001], are the least energetically favourable
among the initial structures, and for all three compounds, it is

one of these two configurations that has the highest energy ini-
tially. The relative energies of the configurations change, how-
ever, when ionic relaxation is taken into account. Especially for
BN, the initial configurations of highest energy are the ones that
gain most by relaxation, giving an overall energy landscape which
is quite flat. Subsequent relaxation of the unit cell volume and
change of lattice parameters does not contribute as much, as the
main energy gain lies in the relaxation of the ionic positions.

For SN and PN, the energy landscape is not quite as flat as for
BN, although for both compounds there are several configurations
that are very close in energy. The effect of volume relaxation is
even lower for SN and PN than for BN, contributing very little
to the total energy gain upon optimization of the structure. The
effect of ionic relaxation is significant, making the total energy
gain larger, at the most around 3.8 eV. The energy for the fully
relaxed structures is summarized in Figure 3a, where dashed lines
mark the range of energies for each composition. In general, there
is no single configuration, or a few configurations, that stand out
as significantly more plausible than the others for any of the three
compounds.
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Fig. 3 a) Relative energy per unit cell (A5B10O30) of the fully relaxed
structures, corresponding to the total energy shown in Figure 2. The
lowest-energy structure is used as reference state for each compound
(SS[001] for BN, PP[100] for SN and SP[111] for PN). Dashed lines
mark the highest-energy configuration for each composition. b) Volume
change corresponding to the relaxed structures in panel a, showing the
difference in unit cell expansion associated with different cation
configurations.

The change in the unit cell volume following the relaxation of
lattice parameters is shown in Figure 3b. The volume change is
positive in almost all cases, and as large as up to 4 % with re-
spect to the inital volumes. Some trends are evident: For BN,
the expansion is largest for the PP configurations, where Ba2+

completely occupies the narrow square channels, and smaller and
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slightly negative for the SS configurations. This is as expected, as
the large Ba2+ cations preferentially occupy pentagonal sites, and
will expand the lattice if forced into the smaller square sites. A
closer inspection of the lattice parameters shows that the volume
change for BN comes from an expansion of the a and b parame-
ters, and a contraction of c with respect to the initial values. Also
for SN and PN, the a and b parameters mostly expand (the sole
exception being PP[110] for PN, where they slightly contract),
while the c parameter either expands or contracts.

3.2 Transition barriers between cation configurations

Due to the similarity in energetic stability between the different
configurations, we calculated the energy barriers for transitions
between some of these configurations in order to get an impres-
sion of how the configurations compare also kinetically. Two cases
were considered, namely diffusion of A2+ cations in the two dif-
ferent types of channels in the structure. To visualize these cases,
the unit cell is shown again in Figure 4a (left panel) together
with an alternative view emphasizing the pentagonal and square
channels (right panel). Figure 4b shows a perspective view of the
channel shapes, with grey and black arrows showing the diffusion
paths through the square and pentagonal channels, respectively.
Figure 4c shows the minimum energy path (MEP) for these two
diffusion processes, where the end configurations are the PP[100]
and PP[101] configurations for the pentagonal channel case, and
SS[110] and SS[111] for the square channel case. As expected,
the energy maximum midway along the path is higher for the
square channel than for the pentagonal channel, as the square
channels are narrower. In Figure 4d, the height of the energy
barriers are compared for the two cases in all three compositions,
and the larger size of Ba2+ relative to Sr2+ and Pb2+ is again
manifested in the increased transition barrier. The height of the
barriers is significant, and dominates over the energy differences
between the start and end points, as demonstrated in Figure 4a.

3.3 Application of the thermodynamic model

As stated above, the thermodynamic model we emply here does
not take into consideration the energetic differences between con-
figurations with the same value of the cation interchange param-
eter x. In an attempt to meet this problem, we fitted the enthalpic
part of Equation (2) to Boltzmann averages of the energies for
each x:

〈E〉(T ) = ∑n Ene−En/kBT

∑n e−En/kBT
, (4)

where En is the energy of configuration n, and the sums are over
configurations with the same value of x (i.e., the PP, SS and
SP configurations are averaged separately). In this way, at zero
kelvin the energies are identical to the single lowest energy for
each x, while at finite temperatures there is also a contribution to
the energy from population of configurations with higher energy.

Fitting the energies of the fully relaxed structures to Equation
(2) as described above leads to the plot shown in Figure 5a. As
is evident from this plot, the energies for each x spread out sig-
nificantly, especially for the PP cases (x = 1.0), as was also seen
in Figure 3a. Fits to Equation (2) for T = 0K and T = 1800K are
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Fig. 4 a) Projection of TTB unit cell along c (left), highlighting the shape
of the channels considered for diffusion (right). b) Perspective view of
diffusion paths through the square (grey arrow) and pentagonal (black
arrow) channels. c) Minimum energy paths (MEP) for cation diffusion
through square and pentagonal channels in BN. The square channel
diffusion is represented by the transition SS[110] to SS[111], while the
pentagonal channel is represented by PP[100] to PP[101]. The dashed
line marks the energy of the initial configuration in the diffusion process.
d) Comparison of the barrier heights for the MEPs for all three
compositions.
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interchange parameter x as defined in reaction (1). x = 0 corresponds to
the three SS configurations, x = 0.5 to the two SP, and x = 1 to the five
PP configurations. The energy is given in eV per unit cell, corresponding
to reaction (1), with the lowest energy configuration at x = 0 used as
reference. Lines show fits to the enthalpic part of Equation (2), where
dashed lines represent zero temperature (only the lowest energy for
each x is used) and dashed lines represent T = 1800K through a
Boltzmann average of the energies for each x. b) Configurational
entropy as a function of the degree of inversion for the TTB structure
considered in this work, compared to the configurational entropy of a
simple spinel. Values are normalized per site (three for spinel and six for
TTB), to make it possible to compare the entropy between two
structures with different stoichiometry. In both structures, maximal
configurational entropy occurs at x = 2/3.

both shown in Figure 5a, in order to get an impression of how
much the higher-energy configurations contribute for each x at
finite temperatures. In general, this contribution is small, and α

and β show very little variation with temperature.
The entropic part of (2) is purely configurational, and is shown

in Figure 5b. For comparison, the configurational entropy of a
simple spinel is also given, and both are normalized with re-
spect to the number of sites in the structure. It is noteworthy
that both the spinel and the tungsten-bronze-type structure show
a maximal configurational entropy for x = 2/3 with the defini-
tions of x used here, which is therefore predicted to be the high-
temperature limit of x in both structure types. However, the differ-
ence between maximum and minimum configurational entropy is
almost three times larger for spinel than for the TTB structure.
This is justified by the fact that a normal spinel (x = 0) can be
defined as having zero configurational entropy, as both sublat-
tices are fully occupied by only one cation. For the TTB structure,
on the other hand, there is always a mixed occupancy between
cations and vacancies on at least one of the sublattices, and so
the configurational entropy is never zero. This means that there
is less driving force for disordering for the TTB structure than for
spinels, and that enthalpic effects can be expected to dominate
the tungsten-bronze-type oxides also at higher temperatures.

Using α and β obtained above, we calculate the degree of
cation interchange, x in (1), as a function of temperature. The
result is plotted in Figure 6, which also gives the temperature de-
pendence of α and β (inset panel). For BN, both α and β are very
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BN, SN and PN, calculated from Equation (3). The high-temperature
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dependency of the fitting parameters α (solid lines) and β (dashed).

small, which means that entropy is the main factor that governs
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the degree of cation inversion. BN therefore has a prominent tem-
perature dependency, while both PN and SN, which have much
more distinct minima in enthalpy (Figure 5a), show only a weak
dependency of x on temperature (Figure 6). As is also the case
for spinels,16 α and β are of similar magnitude, but with opposite
sign (inset of Figure 6).

4 Discussion

4.1 Possibility of cation ordering in tungsten-bronze-type
oxides

As Figure 3a shows, the energy differences between different
cation configurations are quite small, with a maximal difference
of 1.32 eV per unit cell (0.263 eV or 25.4 kJmol−1 per formula unit)
for fully relaxed SN, and less for the other compositions. This is
somewhat unexpected, as Ba2+ is significantly larger than Sr2+

and Pb2+, so especially the PP configurations, with more cations
in the narrow square channels, would be expected to lie high in
energy for BN. This is the case for the initial structures (blue bars
in Figure 2a–c), where two of the SS configurations have a much
lower energy than the others, as expected from atomic size con-
siderations. After relaxation of the structure is taken into account,
the energy landscape is relatively flat, with energy differences
smaller for BN than for both SN and PN. The main contribution to
this energy landscape flattening comes from the ionic movements
(red bars in Figure 2a–c), and only to a lesser extent from volume
change (yellow bars). Although the energetic contribution from
volume change is larger for BN than for SN and PN, the volume
change itself is not systematically larger for BN, as seen in Figure
3b.

The flatness of the energy landscape, particularly for BN, is
striking, see Figure 2. This difference in behaviour of BN rela-
tive to SN and PN can be rationalized from the relative size of the
cations and the coordination environment inside the channels.
The square channels are formally 12-coordinated and similar to
the A-sites in ABO3 perovskites. The pentagonal channels are for-
mally 15-coordinated, although in practice both the square and
pentagonal coordination polyhedra are to some degree distorted
and the effective coordination number is therefore less than the
formal value. This distortion of A-site coordination polyhedra
happens to a larger degree for Sr2+ and less for Ba2+, since Sr2+

is significantly smaller than Ba2+ (ionic radii of 1.58 Å and 1.74 Å,
respectively, when extrapolating Shannon values34 to CN = 15).
Sr2+ therefore has higher ability to shift towards an off-centered
position in the channel, thus obtaining a smaller effective coor-
dination number than Ba2+. This enhanced ability to off-center
and distort the structure enables the SN configurations to relax
further towards their local energy minima than BN, where full
relaxation is partially restricted by the large Ba2+ ions. In the
case of Pb2+, additional contributions may result from covalent
bonding between Pb and O.

Although the energy differences shown in Figure 3a are small,
the transition barriers between configurations are large, on the
order of 1.0–2.5 eV. This is far above the thermal energy at syn-
thesis conditions, which is on the order of 0.1–0.2 eV. We have
only looked at transitions corresponding to diffusion within the

square or pentagonal channels, i.e., transitions that do not change
the value of x. We expect that since the channel cross-sections are
larger than the openings between the channels, transitions that
change x will have even higher barriers than those investigated at
present.

Although our zero-kelvin DFT calculations indicate that the
structure is not able to explore its entire configurational space,
the situation might be very different at higher temperatures. Dur-
ing cooling from synthesis temperatures of typically 1300–1400 ◦C,
it is possible that certain configurations are “frozen in” and per-
sist to lower temperatures, where the different local space group
symmetries (some of which are polar, cf. Table 1) can aid in the
nucleation of the ferroelectric phase. This is similar to the scheme
suggested for the lead-free perovskite relaxors studied by Gröting
et al.,19 where it was concluded that the small energy differences
between different A-site configurations are not sufficient to create
long-range order, but that short-range ordering may still be possi-
ble. Locally ordered regions that freeze in at high temperature in
the paraelectric state, will most likely influence the nature of the
ferroelectric ground state. For example, the relatively flat energy
landscape predicted for BN might allow more of a long-range co-
operativity in the ferroelectric phase, while the larger energetic
differences between configurations of SN could lead to less long-
range ordering in the ferroelectric state. This could in turn be an
explanation for the tendency for SBN materials to become more
relaxor-like for Sr-rich compositions. For PN, although more sim-
ilar to SN in terms of energetics and cation radius, we expect the
stereochemically active 6s2 lone pair on Pb2+ to play a significant
role in the ferroelectric transition, and this might trump the con-
tribution from energetics which would otherwise have made the
material more similar to SN.

The volume change shown in Figure 3b is, in effect, the ∆V
associated with reaction (1). Volume change for order–disorder
processes has been addressed previously in the case of spinels.35

In general, the order–disorder volume ∆V = Vdisorder −Vorder for
spinels can be positive or negative, but more often positive, and
largest (up to 5 %) when the disordering process involves changes
in coordination numbers of the cations. Largely normal spinels
such as MgAl2O4 tend to become more inverse with increasing
pressure, and it has been observed that this compound disor-
ders more with temperature under high-pressure conditions.35,36

However, at ambient temperature, high pressure alone has only
a negligible effect on the cation distribution,37 which is also one
of the assumptions in the thermodynamic model employed in this
work.

4.2 Analogy to spinels and adaptation of O’Neill–Navrotsky
model

As stated in the introduction, it should be possible to exploit the
similarities between TTB’s and spinels in the phenomenological
analysis of order–disorder processes. A central question in this re-
spect concerns the transferability of the O’Neill–Navrotsky model.
First, it is assumed that non-configurational contributions to the
entropy of reaction (1) are negligible. This works well for the
interchange process in spinels, and we have made the same as-
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sumption here. In addition to the configurational entropy, there
could in principle be a contribution from change in vibrational
entropy. Since the cation configurations differ with respect to lo-
cal space group symmetry (Table 1), the number of vibrational
modes will also be different, with more modes for configurations
of lower symmetry. We do not attempt here to explicitly include
this presumably small entropy contribution in the thermodynamic
model.

Accepting the premise of configurational entropy only, the con-
ceptually most important difference between TTB’s and spinels is
revealed by the entropy plot shown in Figure 5b: Since at least
one of the sublattices in TTB has a mixed occupancy for all x,
the configurational entropy is never zero. In other words, there
is no value of x for which the structure must necessarily be fully
ordered. This is in contrast to spinels, where a normal spinel
(x = 0) must be perfectly ordered, while an inverse spinel (x = 1)
can be either ordered or disordered, depending on how the A
and B cations distribute over the octahedral sites (the latter is not
given by the value of x). Even a “random” spinel (x = 2/3) can
have different degrees of order, even though the configurational
entropy is at a maximum for this degree of inversion. For TTB’s,
however, any degree of inversion can have varying degrees of or-
der, so there is no a priori reason for x = 0 to be defined as the
ground state.

In light of the above considerations, it is clear that x in itself
is not a measure of the degree of disorder, but should merely be
though of as a parameter describing the distribution of cations
between two sublattices. Order–disorder can take place on each
of these sublattices. In a spinel, a transition from normal to (par-
tially or completely) inverse, must necessarily be accompanied by
disorder, and so it is expected that the parameter α always be
positive for spinels. This is indeed found to be the case,16,38 so
the negative values obtained for α for the TTB materials (inset of
Figure 6) may seem counter-intuitive when compared to α values
for spinels. However, once it is realized that reaction (1) is not
in itself a disordering process, a negative α is not problematic:
It merely reflects the fact that a cation interchange from the SS
configurations towards the SP (and possibly PP) configurations
is energetically favoured — to a large degree for SN; to a some-
what lesser degree for PN; and for BN, the flat energy landscape
is reflected in the very small values of α and β .

Turning to the plot of x as a function of temperature (Figure
6), the different behaviour of BN, SN and PN can be understood
in light of the above considerations. For BN, x increases with
temperature, since the lowest-energy configuration at zero tem-
perature has x= 0. The contribution from configurational entropy
acts to push the structure towards a higher degree of cation inter-
change at higher temperature, similar to the behaviour of normal
spinels. As the energy landscape for BN is so flat, the effect of
entropy is large, and x rapidly approaches 2/3 when the temper-
ature increases. For SN, however, the energy differences between
the configurations are much larger, with a pronounced enthalpy
minimum at around x = 0.9, which does not change significantly
with temperature, as shown in Figure 5a. The effect of increased
temperature is therefore to push x towards a slightly lower value,
giving the behaviour of decreasing x shown for SN in Figure 6.

PN is intermediate between BN and SN in terms of how deep
the enthalpy minimum is (Figure 5), but as this minimum is lo-
cated at around x = 0.65, very close to the high-temperature limit
of x = 2/3, the temperature dependence of x becomes extremely
weak for this compound, resulting in the almost flat curve for PN
in Figure 6.

The use of a thermodynamic model provides a more complete
picture of the behaviour of BN, SN and PN at realistic tempera-
tures, as compared to simply calculating the zero-kelvin energy
of the different configurations. It should be kept in mind that
the transition barriers between configurations are high. The de-
velopment of x with temperature (Figure 6) represents the true
equilibrium state, while in reality the relaxation time for cation
ordering will increase exponentially upon reduction of temper-
ature, and a certain configuration will eventually freeze in, as
has also been shown for spinels.38 The main finding is that the
preferred value of x differs significantly for BN and SN, which is
likely connected to the gradual change in dielectric and ferroelec-
tric properties with changing Sr/Ba-ratio in the SBN system. The
strong temperature dependence of x for Ba suggests that changes
in the cation configuration due to thermal history is most likely to
occur at high Ba content.

In this study, we have only sampled three different values of x,
namely 0 (the SS configurations), 0.5 (SP) and 1 (PP), via a to-
tal of 10 configurations. These are all the possibilities accessible
using a 1x1x2 supercell, while a larger supercell would make it
possible to sample more of configurational space (e.g., a 1x1x3
supercell would give access to configurations with x = 0.33 and
x = 0.67, as well as more configurations with x = 0 and x = 1).
However, already when using a 1x1x2 supercell, we see a substan-
tial variation of the energies between different configurations of
the same x value, and a sampling of more x values would not nec-
essarily improve significantly on the model. At the same time, an
advantage of larger supercells would be to remove artifacts from
the periodic boundary conditions. The supercells used here con-
tain two octahedral layers, and therefore have a repeat distance
of nearly 8 Å along the shortest dimension (the c axis). Larger
cells would be advantageous to eliminate all artificial ordering of
vacancies, although it is not known if this contribution is signif-
icant. In any case, larger supercells would lead to many more
configurations to investigate, and also make each configuration
significantly more computationally demanding.

5 Conclusion
The energetics of cation ordering in oxides with tetragonal tung-
sten bronze (TTB) oxides has been investigated by ab initio DFT
calculations. It is found that different degrees of cation inter-
change between the A1 and A2 sublattices are preferred for the
TTB metaniobates of barium, strontium and lead. Furthermore, a
thermodynamic model has been developed for the phenomenol-
ogy of cation interchange in TTB oxides, based on the model de-
veloped for spinels by O’Neill and Navrotsky. Due to the relatively
small energy differences between several of the configurations,
there is little driving force for long-range cation ordering. For
barium metaniobate, the configurational energy landscape is very
flat, and a certain temperature dependence of the cation ordering

8 | 1–9

Page 8 of 9Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



is to be expected. Due to quite high barriers for transitions be-
tween different configurations, we suggest that certain configura-
tions will be “frozen in” during synthesis, and that different local
configurations, some of which lead to polar space group symme-
tries, can act as seeds for nucleation of the ferroelectric phase
below TC.
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