This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis

Sha Zhang, a Hsueh-Shih Chen, b Katarzyna Matras-Postolek c and Ping Yang* a

In this paper, ZnO nanoflowers (NFs) were fabricated by thermal decomposition in an organic solvent and their applications in gas sensor and photocatalysis were investigated. These single crystal ZnO NFs, which were observed for the first time, were with average size ~ 60 nm and grown along the (100) facet. It was suggested that oleylamine used in the synthesis inhibited the growth and agglomeration of ZnO through the coordination of the oleylamine N atoms. The NFs exhibited excellent selectivity to acetone with concentration of 25 ppm at 300 ºC because they had high specific surface area that provided more active sites and the surface adsorbed oxygen species for interaction with acetone. In addition, the ZnO NFs showed enhanced gas sensing response which was also ascribed to abundant oxygen vacancies at the junctions between petals of the NFs. Furthermore, ZnO–reduced graphene oxide (RGO) composite was fabricated by loading the ZnO NFs to the surface of stratiform RGO sheet. In the photodegradation of Rhodamine B tests, the composite revealed an enhanced photocatalysis performance compared with ZnO NFs under UV light irradiation indicates.

Introduction

In the past few decades, effectively controlling the sizes, morphologies, and structures of nanoparticles (NPs) has been a hot topic for the development of nanoscience and technology, especially for their applications with morphology-dependant properties. The crystal growth mechanism and the microstructure development in nanoscale play a critical role for controlling the size-dependent properties. Normally, the kinetic model for coarsening of bulk materials is based on the Ostwald ripening mechanism, which involves the dissolution—precipitation processes between particles. Other growth mode may be involved in the growth of NPs. For example, a growth mechanism named “oriented attachment”, where two crystal graphically oriented NPs combined together to form a larger one, was proved to be another significant mode for nanocrystal growth. The thermal decomposition of precursors in organic solvents containing surfactants at high temperature provides better control over size, shape, composition, and internal structure of the NPs with respect to other methods, such as coprecipitation. To investigate the growth process, much effort has been devoted to the development of NPs with various regular morphologies such as spheres, sheets, and rods. NPs with other irregular morphologies were also created to study the crystal growth and morphology evolution processes and the corresponding mechanisms. For example, two-dimensional CuO nanoleaves were reported. However, there are still existing difficulties and problem for the growth controlling the irregular NPs.

Due to its hexagonal wurtzite structure and polar crystal surfaces, ZnO has diversified nanostructures. Many research groups have developed various synthetic methods to fabricate such nanostructures. Although the solvothermal synthesis held its disadvantages with lower efficiency, environmental pollution, and few controllable, it was widely applied because of its advantages, such as simple operation and mild reaction conditions. For example, Qiu and co-workers reported on the synthesis of hierarchical ZnO nanorod and nanosheet structures for dye-sensitized solar cells. Kang et al. reported the fabrication of hierarchical ZnO nanostructures via a surfactant-directed process. The synthesis of ZnO and zinc hydroxide single nanosheets were carried out by delamination of layered ZnO film intercalated with the dodecyl sulfate ion which was synthesized by cathodic electrodeposition process. However, the relationships between the morphology, crystal growth habit, and photocatalytic properties of ZnO single crystal nanoflowers (NFs) have not been elucidated. There is almost no report on the photocatalytic activities of such ZnO NFs.

ZnO is one of the most promising materials for gas sensing application due to its high mobility of conduction electrons and ideal chemical and thermal stability under the operating conditions of sensors. In addition, ZnO nanomaterials has been investigated for photocatalytic degradation of pollutants and hydrogen generation from water splitting because of their high catalytic activity, low cost and environmental friendliness. Most of them suffer from wide bandgap, photocorrosion, and low separation efficiency of electron–hole pairs. Because a reaction occurs at the interface between the catalyst surfaces and organic pollutants, the morphologies affecting surface atomic arrangements and coordination play an important role in determining catalytic performance.

* School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China, E-mail: mse_yangp@ujn.edu.cn
b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
c Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow, 31-155, Poland.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 1
properties. The morphology, surface atomic structure of exposed facets of ZnO materials affects strongly their properties. Property improvement has also been observed for the composites of ZnO nanomaterials with others such as the composite of ZnO nanorods and graphene (GR). The ZnO based composite became into a hot topic.

In this paper, we synthesized flat single crystal ZnO NFs via a thermal decomposition route by adjusting the preparation parameters such as chemical concentration, temperature, and stirring rate. These synthesized single crystalline ZnO NFs with average size ~ 60 nm, which is observed for the first time, were grown along (100) facet. Their applications in gas sensor and photocatalysis were investigated. ZnO–reduced graphene oxide (RGO) composites the degradation of Rhodamine B (RhB) under UV light irradiation indicates the composite revealed enhanced photocatalysis performance compared with ZnO NFs.

Experimental

Chemicals

1-octanol, zinc acetate dehydrate(Zn(Ac)₂·2H₂O), ethanol, oleylamine, graphite powder, potassium permanganate (KMnO₄), sulfuric acid (H₂SO₄), hydrogen peroxide (30%), Phosphoric acid (H₃PO₄), hydrochloric acid, and hexane were supplied by Shanghai Chemical Reagent Company and Tianjin Chemical Reagent Company. The commercially available reagents were used without further purification. Deionized water used in the synthesis was obtained from a Milli-Q synthesis system (resistivity ~ 18 MΩ·cm).

Synthesis of ZnO NFs

Table 1. Preparation conditions of samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stirring speed (rpm)</th>
<th>Reaction time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>200</td>
<td>35</td>
</tr>
</tbody>
</table>

The typical synthetic process of ZnO NFs is described as follows: 0.5 mmol of Zn(Ac)₂·2H₂O and 6 mL of 1-octanol were added in a four-neck flask with stirring. Then, 4 mL of oleylamine was added under continued agitation to the mixture of zinc acetate dehydrate and 1-octanol. The mixture was slowly heated to 120 °C and kept at this temperature for 1 h to remove water. After that, the mixture was heat-treated to 180 °C and kept for 30 min with stirring and N₂ purging. After cooling down to room temperature, the products were collected by centrifugation, and then washed with equal volume ethanol and hexane. Finally, the products were re-dispersed in hexane. The preparation conditions of samples are listed in Table 1.

Synthesis of graphene oxide

Graphene oxide was obtained by natural graphite powder via modified Hummers’ method, as reported by Daniela C. Marcano’s.14 In brief, graphite flakes of 3.0 g were added to a mixture of H₂SO₄ of 360 mL, H₃PO₄ of 40 mL, and KMnO₄ of 18.0 g in a water bath at 50°C with vigorous stirring. After stirring for 12 h, 400 mL of water with 30% H₂O₂ was added and a brilliant yellow product was formed with bubbling. The mixture was filtered through polyester fiber and then the supernatant was centrifuged (4000 rpm for 2 h). The remaining sediment was purified in succession by 200 mL of water, 200 mL of 30% HCl, and 200 mL of ethanol for three times. The final sediment was exfoliated in water by an ultrasonic cleaner, giving a solution of graphene oxide.

Synthesis of ZnO–RGO nanocomposites

2.5 mL of ethanol solution containing an appropriate amount of graphene oxide was added into the reacting solution of ZnO NFs using same experimental conditions. In this process, graphene oxide was reduced to RGO by oleylamine. Finally, ZnO-RGO nanocomposites can be obtained.

Photocatalytic Measurement

For the photocatalytic degradation of RhB, 0.01 g of catalysts (ZnO NFs or ZnO-RGO nanocomposites) was suspended in 20 mL of RhB dye aqueous solutions (10 mg/L). The mixture was continuously stirred for 45 min to attain sufficient adsorption on the catalyst surface. Then, the photocatalytic test was carried out using a 20 W UV lamp. 2 mL of sample with certain time interval was taken out and centrifuged for the absorbance measurement using a HitachiU-4100 spectrophotometer.

Characterization

The X-ray powder diffraction (XRD) patterns of ZnO NFs were characterized by a Germany Bruker D8-Advance diffractometer with Cu-Kα radiation source. High-resolution transmission electron microscopy (HRTEM) images were obtained by a Phillips Tecnai 20U-Twin high-resolution transmission electron microscope at an accelerating voltage of 200 kV. Transmission electron microscopy (TEM) images were obtained using a JEM-2100 electron microscope instrument at an accelerating voltage of 200 kV. The Fourier transform infrared (FT-IR) spectrum was performed on a Bruker Tensor27 FT-IR spectrometer using KBr pellets. The UV-vis absorption spectra were detected using a Hitachi U-4100 spectrophotometer. The specific surface area of ZnO NFs was measured by using a multi-function adsorption instrument (MFA-140 of Beijing Builder Company). Before measurement, the ZnO NFs were degassed under vacuum at 110 °C for 2 h.
Results and discussion

Phase composition and morphology of ZnO NFs

ZnO NFs were fabricated through the thermal decomposition of zinc acetate in an organic solvent at 180 °C. A typical XRD pattern of as-synthesized ZnO NFs is shown in Figure 1. The result indicates that all the XRD peaks could be indexed to the (100), (002), (101), (102), (110), (103), (200), (112), and (201) planes of hexagonal structured ZnO. The XRD patterns of the ZnO crystalline phase with flat self-assembly NFs exhibit well-defined peaks that could be assigned to the wurtzite phase without any impurity. The XRD peaks with high intensity indicate ZnO NFs with high crystallinity.

Assembled growth mechanism

To indicate the growth process of ZnO NFs, samples 6-11 were prepared using different reaction time. Because of the reaction between zinc acetate and oleylamine, the formation of ZnO NFs included four steps, I) aminolytic reaction between zinc acetate and oleylamine, II) zinc hydroxide decomposition, III) nucleation, and IV) growth. When the reaction temperature reaches to 180 °C, zinc acetate is converted to zinc hydroxide intermediates by aminolytic reaction as indicated in Scheme 1. Then, zinc hydroxide forms ZnO rapidly. Figure 4 shows the TEM images of samples 6-11 prepared with different reaction times. At the early stage, e.g., 5 min, monodispersed ZnO NPs generate as shown in Figure 4a. The diameter of NPs is about 5~10 nm. After 10 min, the NPs develop into small NFs as shown in Figure 4b. A significant growth occurs when the reaction time is 30 min, which is confirmed by the TEM images shown in Figure 4d. It should be noted that the NFs obtained at 30 min consist of the NPs with the diameters of 10-20 nm. For longer growth time, i.e., 60 min, the diameter of the NPs increase to 20-35 nm as shown in Figure 4e. When the reaction time was prolonged to 90 min, the size and morphology were roughly the same as shown in Figure 4f.
Figure 5a and b. The average size of ZnO NFs is about 38 nm. The TEM images in Figure 5b show the ZnO NF consisted of small ZnO NPs with average size of 8 nm. These NPs share an identical crystallographic orientation\(^\text{21}\) identified to be (100) face \((d=0.28 \text{ nm})\). The lattice fringes of the (100) plane are clearly observed and have the inter-planar spacing of 0.28 nm, which can be well indexed to the hexagonal ZnO crystal structure. The results confirm that ZnO NFs grow along the (100) direction. Figure 5c shows the 3D model of ZnO NFs and Figure 5d indicates the 2D model of ZnO NFs.

Scheme 1. Aminolytic reaction between zinc acetate and oleylamine

For the formation of ZnO NFs, oleylamine not only acts as the reactant to react with zinc acetate but also acts as inhibitor to inhibit the growth and agglomeration through the coordination of their N atoms with the surface of metaloxides.\(^\text{21-23}\) Figure 6 depicts a typical FTIR spectrum of the ZnO NFs. The characteristic broad C=O stretching vibrations at 1500-1750 cm\(^{-1}\) and sharp peak at 2800-3000 cm\(^{-1}\). This indicates that oleylamine molecules were attached to the surface of ZnO NFs tightly.

Gas sensing property

ZnO nanostructures with various morphologies usually show remarkable gas sensing properties because of their high surface area and the fabricated junctions between NPs.\(^\text{24}\) For example, nest-like ZnO with hierarchically porous structures has high response to ethanol and acetone,\(^\text{25}\) and ZnO nanowires composited by the NPs have enhanced response to NO\(_2\) gas.\(^\text{26}\) In the current study, the sensitivity of ZnO NFs toward acetone gas was investigated. Acetone is one of the chemical hazards and toxic substances to our health. The detection of acetone is of great significance for environmental protection and human health. The sensor response of the samples is defined as \(R_a/R_g\), where \(R_a\) and \(R_g\) are the electrical resistances of the sensor in dry air and in the target gas, respectively. Figure 7a shows the response of as-fabricated gas sensor to 100 ppm acetone at working temperatures from 200 to 360 °C.

Figure 5. (a) TEM image of ZnO NFs (sample 12 in Table 1). (b) TEM image of ZnO NF as a black square region in (a). (c) Proposed 3D model of ZnO NFs. (d) Proposed 2D model of ZnO NFs.

Figure 6. FTIR spectrum of ZnO NFs (sample 12 in Table 1).

It is well-known that the response of semiconductor based gas sensors is determined by the chemical reactions between the surface adsorbed oxygen species and acetone gas molecules on the surface of ZnO. At low temperature, the energy is not high enough to support the reaction between acetone gas molecules and the surface-adsorbed oxygen species. Therefore, the responses value is relatively low. With increasing temperature, the energy becomes high enough to support the acetone molecules to react with surface-adsorbed oxygen species and therefore the response increases...
significantly. When temperature increases to a certain value, the R_s/R_g exhibits the highest value. After that, the response value of the gas sensor decreased because the difficulty in acetone gas adsorption.27-28 For ZnO NF sensor, the response first increases abruptly with the working temperature and then gradually decreased. The best working temperature found in the current study is 300 °C, while the corresponding response to acetone is 41.0. Figure 7b shows the real-time sensing response curves of the ZnO NFs sensor to acetone with different concentrations at optimal working temperature of 300 °C. It clearly shows that the response values increase with increasing gas concentration from 25 to 1000 ppm. The response and recovery times, as an important parameter for evaluating the property of gas sensors, are also investigated. It has to be noted that the response and recovery times are calculated as 21 and 9 s at the gas concentrations of 100 ppm, respectively, showing the great property of ZnO NFs sensor. Moreover, the sensor is found to be stable after operating for 5 cycles, which indicates that this sensor has vital application in detecting acetone gas.

When the temperature increases further, the adsorbed oxygen species interacting with acetone is 41.0. Figure 7b shows the real-time sensing response curves of the ZnO NFs sensor to acetone with different concentrations at optimal working temperature of 300 °C. It clearly shows that the response values increase with increasing gas concentration from 25 to 1000 ppm. The response and recovery times, as an important parameter for evaluating the property of gas sensors, are also investigated. It has to be noted that the response and recovery times are calculated as 21 and 9 s at the gas concentrations of 100 ppm, respectively, showing the great property of ZnO NFs sensor. Moreover, the sensor is found to be stable after operating for 5 cycles, which indicates that this sensor has vital application in detecting acetone gas.

Compared with the result reported in literature,27 it is obvious that the response of ZnO NF sensor in our experiment is higher than that of other ZnO nanomaterials toward 100 ppm of acetone. The enhancement in gas sensing property for ZnO NFs can be explained by the following two reasons. First, a flat ZnO NF is composed of small NPs with high specific surface area. As demonstrated by HRTEM images, the ZnO NFs possess the size between 30 to 60 nm. The ZnO NFs with high specific surface area provide more active sites for acetone gas molecules, which increases the percentage of surface-adsorbed oxygen species interacting with acetone. Thus, the ZnO NFs have much better gas sensing response. Second, the gas sensing response enhancement can also be attributed to abundant oxygen vacancies that are obtained from the junctions. As shown in Figure 4c, a lot of junctions between ZnO NPs existed in a single ZnO NF, which possess abundant oxygen vacancies and facilitate the adsorption of active oxygen ions, such as O2-, O-, and O2-.28 Therefore, the ZnO NF sensor has excellent acetone sensing property.

Selectivity is another important criterion in gas sensing. Figure 7c demonstrates the selectivity test of pure ZnO NFs to various volatile organic compounds gases, such as HCHO, CH\textsubscript{3}OH, toluene, acetone, ammonia, and ethanol. All of the gases were detected at an operating temperature of 300 °C with a concentration of 100 ppm. As is shown in Figure 7c, it is found that ZnO NFs exhibited enhanced response to acetone in comparison to any other gases. The above results confirmed that ZnO NFs had good sensitivity and selectivity to acetone.

Photocatalytic property of ZnO NFs and ZnO-RGO samples

ZnO, as one of the most promising UV-light driven photocatalysts, has been widely studied for photodegradation of pollutant and conversion of solar to chemical energy. However, the photocatalytic activity of pure ZnO is still poor as the photocorrosion and low quantum efficiency of ZnO. To solve these problems, many efforts have been made to inhibit the recombination of electron–hole pairs and improve the anti-photocorrosion, such as ZnO-noble metal composites,30 QD-ZnO composites,31 graphite-like carbon-ZnO composites.32 Among these, constructing ZnO-graphene nanocomposites is a promising method to obtain enhanced photocatalysis performance. The morphology of ZnO-RGO nanocomposites was characterized by TEM as shown in Figure 8. Clearly, numerous ZnO NFs are densely loaded on the surface of stratiform RGO sheet, implying that ZnO NFs and the RGO sheet have been interfacial contacted with each other closely. Because of the intimate connection between ZnO NFs and RGO sheets, the nanocomposites may potentially offer enhanced electronic interaction. The photocatalytic activity of ZnO NFs and ZnO-RGO composites is evaluated by the degradation of RhB under UV light irradiation. Figure 9 displays the time-dependent absorption spectrum of RhB aqueous solution under UV light irradiation in the presence of the above-mentioned samples and degradation efficiency versus reaction time for two samples.
Figure 9. Adsorption variation of RhB aqueous under UV light irradiation. (a) With ZnO NFs (sample 9 in Table 1). (b) With ZnO-RGO nanocomposites. (c) Degradation efficiency versus reaction time for two samples. (d) EIS Nyquist plots of ZnO NFs ([KOH] = 3 M).

The normalized temporal concentration changes (C/C₀) of RhB during photodegradation are proportional to the normalized maximum absorbance (C/C₀). It is clear that ZnO-RGO composite shows a remarkable enhancement in the photodegradation of RhB compared with ZnO NFs. Under UV light illumination for 40 min, almost 80% of initial RhB dyes were decomposed by RGO-ZnO. In contrast, ZnO NFs revealed slower degradation rate for RhB dyes. Thus, ZnO-RGO possesses higher separation efficiency of charge carriers than individual ZnO NFs which is in accordance with the results of the photodegradation RhB dye. In addition, the pure ZnO NFs possess higher photocatalytic activity than that of the flower-like ZnO in the reported literatures.

The typical electrochemical impedance spectrum (EIS) is a useful method to reflect the migration and transfer processes of photogenerated electrons and holes. The radius of the arc in the EIS spectra can indicate the interface layer resistance occurred on the surface of electrode. The smaller the arc radius is, the higher the charge transfer efficiency is.

Figure 9d shows the Nyquist plots of ZnO NFs and ZnO-RGO composites. Obviously, the arc radius for the ZnO-RGO composite is much smaller than that of the individual ZnO NF, indicating that ZnO-RGO composite possesses a greater ability in separation and transfer of photogenerated electrons and holes.

Scheme 2 shows the schematic illustration of the charge transfer, enhanced photocurrent, or photocatalytic activity by ZnO-RGO composites. Under UV light illumination, ZnO was excited to form the photogenerated electron-hole pairs, which separated at the interfaces of ZnO NFs and RGO sheets. The photogenerated electrons can react with the adsorbed O₂ to form radicals such as ·O₂⁻, for the photodegradation of methyl blue, and the remaining holes in ZnO NFs can take part in the redox reactions in the photocatalytic process of RhB dyes. The photogenerated electrons can be transferred from the conduction band of ZnO to RGO, and the RGO serves as an acceptor of electrons and suppresses charge recombination effectively, resulting in higher photocurrent density and more charge carriers to form reactive species, promoting the photodegradation of RhB dyes. Therefore, ZnO-RGO composites exhibited enhanced photocatalysis activity.

Conclusions

A thermal decomposition in organic solvent was developed to synthesize flat ZnO NFs. The applications of these NFs in gas sensor and photocatalysis were investigated. These single crystal ZnO NFs with average size of 60 nm were grown along {100} facet. Besides acting as a reaction agent, it was found that oleylamine inhibited the growth and agglomeration possibly through the coordination of their N atoms with the surface of metaloxides. Because the NFs with high specific surface area provided abundant active sites which increased surface adsorbed oxygen species interacting with acetone, the NFs showed ideal selectivity to acetone with concentration of 25 ppm at 300 ºC. ZnO–RGO composites were fabricated through densely loading the NFs on the surface of stratiform RGO sheet. Under UV light irradiation, ZnO–RGO composites revealed enhanced photo degradation for RhB. These properties are considered to be important for their applications.

Acknowledgements

This work was supported in part by the project from National Basic Research Program of China (973 Program, 2013CB632401), the program for Taishan Scholars, the projects from National Natural Science Foundation of China (51202090, 51302106, 51402123, and 51402124)

Notes and references
