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and to suggest suitable DFAs to which further current corrections48

can be reliably applied.49

We here study a collection of DFAs chosen to cover the fa-50

miliar sequence consisting of the local-density approximation51

(LDA16), generalized-gradient approximation (GGA) functionals52

(BLYP17,18 and PBE19), hybrid functionals (B9720 and B3LYP21),53

and meta-GGA functionals (TPSS22). We also include the KT254

functional,14 developed specifically for NMR shielding constants.55

Since a comparison with experiment requires a treatment of vi-56

brational effects,1 we compare instead with accurate theoretical57

shielding constants calculated at a fixed molecular geometry us-58

ing coupled-cluster theory with single, double and perturbative59

triple excitations (CCSD(T)).23
60

The diamagnetic contribution to the shielding constant can61

be defined to depend only on the ground-state electron density.62

Therefore, we examine the error in the density calculated using63

different DFAs by comparison with the CCSD(T) reference density.64

In the absence of a field the exact exchange–correlation functional65

is purely density dependent. For such a purely density-dependent66

functional, which neglects current dependence but yields the ex-67

act charge density at zero field, the paramagnetic response is de-68

termined purely by the values of the orbitals and eigenvalues of69

the Kohn–Sham system. Using this fact we are able to calculate70

the σσσ
para
ρ term in Eq. (1) and distinguish errors originating from71

the neglect of current dependence from those coming from the72

use of an approximate exchange–correlation functional.73

2 Theory74

2.1 NMR shielding constants75

The NMR shielding tensor σσσK associated with nucleus K is de-76

fined as the second-order derivative of the molecular electronic77

energy with respect to the external magnetic field with flux den-78

sity B and the magnetic moment MK of that nucleus at B = 0 and79

MK = 0,24
80

σσσK =
d2

E

dBdMK

∣

∣

∣

∣

∣

B,MK=0

. (2)81

In common with all second-order magnetic properties, the shield-82

ing tensor can be decomposed into diamagnetic and paramag-83

netic parts,84

σσσK = σσσdia
K +σσσ

para
K , (3)85

but this decomposition is not unique. Throughout this work86

we use London atomic orbitals25 to ensure gauge origin inde-87

pendence of our results. We follow the convention that the88

diamagnetic part depends only on the ground-state density; all89

terms describing some form of response to the field, including90

the response encoded in the London atomic orbitals or gauge-91

invariant atomic orbitals (GIAOs), are contained in the paramag-92

netic part.26 Specifically, we define the diamagnetic part as (omit-93

ting here and elsewhere the summation over electrons)94

σσσdia
K =

1

2

〈

0

∣

∣

∣

∣

∣

rT
OrK − rOrT

K

r3
K

∣

∣

∣

∣

∣

0

〉

, (4)95

where rK = r−RK is the position vector of the electron relative96

that of the nucleus RK , and rO = r−RO is the position vector97

of the electron relative to the gauge origin RO. Unless other-98

wise stated, atomic units are used in this paper. Setting the99

gauge origin at nucleus K, the diamagnetic NMR shielding con-100

stant becomes directly proportional to the expectation value of101

the Coulomb interaction at the nucleus102

σdia
K =

1

3
Trσσσdia

K =
1

3

〈

0

∣

∣

∣

∣

1

rK

∣

∣

∣

∣

0

〉

. (5)103

In the present paper, the quality of the total shielding constant σK104

and its diamagnetic part σdia
K calculated with different DFAs will105

be assessed by a direct comparison with accurate CCSD(T) values,106

thereby quantifying also the error in the paramagnetic part σ
para
K .107

We also analyze the sources of error in σ
para
K and, in particular,108

quantify the error incurred by neglecting the field dependence of109

the exchange–correlation functional, as discussed in the following110

subsection.111

2.2 Magnetic perturbations in current-independent DFT112

Here we are concerned only with pure density functionals, i.e.113

LDA, GGA, and the exact universal functional. When the cur-114

rent dependence of the exchange–correlation energy is neglected,115

the ground-state energy can be decomposed into familiar com-116

ponents: the non-interacting kinetic energy Ts(ρ,A) with a de-117

pendence on the vector potential A, the exchange–correlation–118

Hartree energy ExcH(ρ), and the interaction between the elec-119

trons and the external scalar potential v set up by the nuclei,120

(v,ρ):121

E(v,A) = inf
ρ
{Ts(ρ,A)+ExcH(ρ)+(ρ,v) |

∫

ρ(r)dr = N } . (6)122

Note that within this approximation, ExcH here remains the stan-123

dard “non-magnetic” exchange–correlation–Hartree energy.124

We now show that, for a current independent functional of125

the above form, the second derivative with respect to the vector126

potential is simply the second derivative of the non-interacting127

kinetic energy. Assuming the existence of a minimizing density128

ρGS(v,A) and that the derivatives are well defined (for a discus-129

sion of this point in conventional DFT see Ref.27), the DFT Euler130

equation is given by131

δ

δρ(r)
(Ts(ρ,A)+ExcH(ρ))+ v(r) = µ. (7)132

For closed-shell systems (which are considered here), the first
derivative of Ts with respect to A vanishes since Ts(ρ,A) is an
even function of A at A = 0. The Euler equation is therefore au-
tomatically satisfied to first order in A, implying that the density
depends on A only to second order. Setting ρ = ρ0+ρ2A2 and ex-
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panding the ground-state energy to second order in A, we obtain

E(v,A) = Ts(ρ0,0)+ExcH(ρ0)+(ρ0,v)

+
1

2

∫∫

δ 2Ts(ρ,A)

δA(r)δA(r′)

∣

∣

∣

∣

(ρ0,0)

A(r)A(r′)drdr′

+
∫

(

δ (Ts(ρ,A)+ExcH(ρ))

δρ(r)

∣

∣

∣

∣

(ρ0,0)

+ v(r)

)

ρ2(r)A(r)2dr, (8)

where the last term vanishes because the Euler equation is sat-133

isfied for the reference state; since the density variations are134

particle-number preserving for all A, the integral µ
∫

ρ2(r)A
2(r)dr135

vanishes. Hence, the second derivative of a closed-shell ground-136

state energy with respect to the vector potential, at zero vector137

potential, is simply the second derivative of the non-interacting138

kinetic energy. Note that the exchange–correlation kernel contri-139

butions, arising from the second derivative of EHxc, appear only140

at higher orders in A. This well-known result is usually stated for141

LDA and GGA functionals in terms of the “magnetic Hessian”.28
142

The present proof relies only on the observation that Ts is even in143

A at A = 0.144

For the shielding tensor, we then insert A = A0 +AK , where145

A0 and AK are the vector potentials associated with B and MK ,146

respectively, to obtain the usual formula in terms of Kohn–Sham147

orbitals and eigenvalues. Neglecting the contribution due to Lon-148

don orbitals the expression is6
149

σσσ
para
ρ =−

occ

∑
i

virt

∑
a

〈i| l |a〉〈a| lTKr−3
K |i〉+h.c.

εa − εi

, (9)150

where h.c. is the hermitian conjugate and l is the angular momen-151

tum operator.152

It should be noted that by employing Eq. (8) the shielding ten-153

sor (or indeed other magnetic properties) can be computed for an154

arbitrary input density without knowledge of the exact exchange-155

correlation (XC) functional. All that is required are the second156

derivatives of Ts, which can be obtained from the Kohn–Sham157

wave function corresponding to ρ. This wave function can be ob-158

tained by various approaches, for example the Zhao–Morrison–159

Parr29 method employed by Wilson and Tozer13 for the calcula-160

tion of shieldings. We instead use the method outlined in Section161

3.162

3 Computational Details163

We have evaluated total and diamagnetic NMR shielding con-164

stants for a set of small atoms and molecules, at the CCSD(T)165

equilibrium geometries. In the next section, we compare wave-166

function quantities from Hartree–Fock (HF) theory, second-order167

Møller–Plesset (MP2) perturbation theory, and CCSD(T) theory168

with those from a representative set of standard DFAs. To quan-169

tify the error arising from the neglect of the current dependence170

in the DFA, we also present Kohn–Sham shielding constants ob-171

tained from accurate CCSD(T) densities using an established in-172

version scheme.30,31
173

The coupled-cluster calculations of shielding constants were174

performed using CFOUR.32 A development version of DALTON 33,34
175

was used for all other calculations, except those involving the176

TPSS functional. The latter were evaluated with the LONDON177

quantum-chemistry software.8,35,36
178

Meta-GGAs, such as TPSS, depend on the Kohn–Sham kinetic179

energy density τ0(r) =
1
2 ∑

occ
i ‖∇φi(r)‖

2. In magnetic fields this180

quantity must be generalized in a gauge-invariant fashion. Max-181

imoff and Scuseria37 suggested the use of the physical kinetic182

energy density183

τMS = τ0 + jp ·A+
1

2
ρA2

. (10)184

This quantity is gauge invariant but introduces an explicit depen-185

dence of the XC energy on the vector potential A. Another prob-186

lem is that the so-called “isoorbital indicator” used in the TPSS187

functional can take unphysical values in magnetic fields.38 We188

denote the TPSS functional with this choice of τ by cTPSS(τMS).189

Another option is to use the gauge-invariant kinetic energy pro-190

posed by Dobson,39 and used by Becke40 and Tao,41
191

τD = τ0 −
j2

p

2ρ
. (11)192

This kinetic energy density depends only on the paramagnetic193

current, and not on the external magnetic field. It also leads194

to physical isoorbital indicator values. This functional, here de-195

noted cTPSS(τD), is equivalent to that introduced by Bates and196

Furche for the calculation of excitation energies in Ref.42 and its197

implementation and application to magnetic properties will be198

discussed in detail elsewhere.43 For reference we also compute199

shielding values using the gauge dependent τ0, with the gauge200

origin placed on the molecular center of mass. We refer to this201

functional as TPSS(τ0). The shielding constants with the TPSS202

and cTPSS functionals presented in this work were obtained by a203

numerical differentiation, using finite magnetic fields – for further204

details see Ref.8.205

We used the augmented correlation-consistent basis sets by206

Dunning and coworkers, known to be suitable for the computa-207

tion of magnetic properties.44 We investigated basis-set conver-208

gence and found the aug-cc-pVQZ basis45,46 to be appropriate209

for the systems studied in this work. Cartesian Gaussian basis210

sets have been used throughout all calculations.211

To ensure gauge-origin independence of the total shieldings,212

we employ London orbitals.25,47 We note that the DALTON pro-213

gram uses a definition for the diamagnetic part of the NMR shield-214

ing constant that includes a contribution from the London atomic215

orbitals. We here use the definition in Eq. (4), where we ob-216

tain the corresponding values using separate calculations without217

London orbitals.218

In order to isolate the effect of the current dependent exchange-219

correlation energy on the shieldings we calculate the non-220

interacting Kohn–Sham potential, orbitals and orbital energies221

corresponding to a specific electron density using the procedure222

of Wu and Yang.30 The paramagnetic shielding constants are then223

obtained using Eq. (9). These calculations were carried out using224

a locally modified version of the DALTON program.31 Total shield-225
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ing constants calculated using this method will be called σKS in226

the following.227

4 Results and discussion228

In this section, we analyze the errors coming from the diamag-229

netic and the paramagnetic parts of the NMR shieldings to gain230

insight into the limitations of common DFAs and the role of cur-231

rent dependence. We study a set of small systems (He, Ne, HF,232

CO, N2, H2O, NH3, and CH4) for which we computed accurate233

CCSD(T) reference values, and also obtained the corresponding234

accurate Kohn–Sham non-interacting wave functions.235

4.1 Current-dependence of DFT shielding constants236

We begin by assessing the importance of σ
para
j

relative to the dia-237

magnetic and current-independent contributions to the shielding238

constant in Eq. (1) for the molecules in the test set, see Table 1.239

In this table, σ is the total shielding constant calculated at the240

CCSD(T) level of theory, and the diamagnetic part σdia is the241

expectation value in Eq. (4) calculated from the CCSD(T) den-242

sity matrix. To obtain the paramagnetic density and current con-243

tributions, we have first calculated the total current free shield-244

ing constant σKS using the Wu–Yang scheme with the CCSD(T)245

density as described in Section 3 and then used the relations246

σ
para
ρ = σKS −σdia and σ

para
j

= σ −σKS.247

From Table 1, we first note that the current contribution is248

typically one to two orders of magnitude smaller than the dia-249

and paramagnetic contributions to the shielding constants. How-250

ever, since the dia- and paramagnetic contributions are always251

of opposite sign and may nearly cancel, the current contribution252

to the shielding cannot always be neglected and sometimes be-253

comes important. For example, in σC in CO, the total shielding is254

5.4 ppm with a current contribution of 11.0 ppm, twice as large255

as the total shielding; in this particular case, the total dia- and256

paramagnetic contributions are 327.0 and −332.6 ppm. In N2, the257

situation is similar but less dramatic, the total shielding constant258

being −57.4 ppm with a large current contribution of 13.3 ppm.259

Clearly, the current contribution to the shielding constants cannot260

in general be neglected, at least for non-hydrogen: for the non-261

hydrogen atoms in Table 1, the current contribution ranges from262

1.7 to 13.3 ppm. For proton shieldings, the current contribution263

is negligible, contributing in all cases less than 1% to the total264

shielding constant. Although our estimated error, due to approx-265

imation in the Wu–Yang procedure, on the current contribution266

lies below 0.05 ppm for the H atom, we cannot be completely267

confident that the negative sign of the current contribution for268

this atom is not a basis set error. For the other atoms the current269

contribution is clearly positive.270

The main source of error in the calculated σ
para
j

values arise271

from the orbital and potential basis sets, as well as optimization272

thresholds, employed in the Wu–Yang calculations. By studying273

the convergence of the results in terms of the potential and orbital274

basis sets (we use the same family of aug-cc-pVXZ sets for both)275

when going between the QZ and 5Z sets we can estimate the276

errors in Table 1, which are listed in the last column of the same277

table. The by far largest error, most likely smaller than 1.5 ppm,278

is in the current contribution for N2, but this and other errors do279

not change any conclusion or has any significant impact on the280

statistic in the following sections.281

Finally, we note that the current contribution is positive for all282

heavy atoms in Table 1, increasing the shielding constant and re-283

ducing the overall paramagnetic contribution. For the protons,284

by contrast, the current contribution is negative in all cases. We285

cannot rule out that the very small negative current contribution286

for proton is a numerical artifact; however, this seems unlikely in287

view of the high degree of convergence for the proton shielding288

of the HF molecule. It appears, therefore, that the current contri-289

bution to shielding constants can be both negative and positive.290

4.2 Diamagnetic shielding constants and the role of the elec-291

tron density292

Since the current contribution to the shieldings in the previous293

subsection was shown to sometimes be as large as 10 ppm it294

would be a worthwhile effort to develop an approximate DFT295

expression for this correction. For this reason it is important to296

investigate the sources of errors in the diamagnetic and para-297

magnetic contributions for existing DFAs. For an evaluation of298

the diamagnetic shielding constants, we compare calculated DFA,299

HF, and MP2 diamagnetic contributions to the shielding constants300

with the corresponding CCSD(T) values. In Table 2, we report the301

mean and standard deviation of the error in σdia for the different302

models. Although only a limited number of systems are consid-303

ered the methods can be qualitatively ranked, in order from small-304

est to largest absolute errors, as CCSD, MP2 < PBE, B3LYP, B97,305

BLYP, TPSS, HF < LDA < KT2. Note that both forms of cTPSS306

give the same result as TPSS, since the diamagnetic shielding is307

defined as not including any current effects. The most remarkable308

observation is that the KT2 functional, which has been optimized309

for improving total NMR shielding constants, gives an error in the310

diamagnetic shielding at least an order of magnitude larger than311

all other methods. We note that the hybrid functionals B3LYP312

and B97 and the meta-GGA functional TPSS are not significantly313

better than the best GGA functionals, but most DFAs are clearly314

outperformed by MP2 theory. The exception is PBE, which gives315

very high quality diamagnetic shieldings for our test set.316

Although the diamagnetic part of the shielding constant is the317

focus of this section, it is just one measure of a “good den-318

sity”. Exchange–correlation functionals are typically optimized319

for ground-state energies, which include the expectation value320

〈r−1〉. We therefore expect these functionals to give good dia-321

magnetic shieldings, but it is nevertheless worthwhile to investi-322

gate the density error in more detail. In the paramagnetic part323

of the shielding [Eq. (9)] the presence of the r−3 operator is ex-324

pected to give larger weights to density errors near the nucleus,325

compared to the diamagnetic term.326

We therefore investigate the electron density errors of the dif-327

ferent methods in a more general sense. In Figure 2 the density328

errors ∆ρ(r), r∆ρ(r), r2∆ρ(r) and r4∆ρ(r) are plotted as functions329

of r (where ∆ρ = ρ − ρCCSD(T)) for the helium and neon atoms.330

The first of these shows the local density error at different loca-331

tions in the atom, and integrates to the expectation value 〈r−2〉.332
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Table 1 The diamagnetic, current independent paramagnetic and current dependent paramagnetic parts of the benchmark shielding constants in

ppm, calculated at the CCSD(T) level, together with estimates of the absolute error due to the Wu-Yang procedure.

Molecule σ = σdia + σ
para
ρ + σ

para
j

Err

He 59.9 59.9 0 0 0
Ne 552.0 552.0 0 0 0

HF(H) 28.9 108.6 −79.5 −0.2 0.05
CH4(H) 31.3 87.7 −56.3 −0.1 0.05
NH3(H) 31.5 95.5 −63.9 −0.1 0.05
H2O(H) 30.8 102.4 −71.4 −0.2 0.05
CH4(C) 199.4 297.0 −104.9 7.3 0.05
CO(C) 5.4 327.0 −332.6 11.0 0.05
NH3(N) 270.7 354.5 −89.4 5.6 0.5
N2(N) −57.4 384.7 −455.4 13.3 1.5
H2O(O) 337.8 416.2 −82.0 3.6 0.2
CO(O) −51.7 444.8 −501.0 4.5 0.5
HF(F) 420.8 482.1 −63.0 1.7 0.5

Table 2 Mean absolute density error I (Eq. 12), mean and standard deviation (S) of the shielding error (in ppm) ∆σdia = σdia −σdia
CCSD(T) (left),

∆σ = σ −σCCSD(T) (middle) and ∆σKS = σ −σKS (right). Here σKS is the current independent DFT shielding computed from the CCSD(T) densities.

This method is also labeled KS(CCSD(T)) in the table. The I value for TPSS and cTPSS was omitted for technical reasons.

Method I ∆σdia S(∆σdia) ∆σ S(∆σ) ∆σKS S(∆σKS)

LDA 0.14 −1.01 0.53 −9.60 14.61 −6.02 11.50
BLYP 0.13 0.19 0.15 −9.62 11.36 −6.04 7.71
PBE 0.08 0.03 0.11 −8.58 10.91 −5.00 7.61
KT2 0.13 2.51 1.66 −2.00 4.14 1.58 5.16
B97 0.05 0.15 0.05 −9.18 11.79 −5.60 8.39

B3LYP 0.07 0.11 0.09 −10.36 13.32 −6.78 9.65
TPSS(τ0) - 0.22 0.09 −4.44 4.68 −0.86 2.95

cTPSS(τD) - 0.22 0.09 -7.15 8.29 -3.57 4.92
cTPSS(τMS) - 0.22 0.09 -6.57 7.20 -2.99 3.87

HF 0.14 −0.15 0.34 −11.59 17.85
MP2 0.03 −0.01 0.09 3.80 5.10
CCSD 0.02 0.01 0.04 −1.28 2.03

KS(CCSD(T)) 0 0 0 −3.57 4.59

1–11 | 5

Page 5 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



The second quantity integrates to the error in the expectation333

value 〈r−1〉, while the third integrates to the error in the num-334

ber of electrons (which is zero), and the fourth integrates to the335

error in the atomic quadrupole moment.336

Considering the maximum error at different r in the two first337

rows of Figure 2, rather than the average error appearing in the338

diamagnetic shielding integral, we obtain a ranking CCSD < MP2339

< TPSS, HF < PBE, B3LYP, B97, BLYP < KT2 < LDA. The CCSD340

error is not plotted, to reduce visual clutter, but this error is in341

all cases smaller than that of all other methods. For simplicity342

the GGA functionals are not distinguishable in the figure, but the343

overall trends and spread are clearly visible. In particular, the344

density error near the nucleus is very large for all DFAs. However,345

this error is cancelled by opposite errors further away from the346

nucleus, leading overall to good accuracy of the 〈r−1〉 expectation347

value relevant for the diamagnetic shielding.348

From the different weightings shown in Figure 2, we conclude349

that a similar trend holds for the quadrupole moments. How-350

ever, the advantage of HF is now less pronounced and the KT2 er-351

ror less severe. The TPSS functional loses its advantage over the352

other DFAs in the regions far away from the nucleus, but these are353

less relevant for shieldings. We note that a radial density analysis354

has recently been utilized to understand density errors associated355

with the correlation treatment in DFAs in Refs.48,49. Our density356

study differs slightly in the choices of functionals, and importantly357

includes data for the TPSS meta-GGA functional. This functional358

is found to be the best performing DFA in our benchmark. While359

it has the same error trends (i.e. too large density at the nucleus360

and similar density error oscillations away from the nucleus) as361

the GGA functionals it has the smallest absolute errors and more362

mild oscillations. Since the HF density errors often are of oppo-363

site sign to the DFA errors one might think that hybrid functionals364

would be good overall performers. This is not the case for the365

B3LYP functional, which gives results in line with the pure GGA366

functionals.367

Figure 1 shows the error ∆ρ along the bond axis for the N2368

and H2O molecules. In both cases, it is clear that there exist re-369

gions near the nuclei, up to the inner-valence region, where the370

Kohn-Sham calculations yield densities considerably worse than371

HF. However, as can be seen from the mean of the integral of the372

absolute density errors,373

I =
∫

|ρ(r)−ρCCSD(T)(r)|dr, (12)374

presented in Table 2, the global density error is somewhat smaller375

for the approximate Kohn-Sham calculations. BLYP has a similar376

absolute error I as HF, but since the errors at a particular point377

in space often have opposite sign (see Fig. 2) it is not surprising378

that the hybrid functional B3LYP reduces the value of I signifi-379

cantly. However, the pure GGA functionals PBE and B97 both380

perform similar to, or better than, B3LYP by the same measure.381

However, the value of I seems to be only weakly correlated with382

the quality of the diamagnetic shielding. The KT2 functional has383

a large diamagnetic error but the value of I is not larger than for384

BLYP. This emphasizes the physical fact that it is the density near385

each atomic nucleus which is important for the shielding of that386

particular nucleus.387

The reason that the DFAs perform better than the HF method388

according to these measures is that the errors, while large, are lo-389

calized to small regions near the nuclei. Furthermore, the density390

errors oscillate about zero as we move away from the nucleus,391

as seen in Figure 1. Around the nuclei all DFA densities show392

a much larger error than the HF method; however, as we move393

away from the nuclei, the DFA densities improve relative to the394

HF density. It should also be pointed out that the absolute value395

of the DFA error is about two orders of magnitude larger in the396

core region than in the valence region. In other words, the HF397

density has, relative to the CCSD(T) density, a more uniform er-398

ror, whereas the DFAs perform better in the valence region but399

are much worse in the core region.400

To summarize this section we note that for the worst perform-401

ing functionals for the diamagnetic shieldings (LDA and KT2) the402

plot of the density errors clearly show the origin of their poor403

diamagnetic performance. However, investigating the PBE densi-404

ties, which give the best diamagnetic shieldings of all the tested405

DFAs, reveals that this good performance is a result of error can-406

cellation. The TPSS functional, on the other hand, has smaller407

maximum errors and its gauge-independent cTPSS variants may408

be a more promising functional for shieldings, considering the409

(here unquantified) effect of the core density on the paramag-410

netic shielding tensor.411

Finally we note that, for the considered molecules, MP2 gives412

densities that are of much higher quality than all considered DFAs,413

but as can be seen in Table 2 such high quality densities are414

not needed for high (i.e. sub-ppm) accuracy in the diamagnetic415

shielding constants. The error in total MP2 shieldings is thus at-416

tributed to the incomplete treatment of electron correlation in417

σpara by the MP2 method.418

4.3 Total NMR shielding constants419

Table 2 contains the mean and standard deviation of the error in420

the NMR shielding constant for the different methods. We first421

consider the error with respect to the CCSD(T) shieldings (∆σ in422

columns five and six), which include current contributions. One423

should note that the CO and N2 molecules are the most difficult424

cases for all the methods. This means that the average error425

is strongly influenced by these two molecules, emphasizing the426

molecules with the largest errors.427

Regarding the error in the total shielding, we obtain a ranking428

CCSD < KT2, MP2 < TPSS(τ0), cTPSS(τMS), cTPSS(τD) < PBE,429

B97, BLYP < B3LYP, LDA < HF. The KT2 exchange–correlation430

functional clearly benefits from having been constructed by fitting431

to experimental shielding data, performing well for total shielding432

constants in spite of its poor performance for the diamagnetic433

part. The KT2 errors have roughly equal contributions from the434

diamagnetic and paramagnetic parts, whereas the error in the435

paramagnetic term dominates for all other DFAs, among which436

TPSS(τ0) is a clear winner.437

Surprisingly, the current including, gauge-independent variants438

of cTPSS both perform slightly worse than TPSS(τ0), although439

they still give better values than the remaining DFAs. Since τ0 de-440
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system) we have shown that the current contribution can in some513

cases amount to more than 10 ppm for carbon and nitrogen514

atoms. This means that the missing current contribution may be515

one of the leading causes of errors in shielding calculations using516

approximate DFT functionals. This also suggests that current in-517

dependent functionals should be judged based on their ability to518

reproduce accurate ab initio numbers with the current contribu-519

tion subtracted. As shown in Section 4.4 this reduces the average520

errors in the functionals, and in particular (c)TPSS, by several521

ppm. The exception is the empirical KT2 functional, which was522

fitted to experimental shielding data. As such the functional al-523

ready implicitly includes an empirical current correction, and it524

fits better to the current including benchmark set than the cur-525

rent free one.526

In order to understand the large errors made by KT2 in the527

diamagnetic part of the shielding constant we have studied the528

ground state electron density for helium, neon, CO and N2. The529

origin of the errors in KT2 diamagnetic shieldings is clearly seen530

in the density, which has a very large error within 0.2 Bohr of the531

nucleus. The standard GGA functionals, and PBE in particular,532

give excellent diamagnetic shieldings, but still have large density533

error oscillations near the nucleus. Here TPSS stands out as the534

exchange-correlation functional with the most balanced density535

error. The MP2 methods gives densities with much smaller max-536

imum error than any density functional approximation, but for537

our test set of molecules this high accuracy is not needed for the538

purpose of NMR shieldings.539

Since the current corrections (σ
para
j in Table 1) are comparable540

in magnitude to typical errors in approximate DFT shieldings (∆σ541

in Table 2) it is important to develop good approximations to the542

current corrections. In this work we compute the correction us-543

ing CCSD(T), which is only useful for benchmark purposes. The544

data in the two rightmost columns of Table 2 indicate how differ-545

ent approximate functionals would perform with this correction546

added. In particular the cTPSS functional appears as a promising547

starting point for further development in this direction.548
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