
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


A real-space stochastic density matrix approach for density functional

electronic structure

Thomas L. Becka

The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale

electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-

scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham

energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix

operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined

that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model

calculations are performed for simple one-dimensional problems that display some features of the more general problem, such

as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly

parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous

updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and

enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as

opposed to the extensive matrix operations in traditional approaches.

1 Introduction

Density functional theory (DFT) quantum simulation methods

are contributing a great deal to a basic understanding of con-

densed phase problems such as liquid structure1 and catalyst

mechanisms.2,3 Yet 30 years after the initial development of

the Car-Parrinello method,4 we are limited to simulations of

a few hundred atoms for a few hundred picoseconds in time,

even on advanced supercomputer architectures.

The Car-Parrinello4 and related5,6 algorithms are based on

approximate solution of the Kohn-Sham equations in a chosen

basis. For periodic systems a natural basis set for the occu-

pied orbitals is the plane-wave basis.5 In recent years it has

been recognized that real-space methods hold several advan-

tages over plane-wave approaches.7–15 These advantages in-

clude near-locality in iterative updates, adaptivity, and the pos-

sibility of linear-scaling algorithms16 due to the spatial decay

of the density matrix coupled with multiscale solvers for the

Poisson and electronic energy minimization problems.

Even with the initial optimism concerning real-space meth-

ods, they have not yet fully developed into a widely used set

of mainstream tools in quantum chemistry and ab initio dy-

namical modeling. The wave-function based representation

leads to large storage requirements and computational over-

head directed at various matrix operations related to main-

taining density matrix idempotency and dealing with non-

orthogonal orbitals during energy minimization.13 Efficient

multiscale eigenvalue solvers, even though they can process
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much of the global information on coarse scales, still require

solution of matrix equations that scale faster than linear with

system size.11,15

In light of these issues, in Ref. 11 we suggested a poten-

tial alternative new direction for DFT modeling based on a

stochastic hybrid of DFT and Quantum Monte Carlo (QMC)

approaches. The goal is to model the single-particle density

matrix (1-DM) directly without resorting to an orbital-based

representation. There has been significant progress in the de-

velopment of orbital-free DFT methods in recent years,17–19

with the consistent issue the representation of the kinetic en-

ergy portion of the total energy. The present approach allows,

at least in principle, for an exact representation of the kinetic

energy. An alternative stochastic orbital approach has been

developed recently, with promising results.20 In addition, we

mention the powerful theoretical concept of the integral for-

mulation of DFT,21–23 which may provide another avenue for

large-scale simulation; in this case, the kinetic energy part of

the energy is represented with high-dimensional integrals in-

volving oscillatory integrands. Preliminary Monte Carlo re-

sults24 were presented for a model problem (non-interacting

electrons in a harmonic well) to illustrate the theory.

The underlying motivation for the stochastic approach can

be linked to two “hard walls” facing the quantum modeling

field.25,26 First, there is the wall related to the representation

and storage of the wave function for large systems. Second,

there is a wall related to physical constraints on the processor

speed for classical computers: we are approaching the atomic

limit in the scale-down of processor component size. It is ap-

parent that we will continue to be driven towards increasing
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parallelization. Thus, it may be advantageous to further de-

velop massively parallel special-purpose machines designed

for specific scientific tasks such as quantum simulation. (Ma-

jor progress in this direction has been made in the area of clas-

sical molecular dynamics simulations.27) In the past, such ef-

forts have been made, but typically the commodity processors

have developed so quickly that, by the time of production of

the special purpose machine, it had already become obsolete.

The present paper is directed at exploring a theoretical and

computational approach for a direct statistical computation of

the 1-DM in DFT. We first present the theoretical background

for and an outline of the method. Then preliminary results on

simple models are presented to illustrate the theory. Finally,

the approach is summarized and possible future directions are

outlined. The purpose is to give a general outline of a poten-

tially new approach for DFT electronic structure on parallel

machines and hopefully stimulate further work in this area.

2 Background Theory and Methods

2.1 Variational Calculations and Constraints

Here we consider quantum mechanical problems in a single

spatial dimension to maintain a simple notation. Consider first

an action functional

S [ψ ] =−1

2

∫

ψ∗ d2

dx2
ψdx+

∫

ψ∗Vψdx−E

∫

ψ∗ψdx (1)

which includes the total energy for the particle and a constraint

for wave function normalization. The Lagrange multiplier for

the normalization constraint is the energy eigenvalue of the

ground state.

We can invent a steepest descents type algorithm10 for min-

imizing the total energy with a constraint as

∂ψ

∂τ
=−δS [ψ ]

δψ∗ =
1

2

∂ 2ψ

∂x2
− (V −E)ψ (2)

This equation has the appearance of a diffusion equation with

a branching (last) term. The Lagrange multiplier E should

be varied until the population is stabilized in a Monte Carlo

model of the diffusion process.28

2.2 Diffusion Monte Carlo: Importance Sampling

It is well known that, when studying atomic systems governed

by Coulomb potentials, direct Monte Carlo modeling of Eq. 2

suffers from severe noise due to the Coulomb singularity.29 To

overcome this problem, an importance sampling scheme was

developed30 (reviewed in Refs. 28 and 31). In this approach,

Eq. 2 is rewritten to solve for the function f = ψT ψ , where

ψT is a trial function designed to accurately mimic the true

wavefunction ψ . Then the resulting diffusion equation (DMC)

is
∂ f

∂τ
=

1

2

∂ 2 f

∂x2
− ∂

∂x

(

f
∂ lnψT

∂x

)

− [EL −E] f (3)

where EL(x) = HψT/ψT , the local energy. The “potential”

EL(x) is much smoother than the bare potential V , leading to

reduced statistical noise in the sampling (see below).

While progress has been made,32,33 it has proven diffi-

cult to use DMC (or other quantum Monte Carlo methods)

to generate accurate forces on nuclei for molecular dynamics

due to the noisy sampling and other heavy computing con-

traints. It is thus interesting that a paper has recently ap-

peared that presents molecular dynamics simulations of 32

water molecules using as the underlying potential surface the

energies computed with the variational Monte Carlo (VMC)

method.34 VMC results already incorporate a large fraction

of the correlation energy, but the DMC approach pushes the

percentage of the computed correlation energies included up

to nearly 100%.35 At any rate, these preliminary VMC results

are a landmark study in the quantum simulation field, and sup-

port the notion that forces accurate enough for molecular mod-

eling are within the realm of possibility.

2.3 Forward and Backward Kolmogorov Sampling

As written above, the DMC equation is called the forward

Kolmogorov equation or the Fokker-Planck equation.36 The

Langevin-type equation that models the DMC differential

equation above as a random walk28 is

xτ+dτ = xτ + bdτ + ξ
√

dτ (4)

where

b =
∂ lnψT

∂x
(5)

and ξ is a Gaussian random number with standard deviation

1. This drift force tends to drive the sampling into regions

where the magnitude of ψT is large. At long times the sam-

pling generates a steady-state distribution dictated by ψT . If

the sampling is modified with a branching process,35 then the

sampled distribution mimics the exact function f = ψT ψ . The

core computational step is very simple, however, namely the

iteratative updates of the Langevin Eq. 4. Averages along

these random walks then produce the desired quantum expec-

tation values as shown in Refs. 35 and 28.

We can rewrite Eq. 3 in the following backward form

(which involves the adjoint operator):

∂ f

∂τ
=

1

2

∂ 2 f

∂x2
−
(

∂ f

∂x

)(

∂ lnψT

∂x

)

−
[

∂ 2 lnψT

∂x2
+EL −E

]

f

(6)

2 | 1–8

Page 2 of 8Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



This form can be viewed as evolving trajectories from a fi-

nal location backwards in time (or equivalently on an upside-

down potential),36 where Eq. 4 still applies but now

b =−∂ lnψT

∂x
(7)

This form is important for the Feynman-Kac solution of partial

differential equations discussed below.

2.4 Feynman-Kac Formulae

Consider the statistically averaged function (Feynman-Kac

type path integral)

F(t) =

〈

exp

(

−
∫ t

0
c [x(s)]ds

)〉

ψ2
T

(8)

where the averaging is over all paths x(s) generated by the

forward sampling in Eq. 4, and c(x) = EL(x)−E . The ψ2
T

subscript outside the averaging backets indicates sampling on

the trial function distribution. Now take the derivative of the

log of F(t) with respect to t and set it to zero to obtain

E =

〈

EL (Xt)exp
(

−∫ t
0 c [x(s)]ds

)〉

ψ2
T

〈

exp
(

−∫ t
0 c [x(s)]ds

)〉

ψ2
T

(9)

which is the same as

E =

〈

EL (Xt)exp
(

−
∫ t

0 EL [x(s)]ds
)〉

ψ2
T

〈

exp
(

−∫ t
0 EL [x(s)]ds

)〉

ψ2
T

(10)

for the wave function based problem, since E is a constant.

This formula involves DMC sampling on the potential surface

generated by the trial function, and the exponential factors al-

ter the averaging to produce the desired (and in principle ex-

act) ground state energy. This gives an alternative view of

the usual derivation of the DMC computation of the energy.28

Ref. 35 terms this approach “pure diffusion” Monte Carlo and

points out the possible concern that one or a few trajectories

can dominate the averaging. This statistical issue was not ob-

served for the simple problems addressed numerically below,

however.

With the branching process incorporated into the DMC

sampling (through particle multiplication and destruction

based on the local energy term),28,35 the exact ground state

energy can be estimated from

E = 〈EL〉 f (11)

which is an example of the statistical “law of averages”.37 The

above DMC algorithm is based on the equilibrium distribution

produced by the forward (Fokker-Planck) sampling. Physical

quantities are then computed as statistical averages generated

by the stochastic trajectories.

As shown in Refs. 36, 38, and 39, the backward sampling,

while formally equivalent, produces a very different outcome.

Namely, the purpose of the backward sampling is to generate

the solution of the differential equation itself (the function f =
ψψT ):

f (x, t) =

〈

ψ2
T (X

x
t )exp

(

−
∫ t

0
c [x(s)]ds

)〉

ψ2
T

(12)

where now c[x(s)] is the potential term in Eq. 6, and X x
t is the

final location (at time t) of a trajectory started at x (all trajec-

tories used to obtain f (x, t) start from the point x). The func-

tion ψ2
T (X

x
t ) is the initial condition for the function that then

evolves to the final distribution f (x, t) = ψT ψ . This is a re-

markable formula, first proved by Kac;40 in the mathematical

literature, it is typically called the Feynman-Kac formula.39

2.5 Equations for the 1-DM

Assuming real occupied orbitals, the 1-DM in DFT is given

by

γ(x,y) =
Nel

∑
i=1

φi(x)φi(y) (13)

where the set of φi(x) are the solutions of the Kohn-Sham

equations (which we aim to avoid solving directly).

In a thorough theoretical study of the 1-DM in Hartree-

Fock theory, Dawson and March41 obtained several useful re-

sults that we apply here to the non-interacting case relevant

to DFT. There it was shown that the exact 1-DM minimizes

the Hartree-Fock total energy, and thus a diffusion equation

similar to that for the wave function above applies. The ap-

propriate constraints are then for the total number of electrons

and for the 1-DM idempotency.23

A Schrödinger-like equation for the 1-DM can be derived

Hxγ(x,y) = E(x,y)γ(x,y) (14)

where the Hamiltonian Hx involves only the x coordinate, and

E(x,y) =
∑

Nel
i=1 εiφi(x)φi(y)

∑
Nel

i=1 φi(x)φi(y)
(15)

which is clearly not a constant, even when the exact Kohn-

Sham states are inserted.

Then the following DMC-type equation for the 1-DM (sim-

ilar to Eq. 3) can be obtained:

∂ f (x,y)

∂τ
=

1

2

∂ 2 f

∂x2
− ∂

∂x

(

f
∂ lnγT

∂x

)

− [EL(x,y)−E(x,y)] f

(16)
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where f = γT γ , EL = HxγT/γT , and E(x,y) is the Lagrange

multiplier for the idempotency constraint on the 1-DM.41

For a many-electron problem, the major gain in computa-

tional efficiency by reducing the high-dimensional wave func-

tion (3Nel dimensions) to a 6-dimensional 1-DM has been off-

set by the loss of the single-constant Lagrange multiplier E

with replacement by the (unknown) function E(x,y). One goal

then is to develop an algorithm for estimating the change in

going from the trial energy function EL(x,y) to the exact one

E(x,y). With this important caveat, the Feynman-Kac formu-

las go directly over to the 1-DM case. A central problem is

then to attempt to devise a near-local method that drives the

EL(x,y) function towards the exact one during the stochastic

process (see below).

2.6 Estimating E(x,y): The local virial theorem

Enforcing a global energy minimization procedure to obtain

the exact 1-DM under the constraints of fixed particle number

and idempotency is a computationally demanding and highly

nonlocal process. What is desired is a more local constraint

that, when satisfied, produces the exact 1-DM.

Constraints of this form exist, namely local virial theorems

derived for wave function and density functional theories.42–44

Here we follow the work of Nagy and March,44 and assume

a 3-D form for the equations for consistency with the original

works; the variables x and y signify the full 3D spatial vectors.

Bader42 derived a local form of the virial theorem as

V (x)+ 2G(x) =
1

4
∇2

xγ(x,x) (17)

where

G(x) =
1

2
∇x∇yγ(x,y)|x=y (18)

and

V (x) = Trσ =−x ·∇x ·σ +∇x · (x ·σ) = Vb(x)+Vs(x) (19)

The last expression shows the division of the virial into bulk

and surface terms. The tensor σ is the quantum stress tensor

given in terms of the 1-DM as

σ(x) =
1

4
[(∇x ·∇x +∇y ·∇y)− (∇x ·∇y +∇y ·∇x)]γ(x,y)|x=y

(20)

If any trial 1-DM is inserted into the above formulas, the

identity holds. If the bulk virial Vb(x) is replaced by the appro-

priate potential energy density consistent with the virial theo-

rem (for the harmonic oscillator problem here the bulk virial

term becomes −2V(x)γ(x,x)), then the identity holds only for

the exact (stationary state) 1-DM.

To connect to the numerical results on simple model model

problems below, this calculation was carried through analyti-

cally for the case of 4 noninteracting electrons in a harmonic

well with arbitrary trial α parameter (see below for the defi-

nition of the Gaussian trial functions from which the 1-DM is

obtained via Eq. 13). This is the simplest two-state case that

exhibits oscillations in the 1-DM.

The result for the potential density is

−2V(x)γ(x,x) =−2x2

[

(α

π

)
1
2

e−αx2 (

1+ 2αx2
)

]

(21)

while the bulk virial is

Vb(x) =−2x2

[

(α

π

)
1
2

e−αx2
α2

(

1+ 2αx2
)

]

(22)

These are equal only when α = 1, the exact energy-

minimizing solution.

The goal then will be to include in the stochastic process an

additional near-local constraint of this form aimed at driving

the trial 1-DM towards the exact value for a given DFT func-

tional. This avenue will require extensive development and is

beyond the scope of the present paper. The above discussion

gives optimism that including such a constraint in the stochas-

tic process may lead to accurate improvements beyond the as-

sumed trial function γT (x,y). A related local virial theorem in

density functional theory was given by Nagy and Parr.43

Updating the 1-DM as discussed above in order to better

satisfy the local virial theorem could lead to deviation from

the idempotency stability in the 1-DM analogue of Eq. 8.

The stability can be checked by the following forward sam-

pling formula (that may also be helpful in developing iterative

schemes for updating E(x,y)):

〈

EL(Xt ,y)exp

(

−
∫ t

0
c [x(s)]ds

)〉

ψ2
T

=

〈

E(Xt ,y)exp

(

−
∫ t

0
c [x(s)]ds

)〉

ψ2
T

(23)

where c [x(s)] = EL(Xs,y)− E(Xs,y). The above formula is

obtained by setting the time derivative of Eq. 8 to zero.

2.7 Algorithm outline

Solving for the 1-DM γ(x,y), given a trial 1-DM γT (x,y), can

be viewed from the following perspective. We choose a phys-

ical point in space y and first sample the forward DMC equa-

tion for the 1-DM in a restricted domain of x in which the

1-DM is appreciably non-zero. The sampling is effected by

iterating the 1-DM analogue of Eq. 4 (that models Eq. 16) for

the x-trajectory. The restricted range will depend on the phys-

ical system studied; for systems with a band gap, the decay of

the 1-DM is exponential in space. The initial location for each

trajectory should be drawn from the distribution constructed

from the square of the trial 1-DM γT (x,y). For the simple
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one-dimensional examples studied here, this can be accom-

plished by starting all trajectories at the point y, updating Eq.

4 for roughly 1000 steps, and then initiating the data analysis

from the current x location. The time step dτ was chosen in

the range 0.01 to 0.001 au, and trajectories were run out to a

time t at which either a) no significant change in the averaged

functions occurs or b) a clear exponential decay (or growth) in

the Feynman-Kac integral (Eq. 8) is apparent, indicating nec-

essary updates of the function E(x,y). If the walker locations

are binned, the resulting distribution should accurately model

the γ2
T (x,y) distribution.

At this point, an additional force in Eq. 4 should be added

that pushes the sampling towards a modified γ(x,y) that better

satisfies the equality of the bulk local virial term and the local

potential energy density as discussed above. The constraint

force will arise from a least squares minimization of the devia-

tion of the two forms of the local potential energy density. This

process should be repeated until a stable γ(x,y) is obtained.

Then an updated Lagrange multiplier for the idempotency

constraint can be obatined from Hxγ(x,y)/γ(x,y) = E(x,y).
The new E(x,y) should then be tested by insertion into Eq. 8

to see if a stable Feynman-Kac integral results, or by evalu-

ating Eq. 23. If the integral is not stable, then a stochastic

process could be developed to further adjust E(x,y) until sta-

bility is obtained.

The purpose of the above process is to iteratively update

the idempotency Lagrange multiplier E(x,y) by incorporating

a local virial theorem based constraint. Ultimately, we de-

sire updated values of the 1-DM γ(x,y) that improve upon the

trial function γT (x,y). With the updated E(x,y) function, bet-

ter converged values of γ(x,y) can be obtained by using the

backward sampling scheme at several selected points near the

central point x = y.

The electron density, the key component for computing

forces on the nuclei, involves only the diagonal element of

the 1-DM. As discussed below, in order to calculate the total

energy, the Laplacian of the 1-DM must be computed along

with possible terms in the potential that involve the gradient

of the charge density. Both the Laplacian and the gradient re-

quire information only near the diagonal of the 1-DM where

x = y. Thus accurate function values are required only at sev-

eral points near the diagonal. The equation for the 1-DM cor-

responding to Eq. 12 is used to obtain those several function

values. Since only a few points are required, a large number

of trajectories can be run in order to obtain well converged

results for those 1-DM values.

It is important to note that the dimensionality is not a large

issue when implementing the stochastic methods. In 3D space

Eq. 4 is again iterated with one equation for each spatial di-

mension. Then the walkers move in 3-space (for each y loca-

tion), not the 3Nel space for wave function based QMC meth-

ods.

3 Results and Discussion

Based on the above theoretical discussion, some preliminary

results illustrating aspects of the algorithm are presented here.

We consider two one-dimensional problems to illustrate

the ideas discussed above: the ground state of the one-

dimensional harmonic oscillator (for the wave function calcu-

lations) and four noninteracting electrons in a harmonic well

(for the density matrix calculations). This two-level 1-DM

problem is simple but does display spatial nodes. The poten-

tial in atomic units is taken as V (x) = x2/2, so the total energy

for the first case is 0.5 au and for the second case is 4 au.

For the trial wave functions we consider Gaussian functions

with a scaled width:

φ0(x) =
(α

π

)
1
4

exp
(

−αx2/2
)

(24)

and

φ1(x) =
√

2α
(α

π

)
1
4

xexp
(

−αx2/2
)

(25)

The trial and exact 1-DM’s and resulting EL(x,y) and E(x,y)
can be constructed from these eigenfunctions using Eq. 13

(the exact result is for α = 1).

We first examine the DMC wave function approach given

by Eq. 3 along with the Feynman-Kac functional integral Eq.

8. Fig. 1 illustrates the stability of the Feynman-Kac integral

when the proper normalization constant E is included. This

result shows the connection between complicated global con-

straints and stabilization of the Feynman-Kac integral. The

same qualitative behavior is observed for the density matrix

case discussed below: when a function E(x,y) (that is ob-

tained from an idempotent density matrix) is inserted, a stable

diffusion process is observed. This does not guarantee an ex-

act solution for the density matrix case, however, since there

are an infinite number of idempotent density matrices – what

is desired is an idempotent density matrix that minimizes the

total energy.23 The relation of the stability of the functional

integral corresponding to Eq. 8 to global idempotency con-

straints does not appear to have been noticed before, and this

deserves further analysis.

Figs. 2 and 3 show the construction of the trial and exact

wavefunctions from the forward and backward sampling ap-

proaches. The first case requires averaging of the distribution

modeled during forward sampling, while the second case di-

rectly utilizes Eq. 12 to obtain the solution. The backward

form has an advantage in obtaining the solution at a few se-

lected x values, since the stochastic solution at each of those

x values results from averaging trajectories all starting from

those points; that is, the solution is obtained point by point,

not as an average over a distribution.

Turning to the density matrix problem, Fig. 4 shows the

variation of the total energy with the parameter α , with a min-
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Fig. 1 Plot of the ln of F(t) in Eq. 8 with and without inclusion of

the exact energy E. The flat line at zero exhibits the stability of the

diffusion process with the proper normalization constraint in the

Feynman-Kac integral, while the lower line with slope -1/2 displays

the exponential decay expected in the absence of the normalization

constraint. Forward sampling was employed here and the trial

α = 0.8 was used.

imum at the exact value. The variational character of the re-

lated Hartree-Fock method is discussed extensively by Parr

and Yang.23

The total energy for the non-interacting case is given by

E =−1

2

∫

[

d2γ(x,y)

dx2

]

x=y

dx+

∫

V (x)γ(x,x)dx (26)

As mentioned above, for each point along the x integration,

values of γ(x,y) only for the x = y diagonal (for the electron

density) and points nearby the diagonal (for the kinetic energy

and any gradient terms in the potential) are required in evalu-

ating the energy.

Fig. 5 displays the local energies from the above formula,

illustrating the global nature of the energy minimizing princi-

ple; the local energy for the exact solution can be greater or

less than a trial local energy, but the integral is a minimum for

the exact 1-DM. This result shows the importance of devel-

oping local constraints that, when satisfied, can produce the

exact 1-DM.

Finally, Fig. 6 shows the numerical apporixmation for the

trial (γ2
T ) and exact (γT γ) functions generated with forward

sampling. The modeled case is for y = 1 which displays a

node in the 1-DM at roughly x =−0.7. The nodal structure is

a general feature of the 3-dimensional 1-DM (for a chosen y

value) – the value of the 1-DM at x = y is always positive (the

electron density), but the 1-DM tends to decay and display ex-

ponentially damped oscillations (for systems with a band gap)

away from the central point.

This result in which the exact 1-DM is computed appears

promising, but of course the known exact E(x,y) function was

inserted in the computation. In general this function is not
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ψ
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  a
nd

   
  ψ
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x (au)

Fig. 2 Trial function squared f = ψ2
T (lower curve at x = 0) and

exact f = ψT ψ for the ground state wave function of the harmonic

oscillator computed as the average density over the stochastic

trajectories. Forward sampling was employed here and the trial

α = 0.8 was used. Excellent agreement of computed and exact

results is obtained. For normalization purposes, the numerical

results were scaled to the analytic results at x = 0.
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Fig. 3 Computed Feynman-Kac estimate of the function

f (x, t) = ψT ψ (at long times) using Eq. 12. Backward sampling was

employed and the trial α = 0.8 was used.

known and must be estimated as part of the stochastic process

as discussed above.

4 Conclusions

This paper, building on our previous work,11 has discussed

a possible new direction for DFT calculations that utilizes

stochastic methods to solve directly for the 1-DM of DFT

without the introduction of spatial orbitals used to represent

the many-electron wave function.

A connection was established between the stability of

Feynman-Kac (path) integrals and the imposition of the global

constraints of normalization and idempotency for the 1-DM.

The stability of the Feynman-Kac integral does not guarantee
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Fig. 4 The analytic total energy for 4 noninteracting electrons in a

harmonic well as a function of α . The result illustrates the

variational character of the density matrix calculation.
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Fig. 5 The local energy for the trial (α = 0.8, lower curve at x = 0)

and exact 1-DM’s. The total energies for these two 1-DM’s are

shown in Fig. 4.

the exact (energy minimizaing) idempotency Lagrange multi-

plier E(x,y), however, since there exists an infinite number of

possible idempotent 1-DMs. Progress towards solution of this

difficulty was suggested via usage of a local virial theorem

first derived by Bader.42 The incorporation of this additional

constraint during the stochastic process will be the focus of

future work.

The approach outlined here is a computational middle

ground between approximate orbital-free methods18 and

the beautiful integral formulation of density functional the-

ory.21,23 The latter theory is the true embodiment of DFT, in-

volving only the electron density as the fundamental variable.

A reason for the difficulty in implementing this theory since

it was formulated involves the high-dimensional integrals for

the kinetic energy (resulting from the path integral formula-

tion) that are highly oscillatory in nature. An important fea-

ture of all of these orbital-free approaches is that most of the

numerical work is relatively local in real space, allowing for

-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

-4 -3 -2 -1 0 1 2 3 4

γ
γ
T  

an
d 

   
 

γ
T2

x (au)

Fig. 6 Numerical values (obtained by averaging the stochastic

trajectories) for γT (x,y)
2 (lower curve at x = 1) and f = γT γ using

Eq. 16. A trial α = 0.8 was used and the y = 1 location was used.

There is a node in γT at roughly y =−0.7. For normalization, the

numerical results were scaled to the analytic functions at y = 1.

high parallelism and linear scaling algorithms.

This paper is an initial discussion aimed at stimulating fur-

ther effort built on the stochastic sampling ideas. Several parts

of the proposed approach require further efforts, however.

Clearly developing an algorithm that can push the approxi-

mate 1-DM towards the exact one based on a local virial the-

orem (as part of the stochastic sampling) while still ensuring

near idempotency is the primary area for further work. Next,

optimal methods for self-consistency should be developed. Fi-

nally, efficient ways to generate relatively accurate trial 1-DM

γT (x,y) functions should be explored. Trial 1-DM genera-

tion here may not necessarily rely on wave function methods,

but could utilize such theories as the optimized Thomas-Fermi

and multiple scattering perturbation theories developed some

time ago.45,46

Perhaps the present stochastic path integral approach will

provide the possibility for a more practical approach for elec-

tronic structure that still is “optimally local” in the sense of the

integral formulation. It is also likely that the recently devel-

oped impressive grid-based tensor-structured methods47 and

high-order numerical methods48 can be exploited helpfully for

a significant reduction in the storage and computational cost of

the present method.
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