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Abstract

We present the current status of finite-element method for large-scale atomistic simulations based

on the density-functional theory. After a brief overview of our formulation, we describe recent de-

velopments, including the optimal choice of adaptive coordinates, an efficient implementation of the

ground-state calculations, and a remedy for the eggbox effect. As a new application of our formu-

lation, we present ab initio molecular dynamics simulations on sulfonated poly(4-phenoxybenzoyl-

1,4-phenylene) (SPPBP), which is a typical example of polymer electrolyte membranes for fuel

cells.
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I. INTRODUCTION

The finite-element method (FEM) has a long history in the field of engineering, and is

often used to numerically solve partial differential equations such as the Navier-Stokes and

Maxwell equations. This is mainly because FEM allows us to discretize these equations

in a simple and flexible manner [1]. We can even go a step further and apply FEM to

atomistic-to-continuum coupling [2–4]. In contrast, other basis sets, such as the plane waves

[5] and atomic orbitals [6], have been traditionally preferred for the discretization of the

Schrödinger equation (and its variants). However, real-space basis sets including FEM have

recently attracted much attention [7], because these basis sets are optimal for electronic

structure calculations on massively parallel computers.

The use of FEM for one- and two-dimensional Schrödinger equations dates back to the

1970s [8, 9]. Fully three-dimensional Hartree calculations on H, H+
2 , He, and H2 appeared

in 1989 [10]. More recently, the adaptive grid was used for a single electron system [11], in

which tetrahedral elements were used for discretization, and were divided recursively until

sufficient accuracy was obtained.

FEM was also used for self-consistent calculations of many-electron systems within the

density-functional theory by us [12]. We performed an all-electron calculation of H2 and

a pseudopotential calculation of bulk silicon. While our results were in good agreement

with experiment and other calculations, the performance of our implementation was not

competitive with that of plane-wave codes. Moreover, evaluation of the atomic forces was

difficult. Therefore, we developed a more refined approach [13, 14] which is free from these

drawbacks. An overview of this approach will be given in Sec.II, together with recent

advances.

Soon after the publication of our works, extensions to general k-point sampling [15] and

time-dependent density-functional theory [16] were presented. Many research groups are now

working on this topic, and significant progress has been made towards real-world applications

in the last decade [17–30]. Several review articles are also available in the literature [7, 31].

The organization of the present paper is as follows. The building blocks of our approach

are illustrated in Sec.II. The accuracy and performance of our implementation are evalu-

ated in Sec.III Our recent calculations on sulfonated poly(4-phenoxybenzoyl-1,4-phenylene)

(SPPBP) at low hydration are introduced in Sec.IV. The conclusion is given in Sec.V.
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II. THEORY

A. Overview

We first give a brief overview of our approach already described in detail in previous

publications [13, 14]. Our code, FEMTECK (Finite-Element-Method-based Total Energy

Calculation Kit), is based on the density-functional theory [32, 33] in the local density

approximation or generalized gradient approximation [34]. Fully separable norm-conserving

pseudopotentials are used to treat only the valence electrons explicitly [35, 36]. Periodic

boundary conditions are applied in all directions, and only the Γ-point is used to sample

the Brillouin zone, which allows us to consider only real-valued electron orbitals. The

finite-element method is used to discretize the Kohn-Sham equations, and the orbitals are

expanded by Hermite splines consisting of piecewise cubic polynomials. These basis functions

are continuous up to first derivatives, complete to third order, and strictly localized in real

space. These properties are crucial for rapid and systematic convergence with respect to

the basis set size. The numerical integration involving these basis functions is performed

using the Gauss-Legendre quadrature formula, which is considered the optimal choice for

polynomial functions [37]. The Hartree potential is obtained by iterative solution of the

Poisson equation for the charge density using the conjugate gradient method [37]. The

multigrid method is used as a preconditioner for the conjugate gradient method to achieve

rapid convergence as well as good parallel performance [38]. When we perform ab initio

molecular dynamics (AIMD) simulations [39], the electron orbitals are quenched to the

Born-Oppenheimer surface at each time step. In what follows, we describe other features of

FEMTECK with emphasis on recent developments [40].

B. Adaptive curvilinear coordinates

The electron orbitals oscillate rapidly in the small regions near the nuclei, but vary much

more slowly in other regions. Obviously, it is inefficient to use a uniform grid for the dis-

cretization of the Kohn-Sham equations, because the required spatial resolution is highly

nonuniform. An attractive solution to this problem is to use the adaptive curvilinear coor-

dinates first introduced by Gygi for electronic structure calculations [41]. In this approach,

the grid changes continuously with atomic positions, which is crucial for molecular dynamics
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and geometry optimization problems. We can also expect good parallel performance thanks

to the perfect load balance.

Adaptation of the grid is given by a coordinate transformation of the form [42]:

ξ = r +
∑

i

(r − Ri)gi(|r − Ri|), (1)

where the sum runs over all periodic images of the system, r denotes the Euclidean coordi-

nates, ξ the curvilinear coordinates, Ri the atomic positions, and gi(r) is a scalar function to

be discussed below. In FEMTECK, the electron orbitals are expanded by the finite-element

basis functions on a uniform grid in ξ-space. We show the projection of a uniform grid in

ξ-space onto r-space for a diatomic molecule in Fig.1.

FIG. 1. Projection of a uniform grid in ξ-space onto r-space for a N2 molecule.

In the current implementation, we use the form

gi(r) = Ai

(
1 +

(
r

ai

)2
)− 1

2

exp

[
−

(
r

bi

)2

−
(

r

2bi

)4
]

, (2)

where Ai and ai are the strength and range of adaptation, respectively, and bi determines

the distance over which the influence of adaptation extends. The optimal parameters are

mainly determined by the atomic density of the system, i.e., stronger adaptation is possible

in the gas phase than in the condensed phase. However, the use of parameters optimized

for the condensed phase gives acceptable results for the gas phase (but not vice versa). For

simplicity, we assume that all atoms of the same element (e.g. hydrogen) have the same set

of parameters, and the values of these parameters are kept fixed during the simulations.
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Several authors have proposed elaborate strategies for finding the most efficient coordinate

transformation in the past [41, 43, 44], but the optimal route is not yet established. Here we

present an alternative method for determining the optimal parameters for adaptation. To

this end, we first choose a typical atomic configuration, and define the objective function,

I(Ω) =
N∑

i=1

|Fi(Ω) − F∞
i |2 , (3)

where N is the number of atoms in the system. Ω is a set of parameters to be optimized,

where Ai and ai are included in Ω, while bi is determined manually for each element [45].

Fi(Ω) is the force on the i-th atom for a given grid size, and F∞
i is the force fully converged

with respect to the grid size. In practice, we first calculate F∞ approximately using a very

fine (non-optimized) adaptive grid (say, 104 or more basis functions per atom), followed by

minimization of I(Ω) with respect to Ω in the spirit of the force matching method [46]. This

approach aims at finding the optimal set of parameters which most faithfully reproduces

F∞ for a given grid size. It is also possible to use two or more atomic configurations in the

definition of I(Ω), which may be useful if the target system contains only a few atoms.

The minimization is performed by the downhill simplex method [37] which does not

require the derivatives of I(Ω). The cost of parameter optimization is ∼100 force evaluations.

It is also worth noting that only a small subset of the target system is often sufficient to

optimize the parameters. For instance, even if the target system consists of 1000 water

molecules, it is justified to optimize the parameters (AH, aH, AO, and aO) for a system

consisting of only 32 water molecules, assuming similar atomic densities. In our experience,

the resolution near the nuclei can be enhanced by a factor of 2-2.5 in each direction without

sacrificing the accuracy of other regions significantly. This level of enhancement is usually

sufficient for pseudopotential calculations.

We note in passing that it is straightforward to calculate the atomic forces based on the

Hellmann-Feynman theorem including the Pulay corrections arising from the adaptive co-

ordinates [14, 42]. Although a significant programming effort is required, the computational

cost is acceptable, because the influence of adaptation diminishes rapidly with distance from

the nuclei.
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C. Ground-state calculations

There are two common ways to obtain the ground-state energy and electron orbitals.

The traditional approach is to solve the Kohn-Sham equation for a given potential, followed

by repeatedly updating the potential until self-consistency is reached [5]. This approach

is unfavorable for FEM, because nonorthogonality of the basis functions gives rise to a

generalized eigenvalue problem, which is generally more expensive to solve. The second

approach is the direct minimization of the total energy with respect to the coefficients of

the basis functions [47]. We focus on the latter approach, which is particularly suited for a

system with an energy gap.

In our earlier works, minimization of the total energy was performed iteratively using the

nonlinear conjugate gradient method [37]. This method consumes only a small amount of

memory, and requires, on average, two energy evaluations to find the optimal step size at each

iteration. In contrast, the quasi-Newton method [48] requires only one energy evaluation

per iteration, because the step size is automatically determined from the previous search

directions. Moreover, the convergence rate of the quasi-Newton method is comparable to

that of the conjugate gradient method. Therefore, the quasi-Newton method is widely used

for geometry optimization problems [49]. However, the memory requirements are prohibitive

for the ground-state calculations in a naive implementation of the quasi-Newton method.

Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [50, 51] is a variant

of the quasi-Newton method which requires much less memory than the original method,

while retaining its convergence properties. In the current version of FEMTECK, the ground-

state calculations are performed using the limited-memory BFGS method [52]. We also note

that other low-memory variants of the quasi-Newton method have been applied to charge

density mixing [5] and quantum chemical calculations [53].

The computational bottlenecks in each iteration of the total energy minimization are the

orthonormalization and subspace rotation of the orbitals, which scale cubically with system

size. If all orbitals are updated simultaneously, these operations can be performed as dense

matrix computations using level-3 BLAS/LAPACK routines, which can achieve near-peak

performance on almost any processor [54].

It is common practice to perform these operations in double precision (64-bit) arithmetic

to obtain accurate results. On the other hand, single precision (32-bit) arithmetic is at least
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twice faster on modern processors including the GPUs. Unfortunately, if the whole calcula-

tion is performed in single precision, the iteration fails in the early stages of minimization

[55].

Recently, a novel method has been proposed to solve the linear systems accurately and

efficiently in mixed precision arithmetic [56]. In this method, most of the operations are

performed in single precision, while achieving double precision accuracy. In a similar spirit,

the ground-state energy and electron orbitals can be obtained with double precision accuracy

using mixed precision arithmetic [55]. For instance, the orthonormalization of the orbitals

(Ψ) can be written as

Ψ⊥ = Ψ · S− 1
2 (4)

in matrix form, where S is the overlap matrix of the orbitals and S− 1
2 is a triangular matrix

obtained by Cholesky factorization of S. If this equation is rewritten as

Ψ⊥ = Ψ + Ψ · ∆ (5)

with ∆ = S− 1
2 − I, and assuming that S and S− 1

2 are calculated in double precision, it is

relatively safe to calculate the matrix product Ψ ·∆ in single precision. This is because the

contribution from this term becomes progressively smaller as convergence is approached.

Similarly, the subspace rotation as well as other operations can also be significantly acceler-

ated by mixed precision arithmetic [55].

D. Eggbox effect

Ideally, the total energy of the system, Etotal, should be invariant under any translation,

denoted by T:

Etotal(R1 + T,R2 + T, · · · ,RN + T) = Etotal(R1,R2, · · · ,RN) (6)

In most real space methods, however, Etotal depends on T because of the discretization

errors. This eggbox effect [57, 58] is significantly suppressed by adaptation of the grid [13],

but still persists, and can lead to erroneous results, e.g., in AIMD simulations. In particular,

the dynamic properties often suffer from artifacts such as spurious peaks in the power spectra

and overestimation of the self-diffusion coefficients.
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A naive solution to this problem is the postprocessing method described below; we first

perform an AIMD simulation to generate a trajectory, where the discontinuous changes in

atomic positions caused by the periodic boundary conditions are appropriately corrected.

The instantaneous position and velocity of the center of mass at each time step can be

easily calculated as RCM =
∑

i miRi/M and VCM =
∑

i miVi/M , where M =
∑

i mi and

Vi denotes the atomic velocities. Then, the whole trajectory is modified as follows:

Ri → Ri − RCM (7)

Vi → Vi − VCM (8)

If we use the modified trajectory for the analysis, most of the artifacts are removed. This

procedure has been successfully applied in previous studies by one of the authors [59, 60].

This is mainly because the motion of the center of mass is usually in equilibrium with other

degrees of freedom, and thus its kinetic energy is limited in size. However, when the accuracy

of atomic forces is poor, the velocity of the center of mass can be very large, which leads to

the violation of the equipartition theorem [61, 62].

Therefore, we have recently implemented an alternative method which applies the cor-

rections on-the-fly. Although less pronounced than in AIMD, the eggbox effect also exists in

classical simulations when the Poisson equation is solved numerically in real space. Skeel et

al. proposed a simple yet effective method to overcome this problem [63]. In this method,

the force on each atom is modified as follows:

Fmod
i = Fi −

mi

M

∑
j

Fj (9)

If these modified forces are used to integrate the equations of motion, the total energy is

conserved, while keeping the center of mass fixed. Definition of the temperature is also

modified as

Tmod =
2Ekin

(3N − 3)kB

, (10)

where Ekin denotes the total atomic kinetic energy. This approach is working very well in

preliminary simulations of several liquid systems.
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III. BENCHMARKING

A. Accuracy

Here we evaluate the accuracy of our implementation for a small model system. To

this end, we compare the Kohn-Sham total energies of a methane molecule obtained from

FEMTECK with those from ABINIT, which is a widely used plane-wave code for electronic

structure calculations [64]. The total energies were calculated with and without adaptation

of the grid in FEMTECK. All calculations were performed within the local density approx-

imation using the Pade approximation to the exchange-correlation functional [35], and the

same norm-conserving pseudopotentials were employed in both codes [35]. We used a cubic

supercell of length 10 Bohr, and only the Γ-point was used to sample the Brillouin zone.

The carbon atom was placed at the center of the cell, (5,5,5), and the positions of the other

hydrogen atoms (in Bohr units) were (5.0, 5.1, 7.1), (6.8, 5.0, 4.3), (4.0, 3.3, 4.3), and (4.0,

6.7, 4.3), representing a slightly distorted molecule.

The values of the total energy obtained from the two codes are compared in Fig.2. For

all numbers of basis functions, the total energy from FEMTECK using a uniform grid is

significantly higher than the other two. In contrast, FEMTECK using an adaptive grid gives

the lowest values up to 50,000 basis functions, which corresponds to the typical accuracy

required for AIMD. ABINIT gives the lowest values above this threshold, presumably be-

cause the plane waves are smoother than cubic polynomials used in FEMTECK. However,

the total energy from ABINIT increases slightly with the number of plane waves beyond

300,000 basis functions. The origin of this violation of the variational principle is not clear

at the moment. The most accurate results from the two codes agree to 9 significant digits

(-16.0419904 Ryd), which demonstrates the reliability of our implementation.

B. Parallel performance

It is relatively straightforward to perform real-space electronic structure calculations on

parallel computers [7]. Similarly to other real-space approaches, our implementation is based

on a simple domain decomposition method, which results in almost perfect load balance

among the processors [14]. The interprocessor communication required in this approach

consists mainly of (i) global communication of a matrix of dimension equal to the number
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FIG. 2. Total energy of a methane molecule from FEMTECK and ABINIT.

of orbitals, and (ii) local communication of the boundary values of the orbitals between

neighboring processors. The communication overhead can be minimized by overlapping

communication and computation through the use of asynchronous communication.

The performance of FEMTECK on a parallel computer, Fujitsu FX10, which is based on

the SPARC64 IXfx architecture, is discussed here. Each node of FX10 has 16 cores, 32 GB of

memory, and a peak performance of 236.5 GFlops. We assigned one MPI (Message Passing

Interface) process to each core of FX10, and measured the execution time for one AIMD step

of the SPPBP system to be discussed in the next section on 16, 32, · · · , 512 cores. We used

323 elements to discretize the unit cell, and these elements were uniformly distributed over

the cores. One AIMD step took 232 seconds on 16 cores, with a total memory requirement

of 24.5 GB. Using this value as a reference, we show the parallel performance relative to the

16-core case in Fig.3. The speedup is found to be close to linear up to 512 processes.

IV. APPLICATIONS

Development toward commercialization of polymer electrolyte fuel cells (PEFCs) is on-

going nowadays because of their ability to convert chemical energy into electrical energy in a

clean and sustainable manner [65]. A polymer electrolyte membrane (PEM) is an important

component of PEFC whose role is to facilitate proton transport and maintain mechanical

stability of membrane electrode assembly. As a proton conducting polymer electrolyte for

PEFC applications, cheap hydrocarbon polymers have been developed and studied because
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FIG. 3. Parallel performance of FEMTECK on Fujitsu FX10 for the SPPBP system discussed in

Sec.IV. The dashed line shows the ideal speedup.

of their relatively low production cost and commercial availability compared with standard

perfluoro type polymers such as Nafion [66]. A typical example of the polymers is sul-

fonated (poly ether ether ketone)s (SPEEK) [67–69]. Compared with Nafion, SPEEK tends

to form much narrower water channels, which affects its performance for fuel cell applications

[69]. SPPBP is another example of hydrocarbon membranes which is an isomer of SPEEK.

SPPBP exhibits different water uptake and proton conductivity profiles in comparison with

those of SPEEK [66]. One of the drawbacks of these hydrocarbon membranes is their poor

proton conductivity under low hydration conditions [70]. Operation of PEFC under low or

no water environment is highly desirable since, in such an environment, efforts for water

management problem can be avoided. Thus, improvement of hydrocarbon PEM’s perfor-

mance under such a low hydration condition is of importance for the commercialization of

PEFC.

In our previous paper, we have found that, in sulfonated poly ether sulfones (SPES),

water molecules hydrate not only the sulfonate group (-SO3H) but also the sulfone group (-

SO2) in the polymer [71, 72]. Moreover, in contrast to low-hydration Nafion, protons are not

completely dissociated from the sulfonate groups in the case of SPES. These results indicate

that the sulfone group has a negative effect that hinders the effective hydration around the

sulfonate group, contributing to the poor proton transport of low hydration SPES. As shown

in Fig.4, SPPBP has a carbonyl group which can make hydrogen bonds with water molecules

or hydronium ions (H3O
+). Thus, it is very likely that such a hydrophilic functional group
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exerts a negative effect on the proton transport property of the PEM. In the present study,

we have applied the AIMD simulation to SPPBP to investigate how molecular structure of

SPPBP affects the proton transport at a low hydration condition.

FIG. 4. Chemical Structure of SPPBP.

A snapshot from the AIMD simulation is presented in Fig.5 and details of simulation

conditions are described in Table I. The degree of polymerization (x) for SPPBP is three,

two of which are sulfonated. Thus, the total number of sulfonate groups in one SPPBP

oligomer is two. We placed three SPPBP oligomers in a cubic unit cell of size 16.25 Å.

FIG. 5. Snapshot from AIMD simulation. Atom types are denoted by color as follows: red, oxygen;

white, hydrogen; cyan, carbon; yellow, sulfur. Periodic images of atoms are also shown.

Since we are interested in proton transport under low hydration conditions, we considered

the hydration level (λ) of 4, which corresponds to the minimum value required for proton

transport in hydrated PEMs to occur [71, 73]. The density (1.32 g/cm3) of the hydrated

SPPBP at λ = 4 was evaluated by the classical molecular dynamics simulation. The system

was first equilibrated for 1 ns in the NVT ensemble, followed by a 5 ns NPT simulation.

The final atomic configuration was used as the initial guess for the AIMD simulation. Fur-
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ther details of the classical simulation are given in our previous paper [74]. In the AIMD

simulation, the system was first equilibrated at high temperatures (above 1000 K), followed

by annealing to the target temperature in 40 ps, during which period all intramolecular co-

valent bond lengths were kept fixed to avoid bond dissociation. Then, all constraints on the

bond lengths were removed to allow the protons to dissociate from sulfonate groups. After

a further equilibration of 10 ps, statistics were collected during the production run of 50 ps.

The temperature was controlled by the Berendsen thermostat with a target temperature of

353 K. The hydrogen atoms were deuterated to use a time step of 1.21 fs in the production

run. The atomic forces were evaluated using the Perdew-Burke-Ernzerhof functional [34] in

conjunction with norm-conserving pseudopotentials and adaptive finite element basis sets.

TABLE I. Simulation conditions for hydrated SPPBP. Total number of atoms in a unit cell is 399.

Number of molecules in a unit cell

SPPBP 3

H2O 24

-SO3H 6

FIG. 6. RDF between the sulfur atom and Ow.

In Fig.6, we show the radial distribution function (RDF) between the sulfur atom and

Ow, which denotes the oxygen atom of water molecules or hydronium ions. The first peak

around 3.7 Å arises from hydrogen bonds between water molecules or hydronium ions and
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the sulfonate group. Such a feature is very general for PEMs used in PEFCs, while the

degree of hydration around the sulfonate group depends on the morphology and chemical

structure of PEMs.
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FIG. 7. Coordination numbers of Ow around the sulfur atom of the sulfonate group.

Fig.7 shows the dependence of coordination numbers on the distance between the sulfur

atom of the sulfonate group and Ow. For comparison, we also plotted the coordination

numbers of other PEMs with similar hydration levels (λ = 4 for SPES and λ =4.25 for

Nafion), taken from our previous studies [71, 75]. As shown in the figure, the coordination

number of Ow is largest in the case of Nafion while that of SPPBP is smallest. This result

indicates that water molecules or hydronium ions do not effectively hydrate the sulfonate

group in SPPBP. As demonstrated in our previous study on SPES [71], such a poor hydration

arises from a hydrophilic functional group which is able to make hydrogen bonds with water

molecules or hydronium ions.

In Fig.8, RDF between the carbonyl oxygen atom and Ow is presented. The first peak in

the RDF arises from the interaction between the carbonyl oxygen atom and Ow, indicating

that some water molecules in the system participate in hydrating the carbonyl group. Since

the solvation of the acidic group results in proton dissociation in PEMs, and thus facilitates

proton transport, the carbonyl group hinders hydration around the sulfonate group by at-

tracting water molecules to its vicinity. In other words, the above poor hydration of the

sulfonate group in the case of SPPBP, to some extent, results from the fact that some water
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FIG. 8. RDF between the carbonyl oxygen atom and Ow.

molecules are trapped by the carbonyl group.

FIG. 9. (A) Snapshot from the AIMD simulation, where a hydronium ion is located next to the

carbonyl group. (B) Another snapshot (about 50 fs after the configuration (A)) where the proton

in the hydronium ion has been transferred to the carbonyl group.

Another interesting aspect of the carbonyl group’s role in SPPBP can be found in Fig.9,

where we present two snapshots of the trajectory obtained from the AIMD simulation. It

is seen in Fig.9(A) that a hydronium ion is located next to the carbonyl group. One proton

in the hydronium ion is then transferred to the neighboring carbonyl oxygen, as shown

15

Page 15 of 21 Physical Chemistry Chemical Physics



in Fig.9(B). Thus, the carbonyl group is turned into -C-OH upon proton transfer from a

hydronium ion. This result suggests that because of the carbonyl group, protons tend to be

localized within the membrane, which eventually hinders the transport of protons.

FIG. 10. RDF between the carbonyl oxygen atom and any hydrogen atom.

The above reaction is also confirmed by RDF between the carbonyl oxygen atom and any

hydrogen atom, shown in Fig.10. The first peak around 1.7 Å arises, as described above,

from the intramolecular atomic pair between the oxygen atom and the hydrogen atom in

the CO-H moiety.

In summary, we have investigated properties of hydrated SPPBP at λ = 4 using the

AIMD simulation. We found that the carbonyl group makes a negative influence on the

proton transport in two ways: (i) The carbonyl group hinders the solvation around the

sulfonate group by making hydrogen bonds with water molecules, and (ii) The carbonyl

group is able to accept a proton, leading to the formation of -C-OH, which affects the

transport of proton in a negative manner. We emphasize that such behavior is typically not

captured by classical simulations.

V. CONCLUSIONS

We have presented the state-of-the-art of the finite-element method for electronic struc-

ture calculations within the density-functional theory. Following a brief historical survey,

several new techniques were described in detail. Results of our AIMD simulations on SPPBP
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at low hydration were also introduced. As we have shown in this article, FEM is sufficiently

mature for real-world problems, and an AIMD simulation of 102 ps for a system containing

up to 103 atoms is now a routine on a PC-cluster. Nevertheless, the time and length scales

accessible to AIMD simulations are still far from satisfactory for industrial applications. In

the last decade, we devoted considerable effort to this problem.

The length scale is limited by the computational bottlenecks which scale cubically with

system size, and thus many algorithms have been developed for approximate solution of

the Kohn-Sham equations with linear-scaling effort [76, 77]. We have recently proposed an

efficient implementation of the linear-scaling method which is simple, efficient and robust

[78]. The validity of this approach has been demonstrated in several applications, such as

the static and dynamic properties of liquid ethanol at room temperature [60], and superionic

conduction in the high-temperature phase of LiBH4 [79]. This approach is particularly useful

for systems containing more than 103 atoms. Multiscale modeling is another promising

approach which has recently attracted much attention [2–4]. If we want to take into account

the phase-separated morphology of the PEM in a fuel cell, for instance, multiscale modeling

using the finite-element method would be a viable option.

The limited time scale is another serious problem which also arises in classical simulations

[80]. This problem is difficult to overcome completely, but is significantly alleviated by

efficient sampling of the phase space [81]. For instance, constrained molecular dynamics [82]

and mass tensor molecular dynamics [83, 84] were found to accelerate AIMD simulations

by up to a factor of three. We have also recently developed an effective method to stabilize

the Verlet method at no extra cost [85]. Besides these methods, there are many other

possibilities for accelerating AIMD simulations [86–88].

ACKNOWLEDGEMENTS

This work has been supported by the Strategic Programs for Innovative Research (SPIRE)

and a KAKENHI grant (22104001) from the Ministry of Education, Culture, Sports, Science

& Technology (MEXT), the Japan-US Cooperation Project for Research and Standardiza-

tion of Clean Energy Technologies from the Ministry of Economy, Trade, and Industry

(METI), and the Computational Materials Science Initiative (CMSI), Japan. Part of the

calculations were carried out using the computer facilities at Research Institute for Infor-

17

Page 17 of 21 Physical Chemistry Chemical Physics



mation Technology, Kyushu University.

[1] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element

Method, Cambridge University Press, Cambridge, 1987.

[2] R. Miller and E. Tadmor, Model. Simul. Mater. Sci. Eng., 2009, 17, 053001.

[3] J. A. Templeton, R. E. Jones, J. W. Lee, J. A. Zimmerman, and B. M. Wong, J. Chem. Theory

Comput., 2011, 7, 1736-1749.

[4] M. Luskin and C. Ortner, Acta Numerica, 2013, 22, 397-508.

[5] W. E. Pickett, Comp. Phys. Rep., 1989, 9, 115-198.

[6] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, New York, 1989.

[7] T. L. Beck, Rev. Mod. Phys., 2000, 72, 1041-1080.

[8] M. Defranceschi and J. Delhalle, Numerical Determination of the Electronic Structure of

Atoms, Diatomic and Polyatomic Molecules, NATO ASI Series C: Mathematical and Physical

Sciences, Vol. 271, Kluwer, Dordrecht, 1989.

[9] L. R. Ram-Mohan, Finite Element and Boundary Element Applications to Quantum Mechan-

ics, Oxford University, Oxford, 2002.

[10] S. R. White, J. W. Wilkins, and M. P. Teter, Phys. Rev. B, 1989, 39, 5819-5833.

[11] J. Ackermann, B. Erdmann, and R. Roitzsch, J. Chem. Phys., 1994, 101, 7643-7650.

[12] E. Tsuchida and M. Tsukada, Phys. Rev. B, 1995, 52, 5573-5578.

[13] E. Tsuchida and M. Tsukada, Phys. Rev. B, 1996, 54, 7602-7605.

[14] E. Tsuchida and M. Tsukada, J. Phys. Soc. Jpn., 1998, 67, 3844-3858.

[15] J. E. Pask, B. M. Klein, C. Y. Fong, and P. A. Sterne, Phys. Rev. B, 1999, 59, 12352-12358.

[16] N. Watanabe and M. Tsukada, Phys. Rev. E, 2002, 65, 036705.

[17] P. Motamarri, M. R. Nowak, K. Leiter, J. Knap, and V. Gavini, J. Comput. Phys., 2013, 253,

308-343.

[18] V. Schauer and C. Linder, J. Comput. Phys., 2013, 250, 644-664.

[19] G. Bao, G. Hu, and D. Liu, J. Comput. Phys., 2015, 281, 743-758.

[20] P. Suryanarayana, K. Bhattacharya, and M. Ortiz, J. Comput. Phys., 2011, 230, 5226-5238.
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