
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/crystengcomm

CrystEngComm

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Static and lattice vibrational energy differences between polymorphs†

Jonas Nymana and Graeme M. Daya∗

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been
performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional
theory intramolecular energies with an anisotropic atom-atom intermolecular model. Rigid molecule lattice dynamical calcula-
tions have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in
lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice
energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ/mol and lattice energy
differences exceed 7.2 kJ/mol in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differ-
ences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower
than lattice energy differences, rarely exceeding 2 kJ/mol. However, these relatively small vibrational free energy contributions
are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs.

1 Introduction

Polymorphism, the possibility of a compound to exist in at
least two different crystalline phases1, has important implica-
tions for the development of pharmaceuticals, organic semi-
conductors2, explosives and any other material where solid
state properties must be controlled3. Unexpected polymor-
phism can have far-reaching economic and medical4,5, as well
as legal6 consequences. For these reasons, there is a strong
motivation to develop our fundamental understanding of poly-
morphism, of property differences between polymorphs and,
ultimately, the ability to predict possible polymorphs a priori.

The relative free energy determines which polymorph
should be favourable under given thermodynamic conditions.
However, crystallisation does not always lead to the most sta-
ble structure, with kinetic factors sometimes leading to an al-
ternative crystal packing. How large a lattice energy penalty
can be overcome by such kinetic factors? It is important to
understand the energy differences that can exist between ob-
servable polymorphs. This question is particularly relevant
in computational attempts to predict possible polymorphs of
a given molecule. The most commonly adopted approach to
predicting crystal structures involves a search for the lowest
energy possible crystal packing possibilities, followed by an
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energy distributions split by hydrogen bonding.

assessment of which low energy computer-generated struc-
tures might be observed7,8. Such methods usually lead to
many possible structures and it is necessary to focus one’s
attention on those potential polymorphs that lie in a limited
energy range from the lowest energy possibility.

Polymorph energy differences are often said to be less than
10 kJ/mol3. A rule-of-thumb can be based on experimen-
tal determinations of polymorph relative energies, for exam-
ple from sublimation enthalpies9, melting data10, differential
scanning calorimetry11, relative solubilities12 or solution mi-
crocalorimetry13. However, experimental collection of a large
quantity of high quality polymorph energy differences is chal-
lenging. An alternative approach to understanding polymorph
energy differences is through computational modelling.

In computational studies of molecular crystals, the free en-
ergy is commonly approximated with the static lattice en-
ergy, calculated either with force field or electronic structure
methods, such as dispersion-corrected periodic DFT14,15 or
fragment-based approaches16. While high quality lattice en-
ergies can be acheived, this ignores the energetic contribu-
tions related to the vibration of molecules about their equi-
librium positions. Omitting the vibrational contribution to
the free energy is convenient, since it simplifies the calcu-
lation, and tempting from the computational cost point of
view. This is sometimes justified by a claim that the differ-
ence in vibrational energy between polymorphs is so small
that it never causes a re-ranking of the relative stability. This
was one of the conclusions of Gavezzotti and Filippini’s land-
mark 1995 study of polymorph energy differences17. The

1–13 | 1

Page 1 of 13 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



conclusion stands in sharp contradiction to the many exper-
imentally known temperature-dependent polymorphic transi-
tions and other computational studies that have demonstrated
the importance of vibrational zero-point energy and entropy
differences between crystal structures18. There is a need to
readdress the issue using up-to-date computational methods.

In this study, we present lattice energy and lattice dynamical
studies of thermodynamic properties of a set of 1061 experi-
mentally determined crystal structures of 508 polymorphic or-
ganic molecules, using state-of-the-art methods for lattice en-
ergy evaluation. This is the largest study to date of energetic
differences between polymorphs.

2 Methods

2.1 Selection of polymorph pairs

Crystal structures were obtained from the Cambridge Struc-
tural Database (CSD), version 5.35 (Nov. 2013). Reference
code families of polymorphs in van de Streek’s “best hydro-
gens list”19,20 containing only H/D, C, N, O, F, S, and Cl were
selected, the elements for which the most reliable atom-atom
potentials exist. Multicomponent structures and radicals were
removed.

As our lattice dynamical treatment currently only includes
rigid molecule motions, we assume that differences in in-
tramolecular vibrations between polymorphs are negligible.
This approximation may lead to errors when there are sig-
nificant molecular geometry differences between polymorphs,
such as in conformational polymorphism. Therefore, we used
the root-mean-square deviation (RMSD) of atomic coordinates
for molecules in different polymorphs (calculated using TOR-
MAT 21, excluding hydrogen atom positions) to exclude struc-
tures with large intramolecular differences. Cruz-Cabeza and
Bernstein 22 showed that polymorphs tend to have very sim-
ilar molecular conformations, and that an RMSD of atomic
coordinates of up to 0.225–0.3 Å usually corresponds to slight
adjustments of the same molecular conformer. We observe
essentially the same distribution as Cruz-Cabeza and Bern-
stein 22 (see Figure S12 in supplementary information) and set
our limit to 0.25 Å, to exclude structure pairs where molecular
geometry differences exceeded this value.

The symmetries of structures with non-integer Z′ were
modified to include whole molecules in the asymmetric unit.
Structures with more than 65 atoms in the asymmetric unit
were excluded to limit the computational cost of the flexible
molecule energy minimisation. Missing hydrogen atoms were
added based on conventional geometric criteria whenever this
could be done unambiguously and deuterium atoms were sub-
stituted by hydrogen in deuterated structures. Structures with
disorder or incorrectly placed hydrogen atoms were excluded.
A small number of structures had to be excluded because of

limitations in the energy-minimisation method applied here,
as described below.

Lattice dynamics calculations require that the Hessian is
positive definite, i.e that the crystal structure is a true poten-
tial energy minimum. For a few structures, this was not the
case and the crystal is thus unstable with respect to symme-
try breaking. For these structures, we removed all crystallo-
graphic symmetry and performed the lattice dynamics calcu-
lations on the P1 unit cell. If the structure was still unstable, it
was discarded.

The final structure set (see list in ESI) consisted of 1061
crystal structures in 508 polymorphic clusters forming 466
polymorph pairs, 39 triplets and 3 quadruplets, yielding 601
pairwise comparisons of polymorph energies. The structures
were analysed for the presence of hydrogen bonds with the
program PLATON 23. 654 crystal structures in 310 clusters are
found to contain hydrogen bonds and 507 structures in 198
clusters do not form hydrogen bonds. Structures are referred
to by their CSD reference codes throughout. Our set of struc-
tures is three times larger than that used in the largest previous
study17 of polymorph energetics that we are aware of.

2.2 Lattice energy minimisation

Lattice energies were calculated from a hybrid model, com-
bining a DFT model for the intramolecular energy with an
atom-atom model of intermolecular interactions:

Elatt = EDFT
intra +Eatom−atom

inter . (1)

Intramolecular energies and molecular geometries were cal-
culated at the B3LYP/6-311G(d,p) level of theory.

The intermolecular interaction energy between molecules
M and N was modelled with an anisotropic model potential of
the form:

E intermolecular
MN = ∑

i,k
Aικ exp(−Bικ rik)−Cικ r−6

ik +Eelec
ik (2)

where i,k are atoms of type ι and κ belonging to molecules
M and N, respectively, separated by the distance rik. The first
two terms model the repulsive and attractive non-electrostatic
intermolecular interactions, with parameters Aικ , Bικ and
Cικ determined through empirical parameterisation. The
final term, describing electrostatic interactions, was calcu-
lated from atom-centered multipoles up to rank 4 (hexade-
capole) on all atoms24,25, obtained from a distributed multi-
pole analysis26 of the B3LYP/6-311G(d,p) charge density us-
ing GDMA 27. This electrostatic model accurately models the
effects of non-spherical features of electron densities, such as
lone pairs and π-electron density, and the resulting direction-
ality of intermolecular interactions such as hydrogen bonding
and arene-arene interactions. Charge-charge, charge-dipole
and dipole-dipole interactions were calculated using Ewald
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summation, while repulsion-dispersion interactions and all
higher multipole-multipole interactions were calculated to a
cutoff distance of 15 Å.

A recently revised28,29 version of the Williams99 exp-6 po-
tential30 was used. The re-parametrisation was performed to
optimise the performance of the potential for use with atomic
multipole electrostatics. Parameters for sulfur were taken
from Abraha and Williams 31 , using conventional combining
rules for S. . .X interactions. All halogen atoms were treated as
having an anisotropic repulsion, as described previously25,32.
The revised Williams99 parameters, and those for F and Cl are
provided in the supplementary information. The Williams99
potential requires a foreshortening of all X-H bonds by 0.1 Å.

All crystal structures were lattice energy-minimised
through the CRYSTALOPTIMIZER program33,34, which min-
imises the sum of the intra- and intermolecular energies with
respect to selected intramolecular degrees of freedom, as well
as crystal packing degrees of freedom (molecular orientation,
rotation and unit cell parameters). CRYSTALOPTIMIZER per-
forms flexible-molecule crystal structure optimisation by it-
eratively computing the molecular geometry and energy at
the DFT level of theory with GAUSSIAN 09 35 under the con-
straints of the crystal packing forces calculated from the in-
termolecular potential, using the crystal structure modelling
program DMACRYS 25 for intermolecular energy calculations.

This lattice energy minimisation method includes the strain
on the molecules resulting from the crystal packing forces on
a set of intramolecular degrees of freedom, usually chosen as
flexible torsions and bond angles. These degrees of freedom
are optimised in response to intermolecular interactions. The
computational cost increases with the number of flexible de-
grees of freedom. To process the large number of crystal struc-
tures, we implemented an algorithm in Python to automati-
cally select the flexible degrees of freedom that we considered
most important for accurately modelling the impact of crystal
packing on molecular geometry:

• All covalent bond lengths are optimised without consid-
ering packing forces;

• To accurately model hydrogen bond geometries, bond
angles and dihedrals containing a polar hydrogen atom
(-OH, -NH, -SH) are considered flexible and optimised
under the influence of packing forces.

• All exocyclic bonds are considered rotatable. Dihedral
angles around these bonds are optimised under the influ-
ence of crystal packing forces;

• All dihedrals and angles in rings of 3-coordinated carbon
atoms (e.g. phenyl rings) are treated as unaffected by
packing forces;

• All dihedrals and angles, except those with polar H, in
five- or six-membered heterorings of nitrogen and 3-
coordinated carbons are optimised without considering
packing forces;

• Any remaining dihedrals (e.g in heterorings with S or O)
are optimised subject to packing forces.

Since GAUSSIAN requires bond angles to be between 0◦ and
180◦ and to prevent angles containing an sp1-hybridized car-
bon (i.e CC and CN triple bonds) from exceeding 180◦, such
angles were constrained to 179.99◦. These rules are adequate
for practically all molecules, but fail for GLYCIN, XELLEF
and BEWYUY. Glycine (GLYCIN) crystallizes in zwitterionic
form. During energy minimisation with our method, one pro-
ton moves from the amino group to the carboxyl group. BE-
WYUY and XELLEF contain triple bonds that are sensitive to
packing forces, so our constraint on near-linear angles is inap-
propriate. In this study we have ignored the PV contribution
to the (Gibbs) free energy, resulting in errors for high-pressure
polymorphs with significant differences in density. Two poly-
morph pairs (FIGYID, ACRLAC) were identified where the
PV -term is not negligible. These five polymorph families have
therefore been excluded from the current study.

2.3 Free energy calculations

All vibrational contributions to crystal free energies are cal-
culated from harmonic phonon frequencies calculated at the
optimised crystal structure geometries. Lattice dynamics the-
ory36,37 and its adaptation to the dynamics of rigid molecular
crystals38–40 has been described in detail elsewhere. Rigid
molecule lattice dynamics are implemented in the DMACRYS
software for computating phonons using anisotropic atom-
atom potentials41,42.

Harmonic phonons can be considered as non-interacting
quantum harmonic oscillators with angular frequencies ωi.
The resulting partition function is

Zvib = ∏
i,k

exp(−h̄ωi,k
2kBT )

1− exp(−h̄ωi,k
kBT )

, (3)

where kB is Boltzmann’s constant and h̄ is the reduced Planck
constant. The product is over all vibrational modes, i, and all
points in reciprocal space, k. A crystal with Z rigid molecules
in the unit cell has 6Z vibrational modes at each k-point. Our
sampling of reciprocal space is described below.

The vibrational contribution to the free energy Fvib is then

Fvib(T ) =−kBT lnZvib, (4)

which can be calculated directly from the phonon spectrum as

Fvib(T ) =
1
2 ∑

i,k
h̄ωi,k + kBT ∑

i,k
ln
(

1− exp
(−h̄ωi,k

kBT

))
. (5)
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The first term is the vibrational zero point energy ZPE, while
the second term is the thermal contribution to the free energy.

The Helmholtz free energy A is obtained as

A(T ) = Elatt +Fvib(T ), (6)

and the entropy S is obtained from the derivative of the free
energy with respect to temperature:

S(T ) =−kB ∑
i,k

ln
(

1− exp
(−h̄ωi,k

kBT

))
+

+
1
T ∑

i,k
h̄ωi,k

(
exp
(−h̄ωi,k

kBT

)
1− exp

(−h̄ωi,k
kBT

)) (7)

The heat capacity is calculated as:

Cv(T ) = kB ∑
i,k

( h̄ωi,k

kBT

)2 exp
(

h̄ωi,k
kBT

)
(

exp
(

h̄ωi,k
kBT

)
−1
)2 (8)

The accuracy of calculated vibrational energy contributions
depends on how well the calculations reproduce the true vi-
brational frequencies, and on the sampling of reciprocal space
used in calculating the partition function (Equation 3). Phonon
calculations using the form of anisotropic atom-atom poten-
tials employed here have previously been shown to reproduce
observed frequencies from terahertz spectroscopy with good
accuracy43,44, so that errors due to inaccuracies of the model
potential should be small. The lattice dynamics implemen-
tation in DMACRYS only provides phonons calculated at the
Brillouin zone centre (k = 0). Non-zero k-vectors were sam-
pled by generating supercells of the original unit cell; the vi-
brational modes of a (N,M,P) supercell include N ×M×P
distinct k-points of the original cell. To ensure that our cal-
culated energies are converged with respect to sampling of
k-points, it is important to sample as widely as possible be-
tween k = 0 and the edge of the first Brillouin zone. However,
to obtain k-points close to 0 using the supercell method can
require very large supercells and prohibitively long compu-
tational times. To keep computational costs manageable, we
sampled k-points using combinations of “linear” supercells,
each expanded along a single lattice vector. Phonon frequen-
cies from a series of supercells are then combined. For cubic,
tetragonal and orthorhombic unit cells, the linear supercell ex-
pansion leads to k-point sampling along the reciprocal unit
cell axes a∗, b∗, c∗. In lower symmetry crystal systems, the
sampling is not necessarily along the reciprocal lattice vec-
tors, but should adequately sample the dependence of phonon
frequency on orientation in reciprocal space.

In testing the convergence of calculated thermodynamic
properties with respect to k-point sampling, we set target k-
point distances along each reciprocal space direction (length

in reciprocal space per k-point). A particular target length
defined a number of k-points in that direction and, thus, the
length of the supercell. Elongated supercells were split into
several smaller supercells that sample approximately the same
number of unique k-points (see supplementary information for
a description), providing a nearly equivalent k-point sampling
at a reduced computational cost. The individual supercells in
each direction are chosen to have mutually co-prime supercell
expansion coefficients, ensuring that each supercell samples
a unique set of k-points (apart from k = 0, whose duplicates
were removed prior to computing thermodynamic properties).

Ambient conditions are most relevant for understanding
the energetic aspects of polymorphism, so all thermodynamic
properties reported here are calculated at T = 300 K. So as not
to exclude weakly bound crystal structures, we did not attempt
to excude structures with melting points below 300 K.

3 Results and Discussion

3.1 Free energy convergence with phonon sampling

The convergence of Helmholtz energy, entropy, zero point en-
ergy and heat capacity with respect to k-point sampling was
studied to decide on a sampling density that gives sufficiently
small errors in calculated thermodynamic quantities, while
maintaning the computational efficiency required to evaluate
properties of all 1061 crystal structures. In his investigation of
vibrational energy contributions in crystal structure prediction,
van Eijck18 found that 50 randomly chosen k-points provided
converged thermodynamic properties. However, the number
of k-points necessary for convergence is not the same for dif-
ferent crystal structures, but depends on the size and contents
of the unit cell. Therefore, instead of targetting a set number of
k-points, we studied convergence with respect to the distance
(in reciprocal space) between sampled k-points. We believe
that this provides a uniform treatment of crystal structures.

Convergence of thermodynamic properties was investigated
for a set of four polymorph pairs of theophylline (CSD refcode
family BAPLOT), two polymorph pairs of maleic hydrazide
(MALEHY) and the pair of 3,4-cyclobutylfuran (XULDUD)
polymorphs (Figure 1), chosen to represent crystal structures
with varying types and strengths of intermolecular interac-
tions. The structures for theophylline polymorphs VI and VII
were taken from Eddleston et al. 45 and Eddleston et al. 46 .
The crystal structures were geometry optimised, as described
above, before the lattice dynamics calculation were performed
for a series of k-point sampling densities.

Figure 2 shows the convergence of the difference in heat
capacity and entropy for the 7 polymorph pairs. The error is
measured relative to the best estimate of ∆S and ∆Cv calculated
at a very dense k-point sampling of 0.08 Å−1.

At the largest k-point distance, only k = 0 is sampled,
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Fig. 1 Chemical diagrams of selected molecules: a) theophylline
(CSD refcode: BAPLOT); b) maleic hydrazide (MALEHY); c)
3,4-cyclobutylfuran (XULDUD); d)
meso-1,2-diacetoxy-1,2-bis(9-anthryl)ethane (JARXUV); e)
3,5-diphenyl-4-amino-1,2,4-triazole (UKANOJ); f)
dimethyl-4,4’-(1,3,4-oxadiazole-2,5-diyl)diphenylenedicarboxylate
(BEBMAX) and g) 2-amino-5-nitropyrimidine (PUPBAD).

clearly giving unacceptable results and errors in relative en-
tropies exceeding 10 J/mol·K (corresponding to errors of 2–3
kJ/mol in ∆A). We find that it is necessary to sample sev-
eral, but not very many, k-vectors to achieve sufficiently con-
verged thermodynamic properties. Heat capacity differences
converge relatively easily (Fig. 2a), while entropy differences
converge more slowly (Fig. 2b).

Based on these, and additional convergence tests described
elsewhere,47 we have chosen a target k-point distance of 0.12
Å−1 for the polymorph pair calculations, corresponding to 15
k-vectors on average per structure, though with a large vari-
ance. With this sampling, we estimate that the errors caused
by the finite k-point sampling should usually be less than 1
J/mol·K in ∆S and 1 kJ/mol for the difference in total vibra-
tional energy between polymorphs.

3.2 Overall energetic contributions

We first inspect the distribution of lattice energy differences
between polymorphs (Fig. 3a). These are the total differences
in the sum of intermolecular and intramolecular energies, cal-
culated for the static, lattice energy minimised structures. Our
results confirm the validity of the rule-of-thumb that poly-
morph lattice energy differences are less than 10 kJ/mol;3

only 1.5% of polymorph pairs included in this study exceed 10
kJ/mol in relative lattice energy. Indeed, most lattice energy
differences are much smaller: over half (52.7%) of polymorph
pairs are separated by less than 2 kJ/mol and 95% by less than
7.2 kJ/mol. Measured in percent, the lattice energy difference
is less than 8% in all but a few cases (see Fig. S1 in ESI).

Lattice energy differences are generally dominated by dif-
ferences in intermolecular interactions, with 68.5% of poly-
morph pairs differing in intramolecular energy by less than
1 kJ/mol (see Fig. S12 in the ESI). This is, in part, due to
our selection of polymorphs with small intramolecular geom-
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Fig. 2 Convergence of a) relative heat capacities and b) relative
entropies with respect to the k-point sampling for a set of
polymorphs of theophylline (indicated by Roman numerals), maleic
hydrazide and 3,4-cyclobutylfuran. The x-axis indicates the target
k-point sampling distance (smaller values indicating a denser
sampling). Errors in relative values are calculated relative to the
densest k-point sampling (0.08 Å−1).

etry differences. The range in intramolecular energies that we
find is in broad agreement with our recent study of confor-
mational energies in molecular crystals48. In rare cases, in-
tramolecular energy differences reach 15–20 kJ/mol, where a
high energy conformation is found in one polymorph. The
largest intramolecular energy differences that we find are as-
sociated with changes in hydrogen atom positions that lead to
a switch between inter- and intramolecular hydrogen bonding.
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This type of conformational polymorphism is a particularly
difficult challenge for computational methods49. In all cases
of large intramolecular energy differences, the intramolecular
penalty is compensated by improved intermolecular interac-
tions in the polymorph containing the higher energy molecular
conformation.

Differences in the total vibrational contribution to free en-
ergy at 300 K are generally smaller in magnitude (Fig. 3b).
|∆Fvib| is calculated to be less than 1 kJ/mol in more than 70%
of polymorph pairs and is greater than 2 kJ/mol in fewer than
6% of cases. Due to the small magnitude of ∆Fvib between
polymorphs, and recalling that ∆A = ∆Elatt +∆Fvib, the over-
all distribution of free energy differences (Fig. 3c) closely re-
sembles the distribution of lattice energy differences: 56.6%
of pairs are separated by less than 2 kJ/mol in calculated free
energy, 95% are below 6.4 kJ/mol and the free energy differ-
ence of only 0.5% of polymorph pairs exceeds 10 kJ/mol.

Despite the small contributions of Fvib to polymorph free
energy differences, these results should not be interpreted as
demonstrating the unimportance of lattice vibrational contri-
butions to polymorph relative stabilities. Figure 4 shows the
lattice energy difference and ∆Fvib data together for all poly-
morph pairs, and demonstrates that there is only a weak cor-
relation between the two quantities.

As a consequence, there are cases where Fvib reinforces
the static lattice energy difference (the shaded red region in
Fig. 4), as well as cases where ∆Fvib and ∆Elatt have op-
posite sign (the yellow and green shaded regions in Fig. 4).
The latter case, where ∆Fvib counteracts ∆Elatt , is more com-
mon: dynamical energy contributions (Fvib) reduce the energy
difference between polymorphs in 69% of pairs included in
this study. The free energy curves of these pairs will cross at
some temperature, leading to an enantiotropic phase transition
if the crossing temperature falls below their melting point. The
shaded green area in Fig. 4 highlights those polymorph pairs
where ∆Fvib is greater than, and of opposite sign, to ∆Elatt at
300 K, leading to a change in order of stability of the poly-
morph pair; this is the case for 9% of polymorph pairs.

3.3 Contributions to ∆Fvib

The total vibrational contribution to the free energy difference
between polymorphs is a sum of the zero point energy, thermal
contribution to the internal energy and entropic contribution:

∆Fvib = ∆ZPE +
∫ T

0
∆Cv(T )dT −T ∆S. (9)

Vibrational zero point energy is a minor contribution to the
relative stability of polymorphs (Fig. 5a). ∆ZPE is less than
0.33 kJ/mol in 95% of polymorph pairs and the largest calcu-
lated difference is just over 0.7 kJ/mol.
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Fig. 3 Distributions of the absolute value of calculated differences
in a) lattice energies, b) vibrational energies and c) Helmholtz free
energies between polymorphs. Vibrational energies and free
energies are calculated at a temperature of 300 K. One data point
(the polymorph pair UKANOJ/01), at ∆Elatt =18.5 kJ/mol and
∆A =18.2 kJ/mol is off the scale of plots (a) and (c).

Molar heat capacities do not vary greatly from their ex-
pected equipartition value. Since our lattice dynamical treat-
ment excludes intramolecular vibrations, each molecule has
six vibrational degree of freedom (3 translational and 3 ro-
tational) and the calculated Cv ≈ 6R (Fig. 6). This is the
expected result at room temperature, since the entire phonon
density of states for almost all crystal structures falls below
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Fig. 4 Differences in lattice energy, Elatt , and total vibrational
contributions to the free energy, Fvib, between polymorphs. The
order of polymorphs is defined so that ∆Elatt is positive in all cases.
∆Fvib is calculated at T = 300 K. The shading indicates areas where
∆Elatt and ∆Fvib are the same sign (red), ∆Elatt and ∆Fvib are of
opposite sign (yellow and green) and where ∆Fvib causes a
re-ordering of polymorph stability at 300 K (green). Green and red
data points denote structures with and without hydrogen bonds,
respectively.

kBT (208.5 cm−1 at 300 K), so that there is significant ther-
mal population of energy levels for all vibrational modes. As
a consequence, heat capacity differences between polymorphs
are very small (Fig. 5b): in 95% of polymorph pairs, Cv differs
by less than 0.46 J/mol·K.

Entropy differences are, at room temperature, an order of
magnitude larger than the thermal contribution to internal en-
ergy (Fig. 5c) and entropy is by far the most important vi-
brational contribution to polymorph free energy differences.
As with all of our observed distributions, entropy differences
are often small: 50.7% of calculated ∆S are below 2 J/mol·K,
corresponding to only 0.6 kJ/mol at 300 K. However, ∆S is
greater than 5.4 J/mol·K in 10% of polymorph pairs and ex-
ceeds 6.8 J/mol·K in 5% of pairs, corresponding to a 2 kJ/mol
contribution to the room temperature free energy difference.
These largest entropy differences are important when com-
pared to the static lattice energy differences, which are less
than 2 kJ/mol in over half the polymorph pairs. Vibrational
effects are most important in the cases where large entropy
differences are coupled with small lattice energy differences.

Two caveats to these results are that i) vibrational energy
contributions have been calculated in the rigid molecule ap-
proximation, and ii) non-vibrational contributions to the en-
tropy have not been included. While molecular flexibility and
intramolecular energy differences are fully accounted for dur-
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Fig. 5 Distributions of the differences in vibrational a) zero point
energy, b) heat capacity and c) entropy between polymorphs. Heat
capacities and entropies are calculated at 300 K. One data point (the
polymorph pair BEBMAX/01), at ∆S = 20.0 kJ/mol is off the scale
of plot (c). This value is discussed in the text.

ing geometry optimisation and in our lattice energy calcula-
tions, the rigid molecule lattice dynamical treatment means
that intramolecular vibrational frequencies are ignored. This
approximation will affect the absolute thermodynamic quan-
tities; for example, heat capacities (Figure 6) will be signifi-
cantly underestimated for molecules where intramolecular vi-
brations are near or below kBT . However, the focus here is on
differences in thermodynamic quantities between polymorphs
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Fig. 6 Distribution of heat capacities calculated at 300 K for all
1061 crystal structures. Only intermolecular vibrational mode
contributions are included.

and we expect that intramolecular vibrational energy differ-
ences will only be important in specific cases, such as con-
formational polymorphism. For this reason, inclusion of in-
tramolecular vibrations using the hybrid energy model (equa-
tion 1) will be a focus of future work. In terms of non-
vibrational entropy contributions, disorder is expected to be
the other main source of entropy differences between poly-
morphs. Greater static or dynamic disorder in one polymorph
than another can easily lead to entropy differences that match
or exceed the vibrational entropy differences50–52. These con-
tributions must be considered when disorder is present in one
or more polymorphs.

3.4 Physical origins of entropy differences

The thermodynamic properties described in this section are
functions of the phonon density of states, and differences in
entropy, heat capacity and zero point energy arise from vari-
ations in the distribution of lattice vibrational frequencies be-
tween polymorphs. Calculated phonon frequencies fall in the
range between 4 and 220 cm−1 – a wider frequency band than
was observed by Gavezzotti and Filippini 17 – and the distri-
bution of frequencies in this range can vary significantly be-
tween polymorphs. As an example, Figure 7a shows the vi-
brational frequency distributions in theophylline forms I and
II. Form II is favoured by lattice energy and is known to be
the thermodynamically more stable polymorph at low temper-
atures. However, form I displays a lower frequency distribu-
tion than form II. This leads to a relatively large difference
in entropy (∆S = 6.5 J/mol·K) favouring form I and an enan-
tiotropic phase transition between these structures, which is
known to occur at high temperatures53. By contrast, many
pairs of polymorphs have very similar distributions of vibra-
tional frequencies, leading to smaller differences in entropy:
for example, Figure 7b shows the density of states of the
two monoclinic polymorphs of maleic hydrazide, whose vi-

brational entropies differ by only 0.84 J/mol·K (polymorph
MH354, MALEHY12, having the slightly higher entropy).

A pertinent question is what causes these differences in vi-
brational frequencies. In the examples quoted above, the theo-
phylline polymorphs I and II differ in which atoms are in-
volved in hydrogen bonding, while maleic hydrazide forms
the same hydrogen bonding in both polymorphs. Differences
in strong intermolecular interactions undoubtedly lead to dif-
ferent vibrational spectra and, sometimes, differences in ther-
modynamic properties. However, a detailed analysis of inter-
actions in 1061 crystal structures is not possible. Instead, we
ask if a coarser description of structural differences is useful.

Our results demonstrate a weak (R2 = 0.09), but statistically
significant, correlation between lattice energy and density dif-
ferences between polymorphs (Figure 8a). The denser poly-
morph tends to have a lower (i.e. more stable) lattice energy.
Structures with lower density are often assumed to vibrate
with lower frequencies, due to molecules having more free
space to move, and hence might be expected to have higher
entropy. There is indeed such a trend in our findings (Figure
8b). As with lattice energy, the correlation is extremely weak
(R2 = 0.06), but statistically significant. A lower density poly-
morph tends to have more vibrational entropy. Both correla-
tions represent trends across a large set of polymorph pairs and
are not predictive for individual cases. In terms of free energy,
the trends in lattice energy and vibrational entropy compen-
sate each other, contributing to the finding that Fvib usually
lowers polymorph energy differences. However, the scatter in
Figure 8 shows that other factors, such as detailed structural
features and specific intermolecular interactions often domi-
nate the bulk trend. Nevertheless, entropy can be expected to
contribute a stabilising effect for poorly packed crystal struc-
tures, such as clathrates and inclusion compounds.

Strong directional interactions, and hydrogen bonds in par-
ticular, might interfere with the close-packing of crystals and
cause differences in density and entropy between polymorphs.
We have therefore examined if there are any differences in
the distributions of ∆Fvib and ∆S between polymorphs for
molecules with and without hydrogen bonds (green and red
data points, respectively, in Figures 4, 9 and additional figures
in the ESI). We find no evidence for a difference in distribution
of thermodynamic property differences between polymorphs
based on the presence or absence of hydrogen bonding.

3.5 Outliers and particular observations

The largest lattice and free energy difference (∆Elatt =18.5,
∆A=18.2 kJ/mol) is between the polymorphs of 3,5-diphenyl-
4-amino-1,2,4-triazole (UKANOJ/01, Fig. 1e). The rea-
son is the dramatically different hydrogen bonding motifs in
these structures. The more stable UKANOJ01 has a stable
3-dimensional network of strong N-H...N hydrogen bonds,
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Fig. 7 The phonon density of states for a) theophylline polymorphs
I and II and b) the two monoclinic polymorphs of maleic hydrazide.
The target k-point sampling is 0.12 Å−1 in all cases.
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Fig. 8 Differences in a) lattice energy and b) entropy vs density
differences between polymorphs. Polymorphs in each pair are
ordered such that the density difference is positive. Green and red
data points denote structures with and without hydrogen bonding.
The correlation in both cases is statistically significant to p < 10−9.

while UKANOJ forms an unfavourable structure with unusu-
ally long hydrogen bonds.

We also calculate a large difference in lattice energy
∆Elatt = 14.5 kJ/mol for the polymorph pair JARXUV/01
(Fig. 1d). This is one of the largest molecules in our set, so the
lattice energies are large in magnitude. While the percentage
lattice energy difference (8%) for this pair is also one of the
largest in our set, the value is less exceptionally large. In dis-
cussing polymorphs of molecules of different size, percentage
lattice energy differences may be more meaningful than ab-
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solute differences. Also, for this pair, the vibrational energy
stabilises the higher energy polymorph (JARXUV01) by 1.55
kJ/mol, so the free energy difference is less extreme than the
lattice energy difference.

For the polymorph pair BEBMAX/01 (Fig. 1f), we calcu-
late one polymorph (BEBMAX) to have 20 J/mol·K higher en-
tropy than the other at 300 K. BEBMAX has very anisotropic
unit cell dimensions and turns out to be particularly sensi-
tive to the phonon k-point sampling. ∆S is still large (9.14
J/mol·K), but less extreme with a finer 0.08 Å−1 sampling.

3,4-Cyclobutylfuran (XULDUD, Fig. 1c) was a target in
the first blind test of crystal structure predictions55. It was
later discovered that XULDUD was highly unstable and a dis-
appearing polymorph. Our calculations show that the XUL-
DUD structure is located at a saddle point on the potential en-
ergy surface and symmetry breaking results in a stable Z′ = 2
structure. The lowering in energy is small and the observed
structure is probably a thermal average over the symmetry-
broken minima. A similar phenomenon was found for only a
handful of crystal structures.

The polymorphs of 2-amino-5-nitropyrimidine (PUP-
BAD/01/02, Fig. 1g), have attracted some interest before.
An attempt to calculate their relative stability and to ratio-
nalize their polymorphic behaviour was reported by Aakeröy
et al. 56 . They concluded that the orthorhombic form III (PUP-
BAD) has the lowest lattice energy, but quantification of en-
ergy differences was limited by difficulties in treating molec-
ular flexibility with their computational methods. Thermal
(DSC) studies were also inconclusive. Indeed, by lattice en-
ergy, we find that form III (PUPBAD) is much more stable
than forms I (PUPBAD01, ∆Elatt =−6.7 kJ/mol) and II (PUP-
BAD02, ∆Elatt = −7.4 kJ/mol). However, neglecting vibra-
tional effects in these polymorphs is misleading. The entropy
differences are exceptionally large (∆S = 12 J/mol·K and 14
J/mol·K respectively) so that by 330 K, all three have essen-
tially the same free energy. This helps explain why the three
polymorphs crystallise concomitantly56.

3.6 Implications for crystal structure prediction

The results of this study should be valuable for discussion and
analysis of polymorphism in general. An understanding of
the expected energy differences between polymorphs forms a
foundation for examinations of the influence of specific struc-
tural features and particular interactions on polymorph relative
stabilities.

One area where an understanding of polymorph energies is
crucial is the ab initio prediction of crystal structures, which
is usually performed by ranking computer-generated crystal
structures by their calculated lattice energies7,8,57. The fact
that lattice energy differences tend to be so small demonstrates
the challenge involved in correctly ranking the energies of pre-

dicted structures. The differences in calculated energies be-
tween observed and unobserved predicted crystal structures
are typically as small as the polymorph energy differences
seen here. Furthermore, given that observed polymorphs can
differ by up to 10 kJ/mol in lattice energy, all predicted crystal
structures within this energy range from the most stable struc-
ture can be seen as potentially observable polymorphs. Such
an energy range frequently includes large numbers of putative
crystal structures58. In fact, our distribution of polymorph
lattice energy differences closely matches the relative lattice
energies of observed crystal structures in crystal structure pre-
diction studies of small organic molecules59. The reasons why
predicted polymorphs outnumber observed polymorphs have
recently been discussed by Price 60 .

A further observation relates to the use of lattice energy ver-
sus free energy in predicting relative stabilities of predicted
polymorphs. Free energies should be used to assess the true
thermodynamic stabilities of structures, but are often approx-
imated by calculated lattice energies, due in large part to the
added complexity and computational expense of free energy
calculations. However, the small magnitude of lattice energy
differences that we find between known polymorphs high-
lights the fact that it takes very little vibrational energy to
cause a re-ranking of polymorph stability. While a small num-
ber of studies have shown promising results from the inclu-
sion of dynamical effects in crystal structure prediction, either
through a lattice dynamics18,61–63 or molecular dynamics64–66

approach, lattice energy-based predictions are still the norm.
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Fig. 9 The correlation between ∆Elatt and ∆A between polymorphs.
Each polymorph pair is ordered such that the lattice energy
difference is positive. The green area highlights those structures
where re-ranking occurs between lattice energy and free energy at
300 K. Green and red data points denote structures with and without
hydrogen bonds, respecticely.
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Our results show why lattice energies have achieved good
success, particularly as the quality of lattice energy calcula-
tions has improved14,16,67,68. The correlation between ∆A and
∆Elatt is strong (R2 = 0.85, see Figure 9), demonstrating that
lattice energy is the dominant contribution to free energy dif-
ferences. However, the slope of the regression line is 0.86,
not 1, reflecting our finding that ∆Elatt and ∆Fvib are of oppo-
site sign in the majority of cases; vibrational contributions in
general decrease the energy differences between polymorphs.
Furthermore, some pairs are re-ranked by the vibrational en-
ergy, which contradicts Gavezzotti and Filippini’s conclusion
that free energy differences always have the same sign as en-
thalpy differences17. Differences in our conclusions may be
due to their simpler force field model, lack of intramolecular
energy in their assessment of lattice energies, as well as our
different Brillouin zone sampling methods.

The green triangle in Figure 9 marks the area where the
vibrational contribution causes a discordant ranking of poly-
morph stability relative to lattice energy; this area covers 9%
of the polymorph pairs. This fraction is large enough to justify
the computational effort, since this rate of mis-ranking over an
entire landscape of predicted crystal structures can have a sig-
nificant influence on the outcomes of a prediction.

4 Conclusions

Lattice energy minimisation and rigid-molecule harmonic lat-
tice dynamics have been applied to understand thermody-
namic property differences for a large set of experimentally
determined, non-disordered, packing polymorphs of organic
molecules. Our principle results are those summarised in Fig-
ures 3 and 4, showing the distribution of static and vibrational
energy differences between polymorphs. While our study is
restricted to single-component crystal structures of molecules
containing the elements C, N, O, H, F, Cl and S, given the
large size of the structure set (1061 crystal structures in 508
polymorph families), and quality of the energy model, we be-
lieve that these faithfully reflect true energy differences and,
thus, are of great value in discussing and understanding poly-
morphism.

Unsurprisingly, the lattice energy differences between poly-
morphs are typically very small and are less than 7.2 kJ/mol in
95% of polymorph pairs. Entropies dominate the vibrational
contribution to relative free energies and, while these contri-
butions to relative free energies are typically small (|∆Fvib| <
2 kJ/mol in most cases), they can be large enough to signifi-
cantly affect the calculated relative stability of polymorphs.

∆Fvib and ∆Elatt are of opposite sign in 69% of the poly-
morph pairs, so that polymorph free energies usually con-
verge with increasing temperature and will eventually cross.
By T = 300 K, we find that vibrational contributions swap the
stability order of 9% of polymorph pairs.

Correlations of energy and entropy differences with density
are weak, and there is no evidence that polymorphs of hy-
drogen bonding and non-hydrogen bonding molecules show
different trends in thermodynamic differences. Therefore, it
is difficult to predict relative stability or thermodynamic be-
haviour based on these coarse descriptions of structure.

Based on the evidence presented here, computational stud-
ies of polymorph stability, including crystal structure predic-
tion, should not be restricted to static lattice energy calcula-
tions. The influence of lattice vibrations is important in judg-
ing the true stability difference between polymorphs and a
necessary consideration for the anticipation of temperature-
driven phase transitions. Since the errors introduced by re-
stricting lattice dynamics to a single k-point are large, the
energy methods that are developed for use in the context of
crystal structure prediction should be sufficiently efficient to
allow adequate sampling of phonons without an unacceptably
large computational expense. Currently, only atom-atom po-
tentials meet these criteria and we believe that the continued
development of accurate atom-atom models for such studies is
necessary.

5 Acknowledgements

We thank Dr Manolis Vasileiadis for support and problem
solving our use of the CRYSTALOPTIMIZER program. The
research leading to these results has received funding from
the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement n. 307358 (ERC-stG-2012-ANGLE). The authors
acknowledge the use of the IRIDIS High Performance Com-
puting Facility at the University of Southampton.

References
1 J. Haleblian and W. McCrone, Journal of Pharmaceutical Sciences, 1969,

58, 911–929.
2 T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov,

B. Batlogg and C. Kloc, Advanced materials, 2007, 19, 2079–2082.
3 J. Bernstein, Polymorphism in Molecular Crystals, Oxford University

Press, 2002.
4 S. R. Chemburkar, J. Bauer, K. Deming, H. Spiwek, K. Patel, J. Mor-

ris, R. Henry, S. Spanton, W. Dziki, W. Porter et al., Organic Process
Research & Development, 2000, 4, 413–417.

5 J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter and J. Mor-
ris, Pharmaceutical research, 2001, 18, 859–866.

6 W. Cabri, P. Ghetti, G. Pozzi and M. Alpegiani, Organic Process Research
& Development, 2007, 11, 64–72.

7 G. M. Day, Crystallography Reviews, 2011, 17, 3–52.
8 S. L. Price, Chemical Society Reviews, 2014, 43, 2098–2111.
9 J. S. Chickos and W. E. Acree, Journal of Physical and Chemical Refer-

ence Data, 2002, 31, 537–698.
10 L. Yu, Journal of Pharmaceutical Sciences, 1995, 84, 966–974.
11 L. Yu, G. A. Stephenson, C. A. Mitchell, C. A. Bunnell, S. V. Snorek,

1–13 | 11

Page 11 of 13 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



J. J. Bowyer, T. B. Borchardt, J. G. Stowell and S. R. Byrn, Journal of the
American Chemical Society, 2000, 122, 585–591.

12 C.-H. Gu and D. J. W. Grant, Journal of Pharmaceutical Sciences, 2001,
90, 1277–1287.

13 J. K. Guillory and D. M. Erb, Pharmaceutical Manufacturing, 1985, 2,
30–33.

14 M. A. Neumann, F. J. Leusen and J. Kendrick, Angewandte Chemie Inter-
national Edition, 2008, 47, 2427–2430.

15 A. Otero-de-la Roza and E. R. Johnson, The Journal of chemical physics,
2012, 137, 054103.

16 G. J. O. Beran and K. Nanda, The Journal of Physical Chemistry Letters,
2010, 1, 3480–3487.

17 A. Gavezzotti and G. Filippini, J. Am. Chem. Soc., 1995, 117, 12299–
12305.

18 B. P. van Eijck, Journal of Computational Chemistry, 2001, 22, 816–826.
19 J. van de Streek and S. Motherwell, Acta Crystallographica Section B,

2005, 61, 504–510.
20 J. van de Streek, Acta Crystallographica Section B, 2006, 62, 567–579.
21 Z. F. Weng, W. S. Motherwell and J. M. Cole, Journal of Applied Crys-

tallography, 2008, 41, 955–957.
22 A. J. Cruz-Cabeza and J. Bernstein, Chemical reviews, 2013, 114, 2170–

2191.
23 A. L. Spek, Journal of Applied Crystallography, 2003, 36, 7–13.
24 A. J. Stone and S. L. Price, The Journal of Physical Chemistry, 1988, 92,

3325–3335.
25 S. L. Price, M. Leslie, G. W. A. Welch, M. Habgood, L. S. Price, P. G.

Karamertzanis and G. M. Day, Phys. Chem. Chem. Phys., 2010, 12, 8478–
8490.

26 A. Stone and M. Alderton, Molecular Physics, 2002, 100, 221–233.
27 A. J. Stone, Distributed Multipole Analysis of Gaussian wavefunctions,

GMDA version 2.2.02.
28 H. P. Thompson, E. O. Pyzer-Knapp and G. M. Day, 2015, Manuscript in

preparation.
29 E. O. Pyzer-Knapp, Ph.D. thesis, University of Cambridge, 2014.
30 D. E. Williams, Journal of Computational Chemistry, 2001, 22, 1154–

1166.
31 A. Abraha and D. E. Williams, Inorganic Chemistry, 1999, 38, 4224–

4228.
32 G. M. Day and S. L. Price, Journal of the American Chemical Society,

2003, 125, 16434–16443.
33 A. Kazantsev, P. Karamertzanis, C. Pantelides and C. Adjiman, Crys-

talOptimizer: An Efficient Algorithm for Lattice Energy Minimization of
Organic Crystals Using Isolated-Molecule Quantum Mechanical Calcu-
lations, 2010.

34 A. V. Kazantsev, P. G. Karamertzanis, C. S. Adjiman and C. C. Pantelides,
Journal of Chemical Theory and Computation, 2011, 7, 1998–2016.

35 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters-
son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision
A.02, 2009, Gaussian Inc. Wallingford CT 2009.

36 B. Fultz, Progress in Materials Science, 2010, 55, 247–352.
37 M. Born and K. Huang, Dynamical theory of crystal lattices, Clarendon

Press Oxford, 1954, vol. 188.
38 S. Califano, Lattice dynamics and intermolecular forces, Academic Press,

1975, vol. 55.
39 N. Neto, R. Righini, S. Califano and S. Walmsley, Chemical Physics,

1978, 29, 167–179.
40 S. Califano, V. Schettino and N. Neto, Lattice dynamics of molecular crys-

tals, Springer-Verlag Berlin, 1981, vol. 26.
41 G. M. Day, S. L. Price and M. Leslie, The Journal of Physical Chemistry

B, 2003, 107, 10919–10933.
42 G. M. Day, Ph.D. thesis, University College London, 2003.
43 G. M. Day, J. A. Zeitler, W. Jones, T. Rades and P. F. Taday, The Journal

of Physical Chemistry B, 2006, 110, 447–456.
44 R. Li, J. A. Zeitler, D. Tomerini, E. P. J. Parrott, L. F. Gladden and G. M.

Day, Phys. Chem. Chem. Phys., 2010, 12, 5329–5340.
45 M. D. Eddleston, K. E. Hejczyk, E. G. Bithell, G. M. Day and W. Jones,

Chemistry - A European Journal, 2013, 19, 7874–7882.
46 M. D. Eddleston, K. E. Hejczyk, A. M. C. Cassidy, G. M. Day, H. P. G.

Thompson and W. Jones, Manuscript in preparation.
47 J. Nyman, In Silico Predictions of Porous Molecular Crystals and

Clathrates, 2014, M.Phil thesis, University of Southampton.
48 H. P. Thompson and G. M. Day, Chemical Science, 2014, 5, 3173–3182.
49 P. G. Karamertzanis, G. M. Day, G. W. A. Welch, J. Kendrick, F. J. J.

Leusen, M. A. Neumann and S. L. Price, The Journal of Chemical
Physics, 2008, 128, 244708.

50 B. P. van Eijck, Phys. Chem. Chem. Phys., 2002, 4, 4789–4794.
51 M. Habgood, R. Grau-Crespo and S. L. Price, Phys. Chem. Chem. Phys.,

2011, 13, 9590–9600.
52 A. J. Cruz-Cabeza, G. M. Day and W. Jones, Phys. Chem. Chem. Phys.,

2011, 13, 12808–12816.
53 B. Legendre and S. L. Randzio, International Journal of Pharmaceutics,

2007, 343, 41 – 47.
54 A. Katrusiak, Acta Crystallographica Section B, 2001, 57, 697–704.
55 J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz,

A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, W. T. M. Mooij, S. L.
Price, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer and D. E.
Williams, Acta Crystallographica Section B, 2000, 56, 697–714.
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