ChemComm

ChemComm

Unprecedented Copper-Mediated Oxidative Demethylation of Propionamides via Bidentate-Chelation Assistance

Journal:	ChemComm
Manuscript ID	CC-COM-10-2015-008393.R1
Article Type:	Communication
Date Submitted by the Author:	04-Nov-2015
Complete List of Authors:	Liu, Jing-Hui; University of Science and Technology of China, ; Cui, Mian; University of Science and Technology of China Lu, Xiao-Yu; University of Science & Technology of China, Department of Chemistry Zhang, Zhen-Qi; University of Science & Technology of China, Department of Chemistry Xiao, Bin; University of Science & Technology of China, Department of Chemistry Fu, Yao; University of Science & Technology of China, Department of Chemistry

SCHOLARONE[™] Manuscripts

COMMUNICATION

Unprecedented Copper-Mediated Oxidative Demethylation of Propionamides via Bidentate-Chelation Assistance

a) Intramolecular amidation

Received 00th January 20xx, Accepted 00th January 20xx

Jing-Hui Liu, Mian Cui, Xiao-Yu Lu, Zhen-Qi Zhang, Bin Xiao,* Yao Fu*

DOI: 10.1039/x0xx00000x

www.rsc.org/

A copper-mediated directed demethylation of propionamides has been developed. This reaction proceeds predominantly at the α -methyl groups of aliphatic amides with high efficiency and provides a unique tool for the direct cleavage of unactivated C(sp³)-C(sp³) bonds. The directing groups can be smoothly removed to afford corresponding alkyl carboxylic acids.

In the past several decades, transition-metal-mediated C-H functionalization has emerged as one of the most powerful and versatile strategy for the modification of functionalized molecules.¹ This strategy enables the direct variation of ubiquitous C-H bonds by avoiding the inevitable prefunctionalization steps in conventional cross-coupling reactions. Among them, copper-mediated C-H functionalization has received tremendous interest in recent years due to the abundance, hypotoxicity and versatile reactivity of copper catalysts.² Since the Yu group's pioneering work on copper-mediated C-H functionalization of 2arylpyridines,³ significant progress has been made for the construction of C-C, 4 C-N, 5 C-O, 6 C-X 7 and C-S 8 bonds via copper-mediated C(sp²)-H activation. By comparison, much less effort has been taken to the activation of $C(sp^3)$ -H bonds. Several successful transformations are limited to the functionalization of relatively activated C(sp³)-H bonds such as allylic and benzylic C-H bonds.⁹ For unactivated C(sp³)-H bonds, due to their inherent low reactivity and the lack of metalcoordination ability, it is even more challenging to develop reliable methods to achieve highly regioselective C-H functionalization with copper catalysts.¹⁰ In 2014, the group of Ge and Kanai independently reported the first coppercatalyzed intramolecular C(sp³)-H amidation reaction (Scheme 1a).¹¹ It was found that an external bidentate amidoquinoline directing group, which was first developed by Daugulis and

iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

E-mail: binxiao@ustc.edu.cn; fuyao@ustc.edu.cn

Scheme 1. Copper-mediated directed C(sp3)-H functionalization. Q = quinolin-8-yl

co-workers in Pd-catalyzed C(sp³)-H functionalization,¹² could facilitate the regioselective C(sp³)-H metalation-deprotonation process with copper catalyst. Subsequently, The copper-mediated 8-amidoquinoline directed acetoxylation, aryloxylation and vinyloxylation of unactivated C(sp³)-H bonds has also been discovered (Scheme 1b).^{11d-f} Very recently, Ge and co-workers demonstrated the copper-mediated dehydrogenative coupling of polyfuoroarenes and unactivated C(sp³)-H bonds with the 8-amidoquinoline-derivied bidentate auxiliary (Scheme 1c).^{11c}

Inspired by recent elegant work on copper-mediated unactivated $C(sp^3)$ -H functionalization, we report herein the first copper-mediated bidentate-ligand-directed demethylation of propionamides. This reaction provides an unprecedented $C(sp^3)$ - $C(sp^3)$ cleavage result with a mechanism of initial $C(sp^3)$ -H activation followed by oxidative decarboxylation. It exhibits the unique features of copper catalysts and expands the concept and scope of both copper-mediated $C(sp^3)$ -H bond functionalization and Cu-mediated aerobic oxidation reactions.¹³ Moreover, it affords a straightforward way to the modification of α -methyl carboxylic acid derivatives, which are common structural moieties in bioactive natural products and medicines.¹⁴

 $^{^{+}}$ Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx000 00x

Table 1. Copper-mediated demethylation under various conditions.^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), copper salt (0.1 mmol), base (0.3 mmol), additive (0.4 mmol) in 1 mL solvent at 150 °C for 16 h under O₂. Yields (average of two runs) were determined by GC with triphenylmethane as the internal standard. ^{*b*} Isolated yields. ^{*c*} The reaction was conducted with K₂CO₃ (0.2 mmol) and Na₂CO₃ (0.1 mmol). ^{*d*} Cu(OAc)₂ (0.2 mmol) was added. ^{*c*} 4A-MS (30 mg) was added. (BOC)₂O = Di-tert-butyl dicarbonate, TMSOAc = trimethylsilyl acetate.

Our study began with the functionalization of 1a, which was prepared from 2-ethyl-2-methylbutanoic acid and 8aminoquinoline (Table 1). Treatment of 1a with Cu(OAc)₂ (1 equiv) and Na₂CO₃ (3 equiv) under O₂ atmosphere in DMSO at 150 °C provided an unprecedented demethylated product 2a in 21% yield (entry 1). In order to increase the yield, We tested several silver salts as additives and AgOAc proved to be particularly effective with yield up to 41%(entry 2-4). Encouraged by this observation, we speculated that the additional carboxylic acid ion may facilitate the demethylation. Through further evaluation of various carboxylic acid sources, it was found that a similar yield of 38% can be obtained when TMSOAc was used instead of AgOAc (entry 5-6). The choice of base also appeared to be crucial. Whereas the use of carbonate salts could smoothly promote the demethylation, acetate and phosphate salts had no effects on the reactions (entry 7-10). After a brief screen of different bases, a combination of K₂CO₃ and Na₂CO₃ gave the best result (48% GC yield, entry 11). The yield could be further improved to 56% by adding 4A molecular sieves (entry 12). Compared with other polar aprotic solvents such as DMF and NMP, DMSO provided a superior outcome (entry 13-14). It may be ascribed to the metal-coordinating properties of DMSO,¹⁵ which can stabilize the copper catalyst and promote the aerobic oxidation. Higher the loading of Cu(OAc)₂ gave the optimal result (72% GC yield and 70% isolated yield, entry 15). Finally, in a control experiment without Cu(OAc)2, this reaction does not occur (entry 16).

Table 2. Substrate scope of copper-mediated demethylation^a.

^{*a*} Reaction conditions: Propionamide (0.1 mmol), Cu(OAc)₂ (0.2 mmol), K₂CO₃ (0.2 mmol), Na₂CO₃ (0.1 mmol), TMSOAc (0.4 mmol), 4A-MS (30 mg) in 1 mL DMSO at 150 °C for 16 h under O₂. Isolated yields.^{*b*} Yields were determined by ¹HNMR analysis with a ratio of **2u** : **2u**' = 1 : 0.7. Q = quinolin-8-yl, TMSOAc = trimethylsilyl acetate. MQ = 5-methoxyquinoline-8-yl.

With the optimized conditions in hand, we investigated the scope of the copper-mediated demethylation. As depicted in Table 2, a variety of linear aliphatic amides provided the corresponding demethylated products in moderate to good vields (2a-2e). It was found that this reaction occurred preferentially at the α -methyl groups with the ethyl and methylene groups unaffected (2a, 2e). This reaction also showed excellent regioselectivity to give only the monodemethylated products when more than one α -methyl group exists in the starting substrates (2b-2d). A variety of functional groups, including methyl (2f), methoxy (2g), fluoro (2h), trifluoromethyl (2i), chloro (2j), naphthyl (2k), terminal (21, 2n) and internal alkenyl (2m) groups, could be tolerated in the present reaction. It is worth noting that no demethylated cyclization products were detected in the reaction of 21-2n, indicating that a α -carbonyl radical intermediate was not involved in the copper-mediated demethylation.¹⁶ Cyclocarboxamides also reacted well (20-2q). Increasing the

This journal is © The Royal Society of Chemistry 20xx

Scheme 2. Mechanistic studies for copper-mediated demethylation.

steric hindrance at α -carbonyl position led to a decreased demethylation yield (**2s-2u**). When α -tertiary butyl substituted substrate was taken into this reaction, a mixture of demethylated product **2u** and intramolecular amidation product **2u'** was obtained with a ratio of 1 : 0.7. Additionally, the methylation also proceeded well with a 5-methoxyquinolyl directing group instead of the quinolyl group (**2r**).

Furthermore, the tertiary α -carbon moiety of starting substrates plays a crucial role in this reaction. Both amides **3** and **2u** failed to give the demethylated products. The reaction of α -phenyl substituted substrate **5** was also inefficient. Moreover, subjection of the cyclopropanecaroxamide **4** to the reaction resulted in no desired product. It may attributed to the wider CH₃-C-C(=O) bond angle of **4** compared with its cyclobutyl, cyclopentyl or cyclohexyl derivatives, which made the cyclometalation process less feasible.¹⁷

Although the detailed reaction mechanism is still not clear, a series of preliminary studies were conducted to get some insights into this copper-mediated oxidative demethylation (scheme 2). First, an acetoxylated aliphatic amide **6** was synthesized and employed in the standard reaction conditions. The copper-mediated demethylation proceeded smoothly to afford the desired product **2a** in 62% yield, suggesting that an acetoxylated intermediate generated by $C(sp^3)$ -H activation is possibly involved in the reaction process. Next, the reaction of substrate **7**, which has a distal substituted acetoxy group, provided a mixture of unreacted **7** (13% RSM), demethylated product **7a** (42% yield), and monoacetoxylated product **8** (16% yield).¹⁸ It also confirmed the participation of a copper-mediated $C(sp^3)$ -H acetoxylation process in this transformation.

Scheme 3. Plausible reaction mechanism.

COMMUNICATION

Scheme 4. Modification of Gemfibrozil and removal of the directing group.

The fact that the majority of distal acetoxy groups maintained to be untouched also indicated that the 8-amidoquinolinederived chelation assistance was present in both courses of $C(sp^3)$ -H acetoxylation and aerobic oxidation.¹⁹

Based on the above experiment results and previous reports,¹¹ a plausible reaction mechanism for the coppermediated oxidative demethylation is proposed (scheme 3). First, the complexation of **1a** with $Cu(OAc)_2$ through ligand exchange yielded the Cu(II)-species **A**. A base-promoted cyclocupration then occurred to generate the Cu(II)-alkyl species **B**, which was oxidized by $Cu(OAc)_2$ or TMSOAc/O₂ to give the Cu(III)-alkyl intermediate **C**. The reductive elimination of **C** gave rise to the acetoxylated product and the Cu(I)-species **D**, which was oxidized to the Cu(II)-species and hydrolyzed to produce intermediate **E**. Further oxidation of **E** led to the Cu(II)-carboxyl species **F**, which underwent the thermal decarboxylation and protonation to give the demethylated product **2a**.

To further explore the usefulness of this new reaction, the Gemfibrozil derivative **9** was synthesized and subjected to the standard reaction conditions. The copper-mediated demethylation proceeded smoothly to afford the desired product **10** in 52% yield. The 8-aminoquinoline group of **10** could be removed according to the report of Daugulis and coworkers^{7b} and the corresponding alkyl carboxylic acid **11** could be obtained in 68% yield (scheme 4).

In conclusion, we report the first Copper-mediated oxidative demethylation of propionamides with the assistance of a removable bidentate directing group. This novel transformation exhibits excellent regioselectivity for preferential cleavage of the $C(sp^3)$ - $C(sp^3)$ bonds at α -methyl positions and allows the efficient modification of substituted α-methyl amides. Preliminary mechanistic studies indicated that this reaction might proceed via a mechanism of initial C(sp³)-H acetoxylation followed by subsequent oxidative decarboxylation. Further exploration of the detailed reaction mechanism is currently in progress.

Financial support from the 973 Program (2012CB215306), NSFC(21325208,21172209,21361140372,21472181),IPDFHCPS T (2014FXCX006), CAS (KJCX2-EW-J02, YIPA-2015371), FANEDD (201424), FRFCU and PCSIRT.

Notes and references

 Recent reviews: (a) O. Daugulis, J. Roane and L. D. Tran, Acc. Chem. Res., 2015, 48, 1053-1064; (b) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788-802; (c)

COMMUNICATION

N. Kuhl, M. N. Hopkinson, J. Wencel-Delord and F. Glorius, *Angew. Chem. Int. Ed.*, 2012, **51**, 10236-10254; (d) T. Oshima, I. Yamanaka, A. Kumar, J. Yamaguchi, T. Nishiwaki-Ohkawa, K. Muto, R. Kawamura, T. Hirota, K. Yagita, S. Irle, S. A. Kay, T. Yoshimura and K. Itami, *Angew. Chem. Int. Ed.*, 2015, **54**, 7193-7197; (e) J. Schranck, A. Tlili and M. Beller, *Angew. Chem. Int. Ed.*, 2014, **53**, 9426-9428.

- Recent reviews on copper-mediated C-H activation: (a) O. Daugulis, H.-Q. Do and D. Shabashov, *Acc. Chem. Res.*, 2009, 42, 1074-1086; (b) K. Hirano and M. Miura, *Chem. Commun.*, 2012, 48, 10704-10714; (c) A. E. Wendlandt, A. M. Suess and S. S. Stahl, *Angew. Chem. Int. Ed.*, 2011, 50, 11062-11087.
- 3 X. Chen, X.-S. Hao, C. E. Goodhue and J.-Q. Yu, *J. Am. Chem.* Soc., 2006, **128**, 6790-6791.
- copper-mediated C(sp²)-H 4 Selected examples on activation/C-C bond formation: (a) H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 1128-1129; (b) H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2011, 133, 13577-13586; (c) H.-Q. Do, R. M. K. Khan and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 15185-15192; (d) M. Kitahara, N. Umeda, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2011, 133, 2160-2162; (e) M. Nishino, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2012, 51, 6993-6997; (f) M. Nishino, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2013, 52, 4457-4461; (g) R. Odani, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2014, 53, 10784-10788; (h) I. Popov, S. Lindeman and O. Daugulis, J. Am. Chem. Soc., 2011, 133, 9286-9289; (i) M. Shang, S.-Z. Sun, H.-L. Wang, B. N. Laforteza, H.-X. Dai and J.-Q. Yu, Angew. Chem. Int. Ed., 2014, 53, 10439-10442; (j) M. Shang, H.-L. Wang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc., 2014, 136, 11590-11593.
- 5 Selected examples on copper-mediated C(sp²)-H activation/C-N bond formation: (a) L. D. Tran, J. Roane and O. Daugulis, *Angew. Chem. Int. Ed.*, 2013, **52**, 6043-6046; (b) T. Kawano, K. Hirano, T. Satoh and M. Miura, *J. Am. Chem. Soc.*, 2010, **132**, 6900-6901; (c) M. Shang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, *J. Am. Chem. Soc.*, 2014, **136**, 3354-3357; (d) Q. Li, S.-Y. Zhang, G. He, Z. Ai, W. A. Nack and G. Chen, *Org. Lett.*, 2014, **16**, 1764-1767; (e) K. Takamatsu, K. Hirano, T. Satoh and M. Miura, *Org. Lett.*, 2014, **16**, 2892-2895.
- 6 Selected examples on copper-mediated C(sp²)-H activation/C-O bond formation: (a) S. Bhadra, W. I. Dzik and L. J. Gooßen, Angew. Chem. Int. Ed., 2013, 52, 2959-2962; (b) S. Bhadra, C. Matheis, D. Katayev and L. J. Gooßen, Angew. Chem. Int. Ed., 2013, 52, 9279-9283; (c) A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797-9804; (d) J. Roane and O. Daugulis, Org. Lett., 2013, 15, 5842-5845; (e) N. Takemura, Y. Kuninobu and M. Kanai, Org. Lett., 2013, 15, 844-847.
- 7 Selected examples on copper-mediated C(sp²)-H activation/C-X (X = halogen) bond formation: (a) A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797-9804; (b) T. Truong, K. Klimovica and O. Daugulis, J. Am. Chem. Soc., 2013, 135, 9342-9345. (c) B. Urones, A. M. Martinez, N. Rodriguez, R. G. Arrayas and J. C. Carretero, Chem. Commun., 2013, 49, 11044-11046. (d) B. Li, B. Liu and B.-F. Shi, Chem. Commun., 2015, 51, 5093-5096.
- 8 Selected examples on copper-mediated C(sp²)-H activation/C-S bond formation: (a) L. D. Tran, I. Popov and O. Daugulis, *J. Am. Chem. Soc.*, 2012, **134**, 18237-18240; (b) F.-J. Chen, G. Liao, X. Li, J. Wu and B.-F. Shi, *Org. Lett.*, 2014, **16**, 5644-5647; (c) W.-H. Rao and B.-F. Shi, *Org. Lett.*, 2015, **17**, 2784-2787.
- 9 Selected examples on copper-mediated activated C(sp³)-H functionalization: (a) Z. Li and C.-J. Li, J. Am. Chem. Soc., 2006, **128**, 56-57; (b) G. Zhang, Y. Zhao and H. Ge, Angew. Chem. Int. Ed., 2013, **52**, 2559-2563; (c) X. Wang, Y. Ye, S.

Zhang, J. Feng, Y. Xu, Y. Zhang and J. Wang, *J. Am. Chem. Soc.*, 2011, **133**, 16410-16413; (d) X. Wu, M. Wang, G. Zhang, Y. Zhao, J. Wang and H. Ge, *Chem. Sci.*, 2015, **6**, 5882-5890; (e) J. Xu, Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu, T.-J. Gong and L. Liu, *J. Am. Chem. Soc.*, 2011, **133**, 15300-15303.

- 10 It is worth noting that the unactivated C(sp³)-H bonds can be activated in some radical reactions. But high regioselectivity is obtained only with limited simple alkanes. It is also crucial to use excess alkyl substrates (even as solvent) to achieve synthetically useful yields. For selected examples, see: (a) R. T. Gephart, D. L. Huang, M. J. B. Aguila, G. Schmidt, A. Shahu and T. H. Warren, Angew. Chem. Int. Ed., 2012, 51, 6488-6492; (b) B. L. Tran, B. Li, M. Driess and J. F. Hartwig, J. Am. Chem. Soc., 2014, 136, 2555-2563; (c) P. K. Chikkade, Y. Kuninobu and M. Kanai, Chem. Sci., 2015, 6, 3195-3200; (d) B. L. Tran, M. Driess and J. F. Hartwig, J. Am. Chem. Soc., 2014, 136, 17292-17301.
- 11 Previous reports on copper-mediated directed unactivated C(sp³)-H bond functionalization: (a) Z. Wang, J. Ni, Y. Kuninobu and M. Kanai, *Angew. Chem. Int. Ed.*, 2014, **53**, 3496-3499; (b) X. Wu, Y. Zhao, G. Zhang and H. Ge, *Angew. Chem. Int. Ed.*, 2014, **53**, 3706-3710; (c) X. Wu, Y. Zhao and H. Ge, *Chem. Sci.*, 2015, **6**, 5978-5983; (d) X. Wu, Y. Zhao and H. Ge, *Chem. Asian J.*, 2014, **9**, 2736-2739; (e) Z. Wang, Y. Kuninobu and M. Kanai, *Org. Lett.*, 2014, **16**, 4790-4793; (f) J. Zhang, H. Chen, B. Wang, Z. Liu and Y. Zhang, *Org. Lett.*, 2015, **17**, 2768-2771.
- 12 (a) D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2010,
 132, 3965-3972; (b) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2005, 127, 13154-13155.
- 13 Recent reports on copper-mediated aerobic oxidation: (a) L. Zhang, X. Bi, X. Guan, X. Li, Q. Liu, B.-D. Barry and P. Liao, Angew. Chem. Int. Ed., 2013, 52, 11303-11307; (b) J. E. Steves and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 15742-15745; (c) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756-1766; (d) C. Tang and N. Jiao, Angew. Chem. Int. Ed., 2014, 53, 6528-6532; (e) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc., 2014, 136, 14858-14865.
- 14 (a) S. Schwarz, S. D. Lucas, S. Sommerwerk and R. Csuk, *Biorg. Med. Chem.*, 2014, **22**, 3370-3378; (b) Z. Lin, Y. Guo, Y. Gao, S. Wang, X. Wang, Z. Xie, H. Niu, W. Chang, L. Liu, H. Yuan and H. Lou, *J. Med. Chem.*, 2015, **58**, 3944-3956; (c) C. Spencer and L. Barradell, *Drugs.*, 1996, **51**, 982-1018.
- 15 (a) S. Monge, V. Darcos and D. M. Haddleton, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 6299-6308; (b) S. S. Stahl, Science., 2005, 309, 1824-1826.
- 16 (a) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, *J. Am. Chem. Soc.*, 2012, **134**, 8875-8884; (b) D. M. Smith, M. E. Pulling and J. R. Norton, *J. Am. Chem. Soc.*, 2007, **129**, 770-771; (c) D. Yang, S. Gu, Y.-L. Yan, N.-Y. Zhu and K.-K. Cheung, *J. Am. Chem. Soc.*, 2001, **123**, 8612-8613.
- 17 R. Shang, L. Ilies, A. Matsumoto and E. Nakamura, J. Am. Chem. Soc., 2013, **135**, 6030-6032.
- 18 When substrate **8** was subjected to the standard reaction condition, the demethylation product **7a** was obtained in 45% yield.
- 19 For early studies on directed aerobic oxidation with copper catalysts, see: (a) B. Schönecker, T. Zheldakova, Y. Liu, M. Kötteritzsch, W. Günther and H. Görls, *Angew. Chem. Int. Ed.*, 2003, **42**, 3240-3244; (b) Y. L. Tnay, C. Chen, Y. Y. Chua, L. Zhang and S. Chiba, *Org. Lett.*, 2012, **14**, 3550-3553.

This journal is © The Royal Society of Chemistry 20xx

^{4 |} J. Name., 2012, 00, 1-3