Dual Responsive Polymeric Nanoparticles Prepared by Direct Functionalization of Polylactic Acid-Based Polymers via Graft-From Ring Opening Metathesis Polymerization

<table>
<thead>
<tr>
<th>Journal</th>
<th>ChemComm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>CC-COM-09-2015-007882.R1</td>
</tr>
<tr>
<td>Article Type</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author</td>
<td>17-Oct-2015</td>
</tr>
<tr>
<td>Complete List of Authors</td>
<td>Veccharelli, Kate; UC San Diego, Chemistry & Biochemistry Tong, Venus; UC San Diego, Chemistry & Biochemistry Young, Jennifer; UC San Diego, Chemistry & Biochemistry Yang, Jerry; University of California, San Diego, Department of Chemistry and Biochemistry Gianneschi, Nathan; University of California, San Diego, Chemistry & Biochemistry</td>
</tr>
</tbody>
</table>
Dual Responsive Polymeric Nanoparticles Prepared by Direct Functionalization of Polylactic Acid-Based Polymers via Graft-From Ring Opening Metathesis Polymerization

Kate M. Veccharelli, Venus K. Tong, Jennifer L. Young, Jerry Yang and Nathan C. Gianneschi

Polylactic acid (PLA) has found widespread use in plastics and in biomedical applications due to its biodegradability into natural benign products. However, PLA-based materials remain limited in usefulness due to difficulty of incorporating functional groups into the polymer backbone. In this paper, we report a strategy for PLA functionalization that establishes the preparation of highly derivatized materials in which ring opening metathesis polymerization (ROMP) is employed as a graft-from polymerization technique utilizing a norbornene-modified handle incorporated into the PLA backbone. As a demonstration of this new synthetic methodology, a PLA-derived nanoparticle bearing imidazole units protected with a photolabile group was prepared. The morphology of this material could be controllably altered in response to exposure of UV light or acidic pH as a stimulus. We anticipate that this graft-from approach to derivatization of PLA could find broad use in the development of modified, biodegradable PLA-based materials.

Polymers with hydrolyzable backbones such as polylactic acid (PLA) have opened new avenues for research and development with their enhanced biodegradability and resulting low toxicity in vivo use. PLA has been utilized heavily as a biodegradable polymer in numerous in vivo applications ranging from surgical sutures, surgical implants and drug delivery systems. However, the utility of PLA is limited as the polymer backbone is difficult to chemically functionalize. As such, significant effort has been expended to increase functionalization of PLA polymers and to tune its mechanical properties.

Current strategies for functionalizing PLA typically involve copolymerization of D,L-lactide with functionalized lactides in the presence of a catalyst and an initiator to generate functionalized PLA copolymers via ring opening polymerization (ROP). While this technique has led to the development of a range of functionalized PLA polymers, it remains synthetically challenging to produce high molecular weight polymers with a large weight percentage of the added functionality. This is likely due to decreased rates of polymerization resulting from the steric bulk of functionalized lactides, leading to incomplete polymerization of the substituted monomer. Therefore, ring substitution has a major impact on the polymerizability of functionalized lactide monomers. To generate PLA polymers with a higher degree of functionality, post polymerization modification strategies via a graft-to approach have been demonstrated. For example, "Click" chemistry allows functionality to be incorporated into the polymer relatively easily since the backbone and the side chains can be prepared separately prior to coupling. However, efforts to increase graft densities are usually limited as a result of steric repulsion between the bulky side chains. Another way to prepare functionalized PLA materials is to utilize a graft-through polymerization method. In this scenario, a macromonomer is polymerized via polymerizable end groups to create a brush polymer. PLA polymers have been synthesized via this method by coupling the PLA polymer to a strained olefin and subsequently polymerizing the olefin, synthesizing bottle-brush PLA polymers. Utilizing this grafting-through technique is attractive for polymer synthesis because it does not entail orthogonal chemistries for grafting various side chains. However, this polymerization technique can be challenging due to the increased steric hindrance of the propagating polymer chain. As a result, polymerizations can be slow and not proceed to complete conversion.

An alternative technique utilizes a graft-from polymerization strategy to incorporate initiation groups into ROP monomers, such as cyclic esters and carbonates, prior to ROP. This novel technique has been demonstrated in the literature only a handful of times. In this method, polymer chains are grown from the polymer as a macromonomer containing ROMP-reactive norbornene handles were first prepared.

This journal is © The Royal Society of Chemistry 20xx
Chem. Commun., 2013, 00, 1-3 | 1
The norbornene units on this starting polymer were then used to prepare an initiator, which could be readily functionalized by reaction with substituted norbornene monomers. As a demonstration of the utility of this strategy, nanoparticles that change morphology in response to both pH and UV light were prepared.

Preparation of a norbornene-functionalized PLA backbone began with the synthesis of the bifunctional lactide 1, which was prepared in five steps from commercially available exo-5-norbornenecarboxylic acid in 14% overall yield (see supporting information for experimental details). Norbornene-substituted PLA polymers were then synthesized by copolymerizing lactide with 15 mol% of monomer 1, utilizing 0.7 mol% of stannous octoate as the catalyst and 4-tert-butylbenzyl alcohol as an initiator. The resulting polymers were then characterized by size exclusion chromatography coupled with multilangle light scattering (SEC-MALS) and 1H-NMR to determine the percent conversion of lactides to polymer, the number-average molecular weight (M_n), and the dispersity (D or M_w/M$_n$) of the copolymers. ROP of the lactides afforded a 98% conversion of monomers to norbornene functionalized polymer 2.

Fig. 1 Synthesis of functionalized PLA-based polymers utilizing a graft-from ROP strategy. A) ROP synthesis: 15 mol% of monomer 1 was copolymerized with lactide in the presence of Sn(Oct)$_2$, as the catalyst and 4-tert-butylbenzyl alcohol as the initiator B) ROP polymer synthesis: i) Polymer 2 was mixed with Ru initiator. ii) Polymer 2 with catalyst loaded was then mixed with norbornene monomers as shown. iii) Termination of polymerization using ethyl vinyl ether to generate final polymers 3 and 4.

The norbornene units on polymer 2 were then prepared as initiation sites by addition of polymer 2 dropwise to a pyridine-modified variant of Grubbs’ second generation catalyst, (Imes)$_2$[C$_5$H$_7$(N$_2$)$_2$(Cl)]RuCHPh. This catalyst was chosen due to its exceptional functional group tolerance and favorable rates of initiation and propagation to afford well-defined polymers with low dispersity. Polymer 2 was pre-loaded with 1.1 equivalents of Grubbs’ catalyst with respect to the norbornene units for 10 min. The polymer was precipitated with methanol and excess/unreacted catalyst washed away to avoid competing polymerization events not originating from the PLA polymer-bound initiation sites.

Following polymer resuspension in methylene chloride, phenyl-modified monomer 3 (5 equivalents with respect to norbornene units on the PLA backbone) was added to the catalyst-loaded polymer 2 and allowed to stir for 1 hour before quenching with ethyl vinyl ether, generating polymer 3.

This technique allowed for the generation of polymer 3 without generating any free ROMP polymer as verified by the presence of a monomodal distribution in the SEC-MALS chromatogram (Figure S2B). SEC-MALS also verified the success of the grafting technique by showing an increase in molecular weight of the PLA polymer 3 from $M_n = 32,000$ (D 1.4) to $M_n = 51,000$ (D 1.8) after the addition of the phenyl monomer (see Figure S2a,b). As a negative control, unfunctionalized PLA polymers were exposed to the same solution conditions and reagents including the Ru-initiator that were used for the preparation of polymer 3. This treatment yielded unfunctionalized PLA and no free homopolymer of monomer 3, based on 1H-NMR and SEC-MALS, demonstrating the reliability of the precipitation step to eliminate any free, unreacted initiator from solution (see SI and Figure S3 for more experimental detail). In order to demonstrate that no undesired cross linking of the PLA polymers were taking place, another control reaction was performed. Polymer 2 was resynthesized and this polymer was added to the Grubbs’ catalyst. The solution was let to stir for 1 hour and then a large excess of ethyl vinyl ether (30 equivalents with respect to norbornene backbone units) was added to the reaction to produce a cross metathesis product and to terminate the open olefin. Polymer 2 was analyzed by SEC-MALS before the reaction ($M_n = 44,000$ D 1.1) and after the reaction ($M_n = 46,000$ and D 1.1). The M_n did not increase a substantial amount, confirming no crosslinked product. (See figure S4 for more information).

Fig. 2 TEM images of nanoparticles comprised of (A) unfunctionalized PLA, (B) polymer 2, and (C) polymer 3 with phenyl functionality. Stained with 1% uranyl acetate. Scale bars = 200 nm. These nanospheres were prepared by the solvent evaporation method by dissolving each polymer in THF and adding DI water dropwise. The polymers formed nanospheres after concentrating the solutions in vacuo.

To demonstrate graft-from polymers could be prepared as higher molecular weight assemblies, the polymers were allowed to assemble by dissolution in THF followed by slow addition to water and concentration in vacuo to form polymeric nanoparticles. Transmission electron microscopy (TEM) was then used to verify the formation of these nanoscale assemblies. Samples for TEM were prepared on carbon TEM grids by drop deposition followed by staining with 1% uranyl acetate solutions. Comparison of these TEM images (Figure 2) and dynamic light scattering (DLS) data (Figure S5) of unfunctionalized PLA, polymer 2 and polymer 3, indicated that each material had very similar morphology, consisting of spherical nanoparticles with diameters of 100 - 200 nm.

To exhibit one potential application of this graft-from polymerization technique, graft polymers featuring a stimuli-responsive functional moiety were synthesized. In this example, a grafted PLA polymer was synthesized by incorporating a norbornene monomer functionalized with a 5-dimethoxy-2-nitrobenzyl caged imidazole moiety. This moiety was chosen due to its potential to change its physical properties in response to two separate stimuli; UV light (via cleavage of the 2-nitrobenzyl cage) and pH (by way of protonation of the imidazole unit). Moreover, imidazole, in particular, was of interest since its protonation (pK_a of the imidazolium ion is ~7) is within a biologically relevant range (pH 5.0-7.4) and would demonstrate the possibility of triggering a
morphology change in this material upon exposure to mild changes in pH environments.

The caged imidazole-containing norbornenyl monomer 4 readily polymerized, yet the resulting polymer 4 formed only amorphous aggregates rather than well-dispersed spherical particles. As such, this monomer was copolymerized with tetra(ethylene glycol) norborneone monomer 5 to increase the water solubility of the resulting polymer (4b, Figure 3). The polymers were characterized by 1H-NMR to determine the degree of polymerization (DP) (Figure S6). Note: a detailed characterization of the polymer’s molecular weight was not possible by SEC-MALS due to aggregation on the SEC column. Following nanoparticle formation by dialysis from DMSO into buffered water of polymer 4b, spherical nanoparticles of 100 nm diameter were formed at both pH 7.4 and 5.5 as evidenced by TEM (Figure 3) and DLS (Figure S7).

Deprotection of the nitrobenzyl caged-imidazole via treatment of the nanoparticles with 350 nm UV light for three minutes at either pH 5.5 or 7.4 resulted in a change in shape and diameter of the nanoparticles. At pH 5.5, we observed a change to micron-sized aggregates from discrete spherical structures as evidenced by TEM (Figure 3D) and DLS (Figure S7). We attribute this change in shape of polymer 4b to both removal of the bulky nitrobenzyl group and to protonation of the newly liberated imidazole moiety after exposure to UV light in an acidic environment. The disruption of the nanoparticle morphology of 4b after exposure to UV light is likely due to electrostatic repulsion of the positively charged imidazolium groups and also to removal of the potentially self-associating 2-nitrobenzyl moieties. Imidazole-containing nanoparticles generated by removal of the 2-nitrobenzyl group from polymer 4b in pH 7.4 buffered water (Figure 3A) could be made to form the same aggregated structures as shown in Figure 3D by decreasing the pH of the solution via slow addition of HCl to pH 5.5 (Figure 3B), indicating the necessity of both stimuli, a reduction in pH and the application of UV light, to facilitate the morphology change observed for polymer 4b (Figure S8). Likewise, note that alkyl imidazoles, such as 2-nitrobenzyl protected polymer 4b, should also be protonated at pH 5.5, however, this material does not aggregate until exposed to UV-light, indicating that a decrease in pH is not alone sufficient for the morphology change.

<table>
<thead>
<tr>
<th>Table 1 Physical parameters of the PLA polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer</td>
</tr>
<tr>
<td>PLA</td>
</tr>
<tr>
<td>Polymer 2</td>
</tr>
<tr>
<td>Polymer 3</td>
</tr>
<tr>
<td>Polymer 4</td>
</tr>
<tr>
<td>Polymer 4b</td>
</tr>
</tbody>
</table>

All data was obtained by SEC-MALS, except for those describing the imidazole containing polymers, which did not elute on the SEC-MALS column and were instead characterized by 1H-NMR. aNumber-average molecular weight from light scattering or 1H-NMR. bWeight average molecular weight from light scattering. cThe dispersity of each polymer. dExperimentally determined degree of polymerization of ROMP block via 1H-NMR. ePolymer 4b was polymerized to a degree of 10: DP of 5 for monomer 4 and DP of 5 for the PEG monomer to be able to be utilized for nanoparticle synthesis.

In summary, we have synthesized novel PLA-based materials via graft-from ROMP to install a high density of functionality from relatively low density branch points along the PLA backbone. As a proof-of-principle, we synthesized polynorbornyl grafts derivatized with a phenyl group along the PLA backbone and generated well-defined polymers and polymeric nanoparticles. We then synthesized 2-nitrobenzyl-protected imidazole graft variants to illustrate that chemical handles with increasing functionality can be incorporated into PLA via this method by capitalizing on the high functional group tolerance of the Grubbs’ second generation modified catalyst. Photoprotected imidazole PLA polymers were formulated into nanoparticles and demonstrated a morphology change only in the presence of both the UV trigger and reduced pH as dual stimuli. This work represents a significant step toward highly functionalizable PLA materials that are potentially useful for a wide range of biomedical or materials applications.

This work was partially supported by the NSF (CHE-0847530) and the AFOSR (FA9550-12-1-0435). We thank Dr. Matt Thompson for his technical assistance with polymer characterization. The authors also thank Dr. Angela Blum for her critical reading of the manuscript and helpful suggestions. We also acknowledge the UCSD Cryo-Electron Microscopy Facility and Norm Olsen for TEM training and assistance.
Notes and references