This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Solution and air stable host/guest architectures from a single layer covalent organic framework

D. Cui,† J. M. MacLeod,†,‡,⁎ M. Ebrahimi,† D. F. Perepichka⁎ and F. Rosei⁎,†,‡,*

We show that the surface-supported two-dimensional covalent organic framework (COF) known as COF-1 can act as a host architecture for C60 fullerene molecules, predictably trapping the molecules under a range of conditions. The fullerenes occupy the COF-1 lattice at the solution/solid interface, and in dried films of COF-1/fullerene network that can be synthesized through either drop-deposition of fullerene solution or by a dipstick-type synthesis in which the surface-supported COF-1 is briefly dipped into the fullerene solution.

COF platelets several layers thick can be produced by delaminating 3D COFs through sonication or mechanical exfoliation.19 The direct synthesis of single layer 2D COFs on a substrate addresses the advantage of defining the orientation of the COFs, which is necessary for most device applications,20 and allows for the use of tailored vapor-solid reactions to produce 2D COFs.21 The surface-confined synthesis of COFs has previously been carried out by self-condensation of 1,4-benzenediibronic acid (BDBA) under ultrahigh vacuum (UHV). Under these conditions, the rapid removal of the by-product water molecules precludes reversibility and leads to a relatively disordered network of poly(BDBA),22 a single layer of COF-1.1 When synthesized on-surface under ambient pressure and elevated humidity, defect correction within the COF lattice leads to improved structural order.23–25 As has been demonstrated in 3D COFs,26 the range of available BA derivatives allows to tune the structural properties of surface-synthesized COFs.28 On the other hand, extensive work has been carried out on surface-confined, single layer host/guest(H/G) architectures, where the host is a noncovalent porous molecular network stabilized by, e.g., hydrogen bonds,29–31 van der Waals interactions,32,33 or metal-organic coordination.34 The formation and characterization of these H/G networks has been performed under both UHV conditions33,35 and at the solution/solid interface.30,32,34 Compared with these noncovalent networks, the robustness of COFs presents an advantage for preparation of systems with covalent guest molecules, opening the door to a range of new functional host/guest materials.

Here, we report the synthesis of a single-layer H/G structure that uses highly-oriented pyrolytic graphite (HOPG)-supported COF-1 as the host template. This template stabilizes fullerene guests at the solution/solid interface; in turn, the solution/solid structure can be dried to produce an air-stable H/G architecture. The insertion of guest molecules can also be implemented using a “dipstick” method, wherein substrate-supported COF-1 is dipped into a solution of fullerene molecules and allowed to dry. These results indicate that single-layer COFs may be suitable for applications in molecular...
sensing or trapping as H/G architectures, and reveal a simple synthesis route that can be applied to the fabrication of 2D donor/acceptor networks. The COF-1 template was prepared on HOPG according to methods previously described in the literature (see Experimental Methods section in ESI).25, 28 Boroxine (B\textsubscript{3}O\textsubscript{4}) rings are formed through cyclocondensation of three BDBA monomers to produce an extended structure of COF-1, which consists of hexagonal cavities (See S.1 in ESI). STM measurements that simultaneously reveal the atomic lattice of HOPG and the COF-1 mesh indicate that COF-1 aligned with HOPG with a 6 × 6 epitaxial unit cell, as shown in figure 1. This corresponds to a lattice parameter of 1.476 nm, and suggests a slight compression with respect to x-ray diffraction measured periodicity of 1.54 nm for bulk COF-1 solid.1 In all experiments, the presence of COF-1 on the HOPG surface was confirmed using scanning tunneling microscopy (STM), which revealed the distinctive honeycomb lattice extending over domains tens of nanometers in size. A typical image of COF-1 is shown in Figure 3b.

After confirming the presence of COF-1 on the surface, a solution of C\textsubscript{60} fullerene in heptanoic acid was applied dropwise to the COF. Following the application of the fullerene solution, COF-1 was still evident in STM images, and stable adsorption of fullerenes was observed.

Using a dilute fullerene solution (2×10-5 M), a relatively low fullerene guest occupation density was obtained, allowing the position of the fullerene guest molecules to be discerned clearly, as shown in Figure 2a and b. Two different fullerene adsorption sites can be identified. In Figure 2a, COF-1 is discernible as a low-contrast hexagonal template, whereas bright protrusions indicate the positions of the fullerene molecules. In this image, the fullerene molecules do not lie within the pores of the host structure, as is typically observed for other systems.30, 35, 38 Instead, each fullerene molecule is adsorbed on top of a boroxine ring of the COF. We denote this site, shown schematically in Figure 2c, as a top site. A similar adsorption on the host framework was observed for C\textsubscript{60} adsorption on oligothiophene macrocycles, where a stable 1:1 donor-acceptor complex is formed between the C\textsubscript{60} and the electron rich oligothiophene macrocycle.34 Electrostatic forces are also significant in COF-1 as evident from the bulk 3D crystal structure of COF-1. The latter exhibits ABAB (staggered) packing of the 2D basal planes, which positions a benzene ring above each boroxine ring.1

The fullerene guests can also adsorb within the pores of the BDBA mesh. We denote this adsorption site as the pore site and assign it as slightly off-center within the BDBA pore (Figure 2d). In Figure 2b, the fullerene guests appear localized at the lower side of the COF-1 pores. Since this image was acquired by scanning in an upward direction, we interpret the asymmetric appearance of the guests as resulting from an off-centre adsorption (rather than, e.g., attractive tip-sample interaction, which we would expect to lead to bright contrast at the top of the pores.).1 The adsorption site appears to occupy the same position within the pore for all fullerene guests observed in Figure 2b. We previously observed similar domain-wide positioning of fullerene guests in hydrogen-bonded oligothiophene host networks, where we attributed the domain-wide organization to the electrostatic ordering resulting from a partial charge transfer to the fullerene.39
We did not observe neighbouring domains of top site adsorption and pore site adsorption within the same image, but did routinely observe domains of each adsorption geometry within the same local (2500 nm2) region of the same sample. Although we did not perform a systematic study, we anecdotaly observed a preference for top-site adsorption of fullerene (top-site adsorption is observed approximately ten times more frequently than pore-site adsorption). Adsorption of heptanoic acid within the pore, as has been postulated for other porous 2D nanostructures at the solution/solid interface, could affect the adsorption kinetics of pore-site fullerene, making top-site adsorption favourable. Our molecular mechanics calculations (see S.3 in ESI) suggest that pore-site fullerene adsorption is energetically preferred with respect to adsorption on the COF. Between the possible adsorption sites on the COF, adsorption over a boroxine ring is favoured with respect to adsorption over a phenyl ring. Gas-phase density functional theory calculations also indicate an energetic preference for fullerene adsorption over the boroxine compared to the benzene.

We were able to obtain and image dried films of the COF-1/fullerene H/G system by allowing the solvent to evaporate in ambient conditions (see Experimental Methods and S.4 in ESI). The dried H/G monolayer could also be conveniently obtained through dipstick method: following the preparation of COF-1 on HOPG, the HOPG substrate was dipped vertically into a suspension of fullerene in heptanoic acid with a nominal concentration of 10$^{-3}$ M. The substrate was held in the solution for less than five seconds, and was subsequently left to dry under ambient conditions for 12 hours (Figure 3). Images acquired after air drying (Figure 3c) revealed near complete occupancy of the COF-1 host by C$_{60}$ guest molecules. We conducted control experiments in which a HOPG substrate without COF-1 was dipped into a fullerene suspension of the same nominal concentration (10$^{-3}$ M) and allowed to dry. In this case, STM imaging did not reveal any molecular structures at the surface. Instead, only typical HOPG features were present, suggesting that the stabilization of the fullerene molecules on the HOPG is dependent on the formation of a COF-1/fullerene H/G structure.

We have shown that COF-1 can act as a robust host for C$_{60}$ fullerene guest molecules at the solution/solid interface and under ambient conditions, demonstrating the possibility for COF-based host/guest architectures at monolayer thickness. At both the solution/solid interface and in dried films, COF-1 presents a lattice with two distinct fullerene adsorption sites: a pore site, where the C$_{60}$ molecule is adsorbed on the underlying HOPG, and a top site, where the fullerene is adsorbed on the boroxine ring. Dried COF-1/fullerene films can be produced either through drop deposition or by dipping the HOPG-supported COF-1 into the fullerene solution. This predictable trapping of fullerene molecules using COF-1 represents a proof-of-principle example of the utility of 2D porous boronic acid based COFs for applications in sensing or trapping molecules where the COF is exposed to a solution containing the target molecule. Since boronic acid derivatives can form a wide variety of template architectures with different functionalizations, this approach has an inherent flexibility that could be exploited to produce surface-mounted sensors amenable to integration into device architectures.

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grants program, as well as the Fonds de Recherche du Québec-Nature et Technologies (FRQNT) through a Team Grant and the Ministère du Développement Économique, de l’Innovation et de l’Exportation (MDEIE) through an international collaboration grant. F.R. thanks the Alexander von Humboldt Foundation for an F.W. Bessel Award and acknowledges NSERC for an EWR Steacie Memorial Fellowship. Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia.

Notes and references
†Tip-sample interaction has been observed for this system, and, for example, enables the demonstration of a transfer of a C$_{60}$ molecule from one cavity of the host structure to an adjacent one (see S.4 in ESI).