ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

COMMUNICATION

Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth

Makhsud I. Saidaminov^a, Ahmed L. Abdelhady^{ab}, Giacomo Maculan^a, & Osman M. Bakr^{a*}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

We demonstrated the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and reported their solubility curves. We showed an inverse temperature crystallization for FAPbX₃ (FA=HC(NH₂)₂⁺, X=Br⁻/l⁻) based on retrograde solubility. FAPbl₃ crystals exhibited a 1.4 eV bandgap, which was narrower than that of their polycrystalline counterpart.

Pioneering works on utilizing hybrid perovskites in photovoltaics¹⁻³ drew the attention of many researchers to this promising class of semiconductors, which possess strong and tunable absorptions and emissions,⁴ as well as remarkable charge-carrier diffusion lengths.⁵ Combined with the facile and low-cost deposition methods,⁶⁻⁹ these properties thrust perovskites to the forefront of modern optoelectronic as solar cells,¹⁰⁻¹⁷ devices such semiconductor photodetectors,¹⁸⁻²⁰ light emitting diodes,²¹ lasers,²² X-ray detectors²³ and ambipolar phototransistors.²⁴ The optical properties of hybrid perovskites, such as MAPbX₃ and FAPbX₃ (where MA = $CH_3NH_3^+$, and FA = $HC(NH_2)_2^+$ and X = CI^- , Br^- , I^-), show an astonishing sensitivity to their compositions. For instance, in the widely investigated MAPbX₃, the substitution of Cl with Br or I results in narrowing of the bandgap from 3.11 to 2.35 or 1.6 eV, respectively.^{25,26} Although MAPbl₃ is thoroughly exploited as an active/absorber layer in solar cells, its bandgap is still significantly larger than the optimum for a single-junction solar cell (~1.34 eV).²⁷

A further narrowing of the perovskite bandgap was demonstrated through the replacement of the small MA (1.8

The overwhelming majority of perovskite devices are based upon polycrystalline thin films - a material that suffers immensely from a high density of traps and grain boundaries, which markedly limit the potential performance in devices. Recently, it was reported that hybrid perovskite single crystals display exceptionally low trap densities (~6 orders of magnitude less compared to their polycrystalline films).5,36 Therefore higher crystallinity is an extremely desired criterion for the further improvement of perovskite-based device performances. However, the synthesis of perovskite crystals through the classical cooling³⁷ or antisolvent vapor-assisted crystallization⁵ techniques is a time-consuming process that requires weeks to prepare high quality crystals. Recently, we reported a rapid inverse temperature crystallization (ITC) method for MAPbX₃.³⁶ This method takes advantage of the retrograde solubility regime - a peculiar regime in which the loss of solubility occurs in a specific solvent or solvents at elevated temperatures.^{36,38,39} However, the retrograde solubility of the highly desired FA-based perovskites has thus far not been reported. Retrograde solubility enables a facile and rapid route to grow crystals, and if established in FAPbX₃, could allow for a more extensive use of this emerging subclass of hybrid perovskites, not only with regards to fundamental aspects but also in the practical design of optoelectronic devices.

ChemComm Accepted Manuscript

Å) cation with a larger FA (1.9-2.2 Å) cation, forming FAPbX₃; in polycrystalline thin films, the bandgap was reduced from 1.6 eV to 1.48 eV,²⁸⁻³⁰ indicating a potentially higher power conversion efficiency (PCE) of FAPbl₃-based solar cells. For this reason, FAPbl₃ is actively replacing MAPbX₃ in the most efficient perovskite solar cells²⁸⁻³⁵, with PCE values reaching 20%.²¹

^a Division of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kinadom of Saudi Arabia

^bDepartment of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt

^{*} Corresponding author, email: <u>osman.bakr@kaust.edu.sa</u>

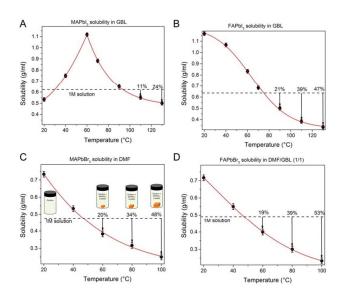
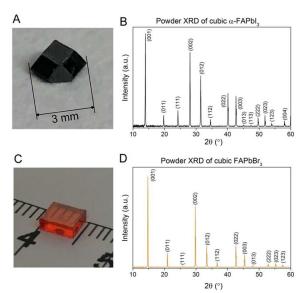



Fig. 1 Temperature-dependent solubility of (A) MAPbl₃ in GBL and
(B) FAPbl₃ in GBL., (C) MAPbBr₃ in DMF showing yield at different temperatures,
(D) FAPbBr₃ in DMF:GBL (1:1 v/v),

It is the norm that salts possess higher solubilities at elevated temperatures. Remarkably, we observed the formation of perovskite precipitates in specific solvents at elevated temperatures, which is an indication of retrograde solubility. Nevertheless, this abnormal retrograde solubility behavior was noted for few salts.⁴⁰ To confidently validate the retrograde solubility behavior of the hybrid perovskites, we tested their solubilities in various solvents at different temperatures and determined that y-butyrolactone (GBL) is generally a suitable solvent for I-based perovskites, whereas the more polar N,Ndimethylformamide (DMF) is the proper solvent for the Brbased ones. The effect of the temperature on the solubility of methylammonium and formamidinium lead halides is shown in Figure 1. The negative slopes of the curves clearly confirmed the retrograde solubility behavior of the perovskites in the mentioned solvents.

Importantly, individual precursors (PbX_2 or MAX) in the corresponding solvents did not show retrograde solubility behavior. These two observations – retrograde solubility being tied to the whole perovskite and retrograde solubility dependence on solvent – indicate that the energetics of precursor-solvent complexes is likely to be responsible for this phenomenon. These complexes disassociate at elevated temperature, commencing crystallization.

Figure 1a shows the temperature-dependent solubility of the most widely used hybrid perovskite – MAPbl₃ in GBL. Interestingly, the solubility of MAPbl₃ in GBL increased with a corresponding increase in the temperature from 20 °C to 60 °C; however, further heating resulted in the loss of solubility. The presence of both positive and negative slopes on the solubility curve indicates that there are two competing processes occurring in the solution during heating – the formation of complexes and their dissociation. At T<60 °C, the complexes dissociation dominates over their formation. Remarkably, the

Fig. 2 Picture of (A) FAPbl₃ crystal and its (B) powder XRD, picture of (C) FAPbBr₃ crystal and its (D) powder XRD.

solubility of MAPbl₃ decreased by more than a factor of two with heating from 60 °C to 130 °C. Recently retrograde solubility enabled us to design a facile and rapid route to grow high-quality bulk MAPbl₃ single crystals,³⁶ and establishing this phenomenon in FAPbl₃ will allow more extensive use of this emerging subclass of perovskite crystals.

Through the choice of suitable solvent, we found that a single GBL solvent can also be used to commence the retrograde solubility of FAPbl₃ (Figure 1b); its solubility drops by more than three times with heating from 20 °C to 130 °C. Further, we optimized the conditions to grow FAPbl₃ by ITC. Using 1 M solution of FAPbI₃ in GBL at 100 °C frequently resulted in formation of needle-like yellow crystals, which gradually transforms to black crystals with mosaic morphology and many cracks. Due to stability of black phase at elevated temperatures,³⁰⁻³² we reasoned that higher temperature of crystallization could result in directly forming of black crystals. Therefore we used 0.8 M solution to increase the onset of crystallization temperature to 115°C, and successfully grew crack- and grain boundary-free (Figure S1) black crystal in 3h (Figure 2a) (see ESI for details). Powder XRD of freshly prepared crystals perfectly matches with previously reported cubic phase α -FAPbl₃ (Figure 2b).⁴¹ As reported,³⁰⁻³² due to the instability of the black polymorph, it transformed to the yellow phase δ -FAPbl₃ (Figure S2) in air in 24 h and a humidity of 55-57%.

We didn't observe the retrograde solubility behavior of I-based perovskites in more polar solvent – DMF or DMSO. We speculate that the lead iodide complexes with DMF or DMSO⁴² seem to be stronger compared to the GBL, which do not decompose in solution at elevated temperatures without evaporation of solvents.

In contrast, retrograde solubility behavior of Br-based perovskites was observed only in DMF-based solvents (Figure 1 c,d). Figure 1c shows that the solubility of $MAPbBr_3$ in DMF

Journal Name

Journal Name

decreased significantly - almost by a factor of three, when it was heated from 20 °C to 100 °C. Previously, we used a single solvent (DMF) for the ITC of MAPbBr₃.³⁶ DMF can also be used as a sole solvent for FAPbBr₃ synthesis by ITC; however, despite it forms a highly saturated solution in DMF at room temperature (~3.12 M), it produces only small crystals at 120 °C. The solubility of FAPbBr₃ in DMF decreased only 1.7 times with heating from 20 °C to 100 °C (Figure S3). Therefore, to increase the yield of crystallization and to avoid overconsumption of the precursors, we reasoned that the dilution of the DMF polarity through mixing with the less polar GBL could increase the negative slope of the solubility curve. We found that the retrograde solubility behavior of FAPbBr₃ can be initiated in a 1:1 v/v of DMF:GBL, while the solubility decreased by more than three times through an increase in the temperature from 20 °C to 100 °C. For ITC of FAPbBr₃, we used 1 M solution in 1:1 v/v DMF:GBL with crystallization onset at 55 °C to grow crack-free crystals (see ESI for details). Powder X-ray diffraction (XRD) of the FAPbBr₃ ground crystals matched with the reported cubic phase of FAPbBr₃ (Figure 2c,d).43

The yield of the crystallization - the ratio of the mass of the crystals to the precursors - can be estimated from the solubility curves (Figure 1). These curves also demonstrated that there are several ways to increase the yield: (1) the initial use of a higher precursors concentrations (Figure S4 validates this concept); and (2) the utilization of a higher crystallization temperature (Figure S5). In classical cooling and antisolvent vapor-assisted crystallization techniques, non-equimolar precursors (for instance, the ratio of MAI:PbI₂ is 3:1 for the antisolvent technique)⁵ or the presence of foreign additives (for example hydro-iodide acid in the classical cooling technique)³⁷ renders the leftover solution unusable. In contrast, the overconsumption of solvents and precursors is minimized in the ITC method because the depleted solution can be repeatedly used for crystallization by dissolving more precursors, due to the utilization of equimolar amounts of the precursors and the reduced requirement of the solvents.

Given the emergence of FAPbX₃ as the perovskite of choice in solar cells, it is important to elucidate the optical bandgaps of their crystals, which have thus far not been reported. Having the macroscopic crystals, we studied the absorption of the FAPbX₃ crystals (Figure 3). Very intriguingly, we observed that α -FAPbI₃ crystals absorb light efficiently up to 900 nm, which is 80 nm broader than their polycrystalline counterpart (Figure S6). A Tauc plot shows that the bandgap of $\alpha\text{-FAPbI}_3$ is 1.4 eV; this value is 70 meV narrower than previous reports for this material.^{30,44} Analogously, the absorption edge of FAPbBr₃ was found to be located at 580 nm, corresponding to a bandgap of 2.13 eV, 130 meV narrower than that of the FAPbBr₃ polycrystalline thin film (Figure S6).⁴³ Narrowing of bandgap in MAPbX₃ single crystals compared to its polycrystalline films was also observed before, which was attributed to lower trap densities due to higher-dimensional structurally coherent units that are more tight in the single crystal compared to their polycrystalline counterparts.^{5,19,36} Hence, single crystals provide the ideal platform to extract the real bandgap. To the

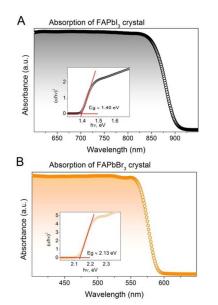


Fig. 3 Absorption spectrum of (A) FAPbI₃ and (B) FAPbBr₃ crystals. Insets: corresponding Tauc plots to extract the bandgaps.

best of our knowledge, this is the first demonstration of a 1.4 eV bandgap in α -FAPbI₃. Our findings indicate that devices based upon α -FAPbI₃ crystals may deliver higher efficiencies than their polycrystalline thin films owing to their broader absorption of solar spectrum.

In summary, we demonstrated the temperature-dependent solubility of hybrid organolead halide perovskites. We showed that the retrograde behavior and ITC is not limited to MAPbX₃ perovskites but could be generalized, by solvent selection, to FAPbX₃. Grown crystals of FAPbI₃ exhibited a 1.4 eV bandgap, which was significantly lower than that of their polycrystalline counterpart. These findings provide an additional impetus to improve the crystallinity of FAPbI₃ for further enhancements in solar cell efficiencies.

Acknowledgements

The authors acknowledge the support of Awards URF/1/2268-01-01, URF/1/1741-01-01, and URF/1/1373-01-01 made by King Abdullah University of Science and Technology (KAUST).

Notes and references

1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, **131**, 6050-6051.

2. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, *Nanoscale*, 2011, **3**, 4088-4093.

3. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, *Sci. rep.*, 2012, **2**, 591.

4. M. Zhang, H. Yu, M. Lyu, Q. Wang, J.-H. Yun and L. Wang, *Chem. Commun.*, 2014, **50**, 11727-11730.

5. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, *Science*, 2015, **347**, 519-522.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Journal Name

6. N. Yantara, D. Sabba, Y. Fang, J. M. Kadro, T. Moehl, P. P. Boix, S. G. Mhaisalkar, M. Gratzel and C. Gratzel, *Chem. Commun.*, 2015, **51**, 4603-4606.

7. G. Longo, L. Gil-Escrig, M. J. Degen, M. Sessolo and H. J. Bolink, *Chem. Commun.*, 2015, **51**, 7376-7378.

8. X. Cui, K. Jiang, J.-H. Huang, X. Zhou, M. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang and Y. Song, *Chem. Commun.*, 2014, **51**, 1457-1460.

9. B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C.

T. O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen and E. H. Sargent, *Adv. Mater.*, 2014, **27**, 53-58.

10. M. Ibrahim Dar, M. Abdi-Jalebi, N. Arora, T. Moehl, M. Gratzel and M. K. Nazeeruddin, *Adv. Mater.*, 2015, DOI: 10.1002/adma.201503124.

11. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang and A. D. Mohite, *Science*, 2015, **347**, 522-525.

12. C. Eames, J. M. Frost, P. R. Barnes, B. C. O'Regan, A. Walsh and M. S. Islam, *Nat. Commun.*, 2015, **6**, 7497.

13. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, *Nat. Mater.*, 2014, **13**, 897-903.

14. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643-647.

15. D. Liu, J. Yang and T. L. Kelly, J. Am. Chem. Soc., 2014, 136, 17116-17122.

16. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent, *Nat. Commun.*, 2015, **6**, 7081.

17. A. H. Ip, L. N. Quan, M. M. Adachi, J. J. McDowell, J. Xu, D. H. Kim and E. H. Sargent, *Appl. Phys. Lett.*, 2015, **106**, 143902.

18. B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos and E. H. Sargent, *ACS Photonics*, 2015, **2**, 1117-1123.

19. G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu and O. M. Bakr, *J. Phys. Chem. Lett.*, 2015, **6**, 3781-3786.

20. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland. E.H. Sargent and O.M. Bakr., *Nat. Commun.*, 2015, **6**, 8724.

21. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, *Nat. Nanotechnol.*, 2014, **9**, 687–692.

22. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin and X. Y. Zhu, *Nat. Mater.*, 2015, **14**, 636–642.

23. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. J. Matt, H. Azimi, C. J. Brabec, J. Stangl, M. V. Kovalenko and W. Heiss, *Nat. Photon*, 2015, **9**, 444–449.

24. F. Li, Ch. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, T. Wu. *Nat. Commun.*, 2015, **6**, 8238.

25. T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar and T. J. White, *J. Mater. Chem. A*, 2015, **3**, 9298-9307.

26. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, *Nature*, 2013, **499**, 316-319.

27. W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, **32**, 510-519.

28. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, *Science*, 2015, **348**, 1234-1237.

29. J.-W. Lee, D.-J. Seol, A.-N. Cho and N.-G. Park, *Adv. Mater.*, 2014, **26**, 4991-4998.

30. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, *Nature*, 2015, **517**, 476-480.

31. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Gratzel, *Angew. Chem.*, 2014, **53**, 3151-3157.

32. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, *Energ. Environ. Sc.*, 2014, **7**, 982-988.

33. S. Wozny, M. Yang, A. M. Nardes, C. C. Mercado, S. Ferrere, M. O. Reese, W. Zhou and K. Zhu, *Chemistry of Materials*, 2015, DOI: 10.1021/acs.chemmater.5b01691.

34. S. Aharon, A. Dymshits, A. Rotem and L. Etgar, *J. Mater. Chem. A*, 2015, **3**, 9171-9178.

35. M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu and H. Han, *J. Mater. Chem. A*, 2014, **2**, 17115-17121.

36. M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed and O. M. Bakr, *Nat. Commun.*, 2015, **6**, 7586.

37. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia and X. Tao, *CrystEngComm.*, 2015, **17**, 665-670.

38. T. Zhang, M. Yang, E. E. Benson, Z. Li, J. van de Lagemaat, J. M. Luther, Y. Yan, K. Zhu and Y. Zhao, *Chem. Commun.*, 2015, **51**, 7820-7823.

39. J. M. Kadro, K. Nonomura, D. Gachet, M. Grätzel and A. Hagfeldt, *Sci. Rep.*, 2015, **5**, 11654.

40. O. Söhnel and P. Novotný, Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam, 1985.

41. M. T. Weller, O. J. Weber, J. M. Frost and A. Walsh, J. Phys. Chem. Let. 2015, 6, 3209-3212.

42. J. S. Manser, B. Reid and P. V. Kamat, J. Phys. Chem. C, 2015, 119, 17065-17073.

43. F. C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher, C. Fraunhofer, N. Giesbrecht, J. M. Feckl, W. Jaegermann, D. Johrendt, T. Bein and P. Docampo, *J. Phys. Chem. Lett.*, 2014, **5**, 2791-2795.

44. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie, *J. Phys. Chem. C*, 2014, **118**, 16458-16462.