ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Journal Name

COMMUNICATION

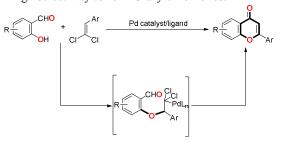
Pd(OAc)₂/S=PPh₃ Accelerated Activation of *gem*-Dichloroalkenes for the Construction of 3-Arylchromones

Jianming Liu,^{a,*} Weiwei Song,^a Yuanyuan Yue,^a Ren Liu,^a Hong Yi,^b Kelei Zhuo,^a Aiwen Lei^{b,*}

Received ooth January 2014, Accepted ooth January 2014

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x


www.rsc.org/

The Pd-catalyzed regioselectively intramolecular nucleophilic substitution of *gem*-dichloroalkenes derivatives with salicylaldehydes leading to synthesis of 3-arylchromones has been developed. $Pd(OAc)_2/S=PPh_3$ could activate the *gem*-dichloroalkenes and undergo the nucleophilic substitution by salicylaldehydes with the aid of base.

gem-Dichloroalkenes have been emerged as a powerful and versatile building block to construct the various heterocycles and carbocycles,¹ owing to high regioselectivity and easy accessibility from simple materials. Up to now, the tandem intramolecular C-N process of *gem*-dichloroalkenes has been employed to the formation of indoles and thienopyrroles by palladium catalysts.² However, the tandem intramolecular nucleophilic substitutions of *gem*-dichloroalkenes to construct the heterocycles are relatively less demonstrated owing to seeking the appropriate reagent to activate the *gem*-dichloroalkenes. Herein, the cascade reaction of *gem*-dichloroalkenes to produce the six-membered-ring oxygen heterocycles is an almost untouched area. Therefore, further research in this area is still challenged.

Flavones are an intriguing group of six-membered-ring oxygen heterocycles and have been examined to possess remarkable anti-inflammatory, antioxidant and anticarcinogenic properties,^{3, 4} which have led to the continual discovery and synthesis of flavones. Recently, 3-arylchromones have been of particular interest, owing to some privileged molecules and their unique biological activities.⁵ Over the last two decades, construction of flavones has been mainly based on the follow strategies: cyclization of l-(2-X-phenyl)-3-phenyl-1,3-propanediones (X = OH, OR, Br, Cl) or 2'-hydroxychalcones,^{6,7} Pd-catalyzed oxidative arylation of

phenvlboronic acids.8 chromones with Pd-catalvzed carbonylative cyclization using CO gas as carbonyl resource.9 In spite of the impressive progress made in the preparation of flavones and their derivatives,¹⁰ more general and substrate easily available routes would be still highly desirable. Salicylaldehydes and gem-dichloroalkenes were widely existed in the organic reagents as the available starting materials. We envisioned that $Pd(OAc)_2$ / triphenylphosphine sulfide (S=PPh₃) could promote the activation of gem-dichloroalkenes to undergo the followed nucleophilic substitution. After the direct β-hydride elimination and hydride re-insertion, gemdichloroalkenes would be significant to construct the C-O bond and C=O bond to form the desired chromones (Scheme 1). In this communication, with $Pd(OAc)_2/S=PPh_3$ as the catalyst, gem-dichloroalkenes and salicylaldehydes could be performed well in high selectivity to form 3-arylchromones.

Scheme 1. Synthesis of 3-arylchromones from salicylaldehydes and gemdichloroalkenes

We began our investigation with the reaction of salicylaldehyde **1a** in the presence of $Pd(OAc)_2/S=PPh_3$, K_2HPO_4 and benzyltriethylammonium chloride (TEBAC) under N₂ atmosphere at 110 °C in NMP for 24 h. Gratifyingly,

RSCPublishing

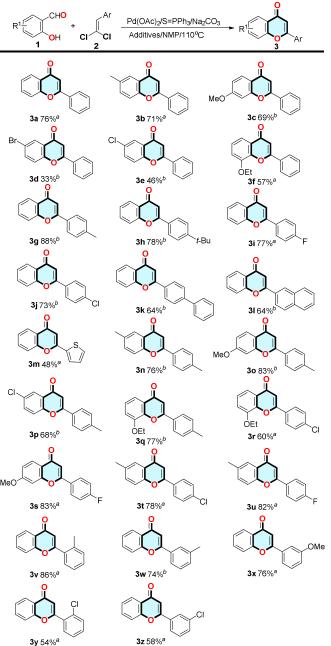
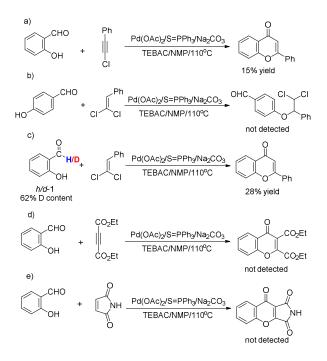

the desired 3-phenylchromones 3a was obtained in 54% yield (Table 1, entry 1). After examining several bases, Na₂CO₃ was found to be the most efficient for this reaction (Table 1, entries 2-4). Based on initial speculation that the solvents would affect the reaction selectivity, a series of solvents were examined (Table 1, entries 4-8). Use of DMSO and toluene led to no reaction or only a trace amount of the desired product. Interestingly, with diglyme, NMP and DMF, the reaction showed excellent activity to afford the desired product in good yields. During optimization studies, TEBAC and TBAF were applied to the tandem reaction with both of them displaying the same levels of positive effect on the product yield (Table 1, entries 4 and 10). While TBAB was carried out, no positive result was obtained (Table 1, entry 9). Then we examined the effect of the ligand, the results indicated that S=PPh₃ and O=PPh₃ were effectively promoted in the activation of gemdichloroalkenes (Table 1, entries 10 and 12). In above process, S=PPh₃ was not a strong σ -donor for Pd(II), the formation of intermediate and subsequent catalytic reactions on Pd(II) were not likely to be blocked.11 Meanwhile, the desired product was not obtained under the condition without ligands, additives and Pd catalyst added (Table 1, entries 11, 13, 14, and 15). Notably, no desired product was observed in the presence of air because (2, 2-dichlorovinyl)benzene was converted completely into 1, 4-diphenylbuta-1, 3-diyne (Table 1, entry 16).

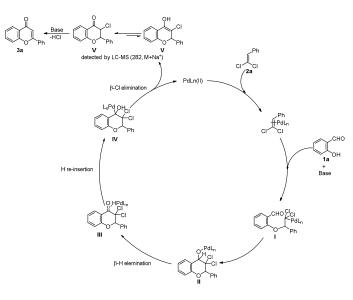
Table 1 Optimization of the reaction conditions.^a

$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \end{array} \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} Ph \\ & Pd(OAc)_{2}/Ligand/Base \\ & \\ & Additives/Solvent \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \\ & \end{array} \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ & \begin{array}{c} & \\ & \end{array} \xrightarrow{Ph} \\ \xrightarrow{Ph} \\ \xrightarrow{Ph} \\ & \end{array} \xrightarrow{Ph} \\ \xrightarrow{Ph}$					
Entry	Additives	Ligand	Base	Solvent	Yield $(\%)^b$
1	TEBAC	S=PPh ₃	K_2HPO_4	NMP	54
2	TEBAC	S=PPh ₃	K_2CO_3	NMP	26
3	TEBAC	S=PPh ₃	NaOAc	NMP	20
4	TEBAC	S=PPh ₃	Na ₂ CO ₃	NMP	76
5	TEBAC	S=PPh ₃	Na ₂ CO ₃	DMSO	trace
6	TEBAC	S=PPh ₃	Na ₂ CO ₃	DMF	70
7	TEBAC	S=PPh ₃	Na ₂ CO ₃	Diglyme	69
8	TEBAC	S=PPh ₃	Na ₂ CO ₃	Toluene	trace
9	TBAB	S=PPh ₃	Na ₂ CO ₃	NMP	trace
10	TBAF	S=PPh ₃	Na ₂ CO ₃	NMP	74
11		S=PPh ₃	Na ₂ CO ₃	NMP	N.D.
12	TEBAC	O=PPh ₃	Na ₂ CO ₃	NMP	67
13	TEBAC		Na ₂ CO ₃	NMP	N.D.
14	TEBAC	PPh ₃	Na ₂ CO ₃	NMP	trace
15 ^c	TEBAC	S=PPh ₃	Na ₂ CO ₃	NMP	N. D.
<u>16^d</u>	TEBAC	S=PPh ₃	Na_2CO_3	NMP	N. D.

^aReaction conditions: **1a** (0.50 mmol), **2a** (1.0 mmol), Pd(OAc)₂ (5 mol%), ligand (10 mol%), additives (1.0 mmol), base (1.5 mmol), solvent (2.0 mL), 110 °C, N₂, 24 h. ^bIsolated yield. ^cPd(OAc)₂ was not added. ^dIn air.


To gain insight into the tolerance of this reaction, we had investigated the reaction scope with various salicylaldehydes and (2, 2-dichlorovinyl)benzene under the optimized conditions (Scheme 2). The coupling reaction of salicylaldehydes bearing electron-withdrawing groups and electron-donating groups proceeded smoothly to provide the corresponding 3arylchromones in good to excellent yields (Scheme 2, **3a-3f**). Page 2 of 4

Scheme 2. Scope of the cyclization of salicylaldehydes and *gem*dichloroalkenes. "Reaction conditions: **1** (0.50 mmol), **2** (1.0 mmol), Pd(OAc)₂ (5 mol%), S=PPh₃ (10 mol%), TEBAC (1.0 mmol), Na₂CO₃ (1.5 mmol), NMP (2.0 mL), 110 °C, N₂, 24 h, isolated yield. ^bTBAF (1.0 mmol) was used.


These results indicated that the present reaction showed good functional-group tolerance of salicylaldehydes. Furthermore, various *gem*-dichloroalkenes on the phenyl ring (methyl, tertiary butyl, chloro, fluoro, phenyl and naphthyl substituents) underwent the cyclization to generate the desired product from 64% to 88% yield (Scheme 2, **3g-3l**). To our delight, thiophene substituted gem-dichloroalkenes was similarly found to be the suitable substrate for this transformation and afforded the desired

product in moderate yield (Scheme 2, **3m**). Inspired by these results, salicylaldehydes with methyl, methoxyl, ethoxyl, and chlorine substituents were well coupled with substituents *gem*-dichloroalkenes to provide the corresponding chromones in good to excellent yields (Scheme 2, **3n-3u**). It was found that there was no significant difference in reactivity between different substituents *gem*-dichloroalkenes and salicylaldehydes. Finally, the aromatic *ortho* and *meta*-substitution of dichlorostyrenes were explored to afford the desired product in 54%-86% yield (Scheme 2, **3v-3z**). In all, this reaction provided a practical application for the construction of 3-arylchromones by the easily available starting materials.

suggesting that the process of Diels-Alder could not be involved in the reaction (Scheme **3d** and **3e**).

A proposed mechanism for the Pd(OAc)₂/S=PPh₃ catalyzed annulation of gem-dichloroalkene with salicylaldehyde is described in Scheme 4. Based on previous reports and gem-dichloroalkene activated experiences,¹² by $Pd(OAc)_2/S=PPh_3$ underwent nucleophilic addition of salicylaldehyde to generate intermediate I. Subsequently, intermediate II was obtained by the insertion of the aldehyde group. The direct β -hydride elimination occured at intermediate II to afford intermediate III. The hydride re-insertion of intermediate III released intermediate IV. Intermediate V obtained from the β -chloride elimination of intermediate IV. Finally, the chloride elimination of intermediate V produced the desired product 3a.

Scheme 3. Preliminary mechanistic study.

Some control experiments were conducted to gain some insight into the reaction mechanism. Firstly, the reaction of salicylaldehyde with (chloroethynyl)benzene produced 2-phenyl-4H-chromen-4-one in 15% yield (Scheme 3a). This result indicated that (2, 2-dichlorovinyl)benzene would not fully convert to (chloroethynyl)benzene to participate the cascade reaction. Furthermore, when 4-hydroxybenzaldehyde reacted with 1a, no desired product was obtained and most of gemdichloroalkene was transformed to the 1, 4-diphenylbuta-1, 3divne. It was clearly shown that the aldehyde group was not only coupled with gem-dichloroalkene, but also possessed the directing role (Scheme 3b). When 62% D content of salicylaldehyde was applied to couple with (2, 2dichlorovinyl)benzene, non-deuterium distribution was observed in the final product (Scheme 3c). It was demonstrated that the hydrogen atom from the aldehyde and hydroxy of salicylaldehyde was eliminated in the reaction. Finally, the exposure of diethyl but-2-ynedioate and 1H-pyrrole-2, 5-dione to the standard reaction conditions failed to deliver any positive result, thus

Scheme 4. Proposed catalytic cycles for the construction of chromone.

In conclusion, we have developed an efficient route to construct the 3-arylchromones by palladium catalyzed cascade reaction between salicylaldehydes and *gem*-dichloroalkenes. In this process, $Pd(OAc)_2/S=PPh_3$ plays a decisive role to accelerate the activation of *gem*-dichloroalkene to couple well with salicylaldehydes. This approach enables the application of a cascade reaction to synthesis the highly functionalized chromones from available starting materials. It would be believed that these results may inspire much future effort towards the development of $Pd(OAc)_2/S=PPh_3$ activated dichloroalkenes to construct the heterocycle compounds.

Acknowledgements

We are grateful for financial support from National Natural Science Foundation of China (21573057, 21205029), Ph.D. Programs Foundation of Ministry of Education of China (No. 20114104120003, 20124104120004), project funded by China Postdoctoral Science Foundation (2014M552005 and 2015T80770).

Notes and references

^aCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China. Email: jmliu@htu.cn.

^bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China. Email: aiwenlei@whu.edu.cn.

Electronic Supplementary Information (ESI) available: See DOI:10.1039/c000000x/

1. (a) W. Q. Wu and H. F. Jiang, Acc. Chem. Res., 2014, 47, 2483; (b) G. Chelucci, Chem. Rev., 2012, 112, 1344; (c) W. S. Zhang, W. Li and C. X. Kuang, Prog. Chem., 2013, 25, 1149.

2. (a) Y.-Q. Fang, J. Yuen and M. Lautens, J. Org. Chem., 2007, 72, 5152; (b) Y.-Q. Fang and M. Lautens, Org. Lett., 2005, 7, 3549; (c) H. Yan, L. H. Lu, P. Sun, Y. Zhu, H. L. Yang, D. F. Liu, G. W. Rong and J. C. Mao, RSC Adv., 2013, 3, 377; (d) L. Ackermann, C. Kornhaass and Y. J. Zhu, Org. Lett., 2012, 14, 1824.

3. (a) R. S.Thompson, D. Jacques, E. Haslam and R. J. N. Tanner, J. Chem. Soc., Perkin Trans. 1, 1972, 1387; (b) A. C. Fletcher, L. J. Porter, E. Haslam and R. K. Gupta, J. Chem. Soc., Perkin Trans. 1, 1977, 1628; (c) R. B. Gamill, C. E. Day and P. E. Schurr, J. Med. Chem., 1983, 26, 1672. (d) T. G. Fourie and F. O. Suyckers, J. Nat. Prod., 1984, 47, 1057; (e) A. Yamashita, J. Am. Chem. Soc., 1985, 107, 5823; (f) M. Gabor, Prog. Clin. Bio. Res., 1986, 213, 471.

4. (a) H. Kolodziej, Phytochemistry, 1986, 25, 1209; (b) W. H. Gerwick, A. Lopez, G. D. Van Duyne, J. Clardy, W. Ortiz and A. Baez, Tetrahedron Lett., 1986, 27, 1979; (c) L. A. Chrisey, G. H. S. Bonjar and S. M. Hecht, J. Am. Chem. Soc., 1988, 110, 644; (d) W. H. Gerwick, J. Nat. Prod., 1989, 52, 252; (e) M. R. Fesen, Y. Pommier, F. Leteurtre, S. Hiroguchi, J. Yung and K. W. Kohn, Biochem. Pharmacol., 1994, 48, 595; (f) T. Akama, K. Ueno, H. Saito and M. Kasai, Synthesis, 1997, 1446.

5. (a) A. Gaspar, M. J. Matos, J. Garrido, E. Uriarte and F. Borges, Chem. Rev., 2014, 114, 4960; (b) J. Ferté, J. Kühnel, G. Chapuis, Y. Rolland, G. Lewin and M. Schwaller, J. Med. Chem., 1999, 42, 478. (c) E. Jr. Middleton, C. Kandaswami and T. C. Theoharides, Pharmacol. Rev., 2000, 52, 673. (d) D. Patel, S. Shukla and S. Gupta, Int. J. Oncol., 2007, 30, 233. (e) Y. Fujita, M. Yonehara, M. Tetsuhashi, T. Noguchi-Yachide, Y. Hashimoto, and M. Ishikawa, Bioorg. Med. Chem., 2010, 18, 1194.

6. (a) D. Nagarathnam and M. Cushman, Tetrahedron, 1991, 47, 5071. (b) J. J. Ares, P. E. Outt, S. V. Kakodkar, R. C. Buss and J. C. Geiger, J. Org. Chem., 1993, 58, 7903. (c) F. Bois, C. Beney, A.-M. Mariotte, and A. Boumendjel, Synlett, 1999, 1480. (d) G. W. Kabalka and A. R. Mereddy, Tetrahedron Lett., 2005, 46, 6315. (e) J. Zhao, Y. F. Zhao and F. Hua, Angew. Chem. Int. Ed., 2011, 50, 3769. (f) J. Zhao, Y. F. Zhao and F. Hua, Org. Lett., 2012, 14, 2710.

7. (a) N. Ahmed, H. Ali and J. E. van Lier, Tetrahedron Lett., 2005, 46, 253. (b) K. H. Kumar and P. T. Perumal, Tetrahedron, 2007, 63, 9531. (c) Z. Y. Du, H. F. Ng, K. Zhang, H. Q. Zeng and J. Wang, Org. Biomol. Chem., 2011, 9, 6930.

8. (a) M. Khoobi, M. Alipour, S. Zarei, F. Jafarpour and A. Shafiee, Chem. Commun., 2012, 48, 2985. (b) K. H. Kim, H. S. Lee, S. H. Kim, and J. N. Kim, Tetrahedron Lett., 2012, 53, 2761.

9. (a) L. Q. Xue, L. J. Shi, Y. Han, C. G. Xia, H. Huynh and F. W. Li, Dalton Trans., 2011, 40, 7632. (b) Q. Yang and H. Alper, J. Org. Chem., 2010, 75, 948. (c) E. Awuah and A. Capretta, Org. Lett., 2009, 11, 3210. (d) B. Liang, M. Huang, Z. You, Z. Xiong, K. Lu, R. Fathi, J. Chen, and Z. Yang, J. Org. Chem., 2005, 70, 6097. (e) H. Miao, and Z. Yang, Org. Lett., 2000, 2, 1765. (f) J. M. Liu, M. W. Liu, Y. Y. Yue, N. F. Zhang, Y. Y. Zhang and K. L. Zhuo, Tetrahedron Lett., 2013, 54, 1802; (f) X. -F. Wu, H. Neumann and M. Beller, Chem. Eur. J., 2012, 18, 12595.

10 (a) Y. Moon, D. Kwon and S. Hong, Angew. Chem. Int. Ed., 2012, 51, 11333; (b) Z. Z. Shi, N. Schröer and F. Glorius, Angew. Chem. Int. Ed., 2012, 51, 8092; (c) G. Maiti, R. Karmakar, R. N. Bhattacharya and U. Kayal, Tetrahedron Lett., 2011, 52, 5610; (d) K. H. Kim, H. S. Lee, S. H. Kim and J. N. Kim. Tetrahedron Lett., 2012, 53, 2761.

11. S.-i. Aizawa, A. Majumder, Y. Yokoyama, M. Tamai, D. Maeda, and

A. Kitamura, *Organometallics*, 2009, 28, 6067.
12. (a) C. Liu, S. Tang, L. W. Zheng, D. Liu, H. Zhang and A. W. Lei, Angew. Chem. Int. Ed., 2012, 51, 5662; (b) Z. Wang, Z. G. Zhang, X. Y. Lu, Organometallics, 2000, 19, 775.

Page 4 of 4