ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations

Yan He, Xinying Zhang*, and Xuesen Fan*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel synthesis of diversely substituted 2-(furan-3-yl) acetates via palladium-catalyzed one-pot multi-component reactions of allenols, aryl iodides, alcohols, and carbon monoxide has been developed. Notably, the formation of the 10 title compounds features a cascade process combining carbonylation of aryl iodide, alcohoxyl carbonylation of the in situ formed allyl palladium complex, and intramolecular condensation of the α -hydroxyl enone intermediate. Moreover, the 2-(furan-3-yl)acetates obtained herein were found to be 15 ready intermediates for the construction of the biologically

significant naphtho[1,2-*b*]furan-5-ol scaffold.

Furan derivatives have attracted tremendous attention due to their wide presence in numerous natural products, pharmaceuticals,

- ²⁰ and functional materials.¹ Moreover, furan and its analogs have also been routinely utilized as building blocks in synthetic chemistry.² Owing to their importance, a number of strategies for the preparation of furan derivatives have been developed.³⁻⁹ While these literature methods are generally efficient and reliable,
- ²⁵ there is still an urgent demand to develop more general and practical methods that can produce functionalized furans through simplified procedures and from easily obtainable or commercially available starting materials.
- Meanwhile, efficient construction of the library of compounds ³⁰ with biological and synthetic interests has relied heavily on multicomponent reactions (MCRs) since this kind of reactions allow rapid generation of complex and structurally diverse products in a one-pot manner by using simple substrates.¹⁰ In this aspect, carbon monoxide as an inexpensive and atom-economy C1 ³⁵ source has been frequently utilized in various MCRs.¹¹
- On the other hand, allene derivatives are indispensable intermediates in the synthesis of a myriad of organic compounds owing to their diverse reactivity.¹² In previous studies, Takahashi has disclosed that allenyl alcohols could undergo cyclo-
- ⁴⁰ carbonylation in the presence of a ruthenium catalyst to give fivemembered lactones in high yields with 100% atom economy (Scheme 1, (a)).^{13a} Ma developed a mild and efficient method for the synthesis of 3-chloromethyl-2(5*H*)-furanones via PdCl₂catalyzed chlorocyclocarbonylation of allenols in the presence of ⁴⁵ CuCl₂ (Scheme 1, (b)).^{13b} Choi recently reported a NHC-
- ⁴⁵ CuCl₂ (Scheme 1, (b)).¹³⁰ Choi recently reported a NHC-rhodium-catalyzed carbonylative C-C bond formation of allenyl alcohols with arylboronic acids under carbon monoxide (Scheme 1, (c)).^{13c} Inspired by those pioneering studies and as a continuation of our recent efforts in developing novel synthetic
- ⁵⁰ methodologies by using allene derivatives as key substrates,¹⁴ we herein report a novel and convenient synthesis of 2-(furan-3-

yl)acetates through Pd-catalyzed one-pot MCRs of allenols, aryiodides, alcohols and CO (Scheme 1, (d)). To the best of our knowledge, this is the first example in which two cascad so carbonylations to introduce one C to construct the furan scaffola and another C to form the carboxyl unit are involved in preparation of functionalized furans.

Scheme 1 Carbonylation of allenic alcohols under different conditions

Our studies were initiated by treating 2-methyl-1-phenylbuta 60 2,3-dien-1-ol (1a, 0.3 mmol), obtained from the reaction of 1 bromobut-2-yne with benzaldehyde,¹⁵ with iodobenzene (2a, 0.0 mmol) and ethanol (3a, 3 mmol) in the presence of Pd(OAc)₂ (0.03 mmol), P(2-furyl)₃ (0.12 mmol), and K₂CO₃ (0.3 mm -1 65 under an atmosphere of CO in CH₃CN at 80 °C for 8 h. From this reaction, the desired ethyl 2-(4-methyl-2,5-diphenylfuran-3yl)acetate (4a) was obtained in 24% yield (Table 1, entry 1). Te improve the efficiency, different catalysts were tried, and PdClwas found to be more effective than $Pd(PPh_3)_2Cl_2$, $Pd_2(dba)_2$ 70 Pd(PPh₃)₄, and Pd(OAc)₂ (entries 1-5). Next, various ligands such as PPh₃, 2-dicyclohexylphosphino-2',4',6'-triisopropylbipheny 2-dicyclohexylphosphino-2',4',6'-dimethoxylbipheny (XPhos). (SPhos), tri-tert-butylphosphonium tetrafluoroborate (^tBu₃P·BF₄), tricyclohexylphosphine (PCy₃), 1,10-phenanthroline (1,10-phen) 75 N,N'-dimethylethylenediamine (DMEDA), N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA), L-proline, and pivalic acid (PivOH) were also tested (entries 6-15). To our delight, he presence of L-proline or PivOH could improve the yield of 4a ... 45% or 63%, respectively (entries 14 and 15). Following studie 80 on the effect of different bases on this reaction showed that K_2CO_3 gave the best yield of 4a (entries 15-18). Finally, we found that changing CH₃CN to ethanol, toluene, DCE, 1-methyl-2-pyrrolidinone (NMP), 1,4-dioxane, or DMF as the reaction medium resulted in decreased efficiency (entries 19-24 vs 15).

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

Table 1 Optimization	studies	for the	formation	of 4a '
----------------------	---------	---------	-----------	----------------

		PhI ⁺ EtOH —	[Pd], L, base, CO	Ph V F	Ph
	CH₃ 1a	2a 3a	solvent	H₃C	CO ₂ Et
Entry	Pd source	Ligand	Solvent	Base	Yield (%) b
1	Pd(OAc) ₂	P(2-furyl) ₃	CH ₃ CN	K ₂ CO ₃	24
2	PdCl ₂	P(2-furyl) ₃	CH ₃ CN	K ₂ CO ₃	30
3	Pd(PPh ₃) ₂ Cl ₂	P(2-furyl) ₃	CH ₃ CN	K ₂ CO ₃	-
4	Pd ₂ (dba) ₃	P(2-furyl) ₃	CH ₃ CN	K ₂ CO ₃	-
5	Pd(PPh ₃) ₄	P(2-furyl) ₃	CH ₃ CN	K ₂ CO ₃	trace
6	PdCl ₂	PPh ₃	CH ₃ CN	K ₂ CO ₃	41
7	PdCl ₂	XPhos	CH ₃ CN	K ₂ CO ₃	38
8	PdCl ₂	SPhos	CH ₃ CN	K_2CO_3	27
9	PdCl ₂	^t Bu ₃ P·BF ₄	CH ₃ CN	K_2CO_3	35
10	PdCl ₂	PCy ₃	CH ₃ CN	K_2CO_3	trace
11	PdCl ₂	1,10-Phen	CH ₃ CN	K_2CO_3	32
12	PdCl ₂	DMEDA	CH ₃ CN	K_2CO_3	20
13	PdCl ₂	TMEDA	CH ₃ CN	K ₂ CO ₃)	trace
14	PdCl ₂	L-Proline	CH ₃ CN	K_2CO_3	45
15	PdCl ₂	PivOH	CH ₃ CN	K ₂ CO ₃	63
16	PdCl ₂	PivOH	CH ₃ CN	Et ₃ N	32
17	PdCl ₂	PivOH	CH ₃ CN	Cs_2CO_3	45
18	PdCl ₂	PivOH	CH ₃ CN	NaOH	43
19	PdCl ₂	PivOH	ethanol	K_2CO_3	51
20	PdCl ₂	PivOH	toluene	K_2CO_3	40
21	PdCl ₂	PivOH	DCE	K_2CO_3	31
22	PdCl ₂	PivOH	NMP	K_2CO_3	29
23	PdCl ₂	PivOH	1,4-dioxane	K_2CO_3	48
24	PdCl ₂	PivOH	DMF	K ₂ CO ₃	49

^a Reaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), 3a (3 mmol), catalyst (0.03 mmol), ligand (0.12 mmo), base (0.3 mmol), solvent (2 mL), 5 80 °C, CO (1 atm), 8 h; ^b Isolated yield.

With the optimized reaction conditions in hand (Table 1, entry 15), the scope of this Pd-catalyzed double carbonylation protocol leading to 2-(furan-3-yl)acetates (4) was explored. Firstly, the suitability of various allenic alcohols (1) was studied by using 2a and 3a as model substrates. The results listed in Table 2 showed that this method was effective for phenyl substituted allenic alcohols bearing different substituents on the phenyl ring to afford the desired 2-(furan-3-yl)acetates 4a-4f in moderate to good yields (entries 1-6). Various functional groups, from the 1s electron-donating methoxy to the electron-withdrawing trifluoro-

methyl, were well compatible and the electronic nature of the aromatic ring did not show obvious effect on the yield of **4**. Moreover, naphthyl and thienyl substituted allenols underwent

Table 2 Su $R^1 \xrightarrow{OH}_{R^2}$	bstrate scope for the + PhI + EtOH PdC 2a 3a	e synthesis of I ₂ , PivOH, K ₂ CO ₃ , C CH ₃ CN, 80 °C	$4(I)^{a}$ $\xrightarrow{R^{1}}_{R^{2}}$	Ph CO ₂ Et
Entry	\mathbb{R}^1	\mathbb{R}^2	4	Yield (%) ^b
1	Ph	CH ₃	4a	63
2	$2\text{-}CH_3C_6H_4$	CH ₃	4b	50
3	$3-BrC_6H_4$	CH ₃	4c	68
4	$3-FC_6H_4$	CH ₃	4d	64
5	$4-F_3CC_6H_4$	CH ₃	4e	54
6	3,4-di-CH ₃ OC ₆ H ₃	CH ₃	4f	57
7	2-naphthyl	CH ₃	4g	48
8	2-thienyl	CH ₃	4h	57
9	PhCH=CH	CH ₃	4i	62
10	Bn	CH ₃	4j	52
11	PhCH ₂ CH ₂	CH ₃	4k	55
12	$4-CH_3C_6H_4$	C_2H_5	41	58
13	2-naphthyl	C ₂ H ₅	4m	48

^a Reaction conditions: **1** (0.3 mmol), **2a** (0.6 mmol), **3a** (3 mmol), PdCl₂ (0.03 mmol), PivOH (0.12 mmol), K₂CO₃ (0.3 mmol), CH₃CN (2 mL), 80 °C, CO (1 atm), 8 h; ^b Isolated yield.

this cascade reaction to give **4g** and **4h** in 48% and 57% yields ²⁵ (entries 7-8). In addition to aryl unit, cinnamenyl and alkyl substituted allenol substrates took part in this procedure smoothly to afford **4i**, **4j** and **4k** in 62%, 52% and 55% yields, respectively (entries 9-11). As a further aspect, reactions of allenols bearing an ethyl group on the internal position of the allenic moiety also ³⁰ proceeded effectively (entries 12 and 13).

Next, the scope of the aryl iodide substrates (2) was studied. Gratifyingly, reactions with different 2 took place smoothly to afford a series of 2-(furan-3-yl)acetates with good yields (Table and entries 1-4). It was also found that aryl iodide bearing an selectron-donating group (EDG) was less favorable than those with electron-withdrawing groups (EWGs) (entry 1 *vs* entries 2-4). Moreover, the position of the substituent on the aromatic ring had no obvious effect on this transformation. Notably, a di(thiophen-2-yl)furan derivative (4r) with unique fluorescent 40 properties was conveniently prepared by using this method (entry 5).¹⁶ To explore the generality of the alcohol substrates (3), different alcohols were tested (entries 6-11). While all of them could take part in this reaction, tertiary alcohol was less effective than primary alcohols, most likely due to steric hindrance.

⁴⁵ It was then noticed that all the 2-(furan-3-yl)acetates obtained so far had a tetra-substituted furan moiety. To get tri-substitute furan derivatives (6), a series of allenol substrates without substituent attached on the internal position of the allenic moiety (5), prepared through CuI and dicyclohexylamine promoted ⁵⁰ reaction of 1-phenylprop-2-yn-1-ols with paraformaldehyde,¹⁷ were subjected to the standard conditions as shown in Table 1. The results listed in Table 4 showed that 1-phenyl substituted allenols (5) with EDG or EWG on the phenyl ring underwent this

Table 3 Substrate scop	e for the	synthesis	of 4 (II)	a
------------------------	-----------	-----------	--------	-----	---

01 R ¹ 1	H └───── + R ⁴ + R ⁵ 0H CH ₃ 2 3	PdCl ₂ , PivOH, K ₂ C CH ₃ CN, 80 [°]	O ₃ , CO ₽C	R ¹ H ₃ C	$C_{CO_2R^5}$
Entry	\mathbb{R}^1	\mathbb{R}^4	\mathbb{R}^5	4	Yield (%) b
1	Ph	$4\text{-}CH_3OC_6H_4$	$\mathrm{C}_{2}\mathrm{H}_{5}$	4n	50
2	Ph	$2\text{-Br-4-FC}_6\text{H}_3$	$\mathrm{C}_{2}\mathrm{H}_{5}$	40	78
3	3,4-di-CH ₃ OC ₆ H ₃	$2-F_3CC_6H_4$	$\mathrm{C}_{2}\mathrm{H}_{5}$	4p	82
4	3,4-di-CH ₃ OC ₆ H ₃	$4\text{-}FC_6H_4$	C_2H_5	4q	70
5	2-thienyl	2-thienyl	C_2H_5	4r	48
6	Ph	Ph	CH_3	4s	62
7	Ph	Ph	ⁿ Bu	4t	42
8	Ph	Ph	ⁿ Hex	4u	40
9	Ph	Ph	Bn	4 v	50
10	Ph	Ph	allyl	4 w	40
11	3,4-di-CH ₃ OC ₆ H ₃	2 - $F_3CC_6H_4$	^t Bu	4x	28

^{*a*} Reaction conditions: **1** (0.3 mmol), **2** (0.6 mmol), **3** (3 mmol), PdCl₂ (0.03 mmol), PivOH (0.12 mmol), K₂CO₃ (0.3 mmol), CH₃CN (2 mL), 80 s ^oC, CO (1 atm), 8 h; ^{*b*} Isolated yield.

cascade process smoothly to give **6** in moderate to good yields and the electronic nature of substrates had no obvious influence on this reaction (entries 1-5). Apart from 1-phenyl allenols, 1naphthyl and 1-thienyl substituted allenols were well compatible 10 (entries 6, 7). Then, different aryl iodides (**2**) were also tested. Among them, aryl iodide with an EWG (entry 9) was more

Among them, any founde with an EWG (entry 9) was more favourable than that with an EDG (entry 8). Finally, allenol bearing a phenyl group on the terminal position of the allenic moiety could also take part in this cascade reaction smoothly 15 (entry 10).

Table 4 Substrate scope for the synthesis of 6^{*a*}

	R ³ + R ⁴ + (C₂H₅OH ·	PdCl ₂ , PivOH, K ₂ CO ₃ , CO	ריידי ב ייר	
5	2	3a	CH3CN, 80 °C	6	$\rightarrow CO_2C_2H_5$ R^3
Entry	\mathbb{R}^1	R ³	\mathbb{R}^4	6	Yield $(\%)^b$
1	Ph	Н	Ph	6a	60
2	$2\text{-}CH_3C_6H_4$	Н	Ph	6b	44
3	$2\text{-FC}_6\text{H}_4$	Н	Ph	6c	40
4	$4\text{-}CH_3C_6H_4$	Н	Ph	6d	55
5	$4\text{-}ClC_6H_4$	Н	Ph	6e	50
6	2-naphthyl	Н	Ph	6f	65
7	2-thienyl	Н	Ph	6g	63
8	Ph	Н	$4-CH_3OC_6H_4$	6h	50
9	Ph	Н	4-ClC ₆ H ₄	6i	62
10	Ph	Ph	Ph	6j	48

^{*a*} Reaction conditions: **5** (0.3 mmol), **2** (0.6 mmol), **3a** (3 mmol), PdCl₂ (0.03 mmol), PivOH (0.12 mmol), K₂CO₃ (0.3 mmol), CH₃CN (2 mL), 80 ²⁰ °C, CO (1 atm), 8 h; ^{*b*} Isolated yield.

Based on the above observations and previous reports,^{13, 18} a plausible pathway to account for the formation of 4a is proposed in Scheme 2. Initially, oxidative addition of Pd(0) into 2a forms intermediate A, which then undergoes carbonylation to afford an

This journal is © The Royal Society of Chemistry [year]

²⁵ acylpalladium complex B. The following alkene coordination and insertion into the Pd-C(O)Ph bond gives an allyl palladium intermediate C. Carbonylation of C affords acylpalladium complex D. The following nucleophilic displacement of D with **3a** affords E and regenerates Pd(0). In the final stage of this ³⁰ cascade process, E undergoes an intramolecular nucleophilic addition followed by tautomerization and dehydration giving th final product **4a**.

Scheme 2 Plausible mechanism for the formation of 4a

- Having established a simple and efficient synthesis of 2-(fur.... 3-yl)acetates, we were then interested in exploring their synthetic applications by taking advantage of their unique structur characteristics. For this purpose, **4a** was firstly treated wit. KOH in aqueous methanol followed by acidification with acid (**7a**, 92%). Next, **7a** was subjected to a mixture of TfOH and TFAA to undergo an intramolecular Friedel-Crafts reaction unafford 3-methyl-2-phenylnaphtho[1,2-*b*]furan-5-ol (**8a**) in 63% yield (Scheme 3). It has been well recognized that naphthylication with the second structure of th
- ⁴⁵ [1,2-*b*]furan is a key structural unit in numerous compounds displaying significant medicinal and biological activities.¹⁹ I, particular, compounds bearing a naphtho[1,2-*b*]furan-5-ol unit are found to be efficient agents to alter the lifespan of eukaryoti organisms.²⁰ To explore the generality of this novel method for ⁵⁰ the synthesis of naphtho[1,2-*b*]furan-5-ol, some other 2-(furan-3 yl)acetates were tried. It turned out that all of them were suitable substrates to give the corresponding naphtha[1,2-*b*]furan-5-o' (**8b-8d**) with good efficiency (Scheme 3).

Scheme 3 Synthesis of naphtho[1,2-*b*]furan-ols (8) from 4 or

In summary, we have developed a novel strategy for the preparation of diversely substituted 2-(furan-3-yl)acetates from the one-pot cascade reactions of allenols with aryl iodides alcohols, and carbon monoxide. This cascade procedur⁶⁰ combines two palladium-catalyzed carbonylations, and tolerates various functional groups to give products with high structura diversity. Moreover, the usefulness of the 2-(furan-3-yl)acetates

Chem. Commun., [year], [vol], 00-00

obtained herein as valuable synthetic intermediates was showcased by their facile and efficient transformation into the biologically promising naphtha[1,2-*b*]furan-5-ol scaffold. Further exploitation of MCRs based on the dicarbonylation of allenols to

s achieve unprecedented organic transformations is underway in our laboratory.

This work was financially supported by the National Natural Science Foundation of China (NSFC) (grant numbers 21272058, 21172057), Program for Innovative Research Team in Science

¹⁰ and Technology in University of Henan Province (15IRTSTHN 003), Program for Science and Technology Innovation Talents in Universities of Henan Province (15HASTIT005), and the Fostering Foundation of Henan Normal University for the National Excellent Doctorial Dissertation (01333900013).

15 Notes and references

 School of Environment, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory for Environmental Pollution
 Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China. E-

mail: xuesen.fan@htu.cn; xinyingzhang@htu.cn † Electronic Supplementary Information (ESI) available: Experimental procedures, characterisation data and NMR spectra. See DOI: 10.1039/ b000000x/

- 25
 - (a) A. Fürstner, Angew. Chem. Int. Ed., 2003, 42, 3582; (b) G. Y. Liang, S. Aldous, G. Merriman, J. Levell, J. Pribish, J. Cairns, X. Chen, S. Maignan, M. Mathieu, J. Tsay, K. Sides, S. Rebello, B. Whitely, I. Morize and H. W. Pauls, Bioorg. Med. Chem. Lett., 2012,
- 22, 1049; (c) O. Gidron, Y. Diskin-Posner and M. Bendikov, J. Am. Chem. Soc., 2010, 132, 2148; (d) O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov and D. F. Perepichka, Chem. Commun., 2011, 47, 1976; (e) O. Gidron, L. J. W. Shimon, G. Leitus and M. Bendikov, Org. Lett., 2012, 14, 502; (f) C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya and E. Nakamura, J. Am. Chem. Soc., 2012, 134, 5448.
- (a) B. H. Lipshutz, Chem. Rev., 1986, 86, 795; (b) H. N. C. Wong, P. Yu and C.-Y. Yick, Pure Appl. Chem., 1999, 71, 1041; (c) H.-K. Lee, K.-F. Chan, C.-W. Hui, H.-K. Yim, X.-W. Wu and H. N. C. Wong, Pure Appl. Chem., 2005, 77, 139.
- ⁴⁰ 3 For reviews on furan synthesis via transition metal catalyzed reactions, see: (*a*) W. J. Moran and A. Rodriguez, *Org. Prep. Proc. Int.*, 2012, 44, 103; (*b*) A. S. Dudnik, V. Gevorgyan, Catalyzed Carbon-Heteroatom Bond Formation, (Ed.: A. K. Yudin) 2011, 317; (*c*) N. T. Patil and Y. Yamamoto, *ARKIVOC*, 2007, 10, 121; (*d*) A. G.
 ⁴⁵ M. Barrett, *Chem. Soc. Rev.*, 1991, 20, 95.
- 4 For furan synthesis via cycloisomerization of allenyl ketones, see: (a)
 A. S. K. Hashmi, L. Schwarz, J. H. Choi and T. M. Frost, Angew. Chem. Int. Ed., 2000, 39, 2285; (b) S. Ma, J. Zhang and L. Lu, Chem. Eur. J., 2003, 9, 2447; (c) J. A. Marshall and G. S. Bartley, J. Org. Chem. Chem. 2005, 2007 (c) D. A. Marshall and G. S. Bartley, J. Org.
- Chem., 1994, 59, 7169; (d) A. S. Dudnik and V. Gevorgyan, Angew.
 Chem. Int. Ed., 2007, 46, 5195.
 Chem. Proc. Descent Characteristics of the second secon
- 5 (a) R. C. D. Brown, Angew. Chem. Int. Ed., 2005, 44, 850; (b) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076; (c) M. Zhang, H.-F. Jiang, H. Neumann, M. Beller and P. H. Dixneuf, Angew. Chem. Int. Ed., 2009, 48, 1681.
- 6 (a) S. Ma and J. Zhang, J. Am. Chem. Soc., 2003, **125**, 12386; (b) P. Lenden, D. A. Entwistle and M. C. Willis, Angew. Chem. Int. Ed., 2011, **50**, 10657; (c) C. He, S. Guo, J. Ke, J. Hao, H. Xu, H.-Y. Chen and A.-W. Lei, J. Am. Chem. Soc., 2012, **134**, 5766; (d) X. Cui, X.
- Xu, L. Wojtas, M. M. Kim and X. P. Zhang, J. Am. Chem. Soc., 2012,
 134, 19981; (e) Y. Lian, T. Huber, K. D. Hesp, R. G. Bergman and J. A. Ellman, Angew. Chem. Int. Ed., 2013, 52, 629; (f) T. Wang, X.-L. Chen, L. Chen and Z.-P. Zhan, Org. Lett., 2011, 13, 3324.
- 7 (a) Y. Z. Xia, A. S. Dudnik, V. Gevorgyan and Y.-H. Li, J. Am.
- 65 Chem. Soc., 2008, **130**, 6940; (b) Y. J. Xiao and J. L. Zhang, Angew.

Chem. Int. Ed., 2008, **47**, 1903; (*c*) J. Barluenga, L. Riesgo, R. Vicente, L. A. López and M. Tomás, *J. Am. Chem. Soc.*, 2008, **130**. 13528.

- 8 T. Lechel, F. Pfrengle, H.-U. Reissig and R. Zimmer, *ChemCatChem*, 2013, **5**, 2100.
- 9 (a) A. S. Dudnik, Y. Xia, Y. Li and V. Gevorgyan, J. Am. Chem. Soc., 2010, **132**, 7645; (b) M. Miao, J. Cao, J. Zhang, X. Huang and L. Wu, Org. Lett., 2012, **14**, 2718; (c) Y. Li, J. P. Brand and J. Waser, Angew. Chem. Int. Ed., 2013, **52**, 6743; (d) Y. Xia, Y. Xia, R. Ge, Z. Liu, Q. Xiao, X. Zhang, and L. Wang, Angew. Lett. Ed. 2014, **52**, 2017.
- Xiao, Y. Zhang, and J. Wang, *Angew. Chem. Int. Ed.*, 2014, 53, 3917.
 (a) A. Dömling, *Chem. Rev.*, 2006, 106, 17; (b) J. Zhu and H. Bienayme, *Multicomponent Reactions*; Wiley-VCH: Weinheim, 2005; (c) E. Ruijter, R. Scheffelaar and R. V. Orru, *Angew. Chem. Int. Ed.*, 2011, 50, 6324; (d) I. Akritopoulou-Zanze, *Curr. Opin. Chem. Biol.*, 2008, 12, 324.
- (a) R. A. Sheldon, *Green Chem.*, 2007, 9, 1273; (b) J. J. Song, J. T. Reeves, D. R. Fandrick, Z. Tan, N. K. Yee and C. H. Senanayake, *Green Chem. Lett. Rev.*, 2008, 1, 141; (c) S. Tang, R. Bourne, R. Smith and M. Poliakoff, *Green Chem.*, 2008, 10, 268; (d) C. F. J. Barnard, *Organometallics*, 2008, 27, 5402; (e) P. Anastas and N.
- Batharu, Organometatics, 2008, 27, 5402; (e) P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301; (f) X.-F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev., 2011, 40, 4986; (g) X.-F. Wu, H. Neumann and M. Beller, Chem. Rev., 2013, 113, 1.
- 12 (a) S. Ma, Chem. Rev., 2005, 105, 2829; (b) S. Ma, Aldrichimica Acta., 2007, 40, 91; (c) Y. Xia, Y. Liang, Y. Chen, M. Wang, L. Jiao F. Huang, S. Liu, Y. Li and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 3470; (d) S. Ma, Acc. Chem. Res., 2009, 42, 1679; (e) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria and A. Simonneau, Chem. Rev 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem. Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem., Rev., 2011, 111, 1954; (f) N. Kraus and C. Winter, Chem., 2011, 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, 2012, (f) N. Kraus and C. Winter, Chem., 2012, (f) N. Kraus and C. Winter
- ⁹⁵ 1994; (g) S. Yu and S. Ma, *Angew. Chem. Int. Ed.*, 2012, **51**, 3074; (h)
 J. Ye and S. Ma, *Acc. Chem. Res.*, 2014, **47**, 989; (i) J. L. Bras and J. Muzart, *Chem. Soc. Rev.*, 2014, **43**, 3003; (j) J. Muzart, *Tetrahedron*, 2005, **61**, 9423.
- For the carbonylation of allenyl alcohols with CO, see: (a) E. Yoneda,
 S.-W. Zhang, D.-Y. Zhou, K. Onitsuka and S. Takahashi, J. Org. Chem., 2003, 68, 8571; (b) X. Cheng, X. Jiang, Y. Yu and S. Ma, J. Org. Chem., 2008, 73, 8960; (c) S. Y. Choi and Y. K. Chung, Adv. Synth. Catal., 2011, 353, 2609; (d) W. Li and M. Shi, J. Org. Chem., 2008, 73, 6698.
- 105 14 (a) X. Zhang, X. Jia, L. Fang, N. Liu, J. Wang and X. Fan, Org. Lett., 2011, 13, 5024; (b) Y. He, N. Shen, X. Fan and X. Zhang, Tetrahedron, 2013, 69, 8818; (c) Y. He, X. Zhang and X. Fan, Chem. Commun., 2014, 50, 14968; (d) L. Cui, X. Wang, Y. He and X. Fan, J. Chin. Chem. Soc., 2014, 61, 233; (e) X. Fan, M. Yan, Y. He, N. Shen and X. Zhang, Asian J. Org. Chem., 2015, 4, 368; (f) Y. He, S. Guo,
- X. Zhang, C. Guo and X. Fan, *Tetrahedron Lett.*, 2015, 56, 1513.
 (a) W. L. Wu, Z. J. Yao, Y. L. Li, J. C. Li, Y. Xia and Y. L. Wu, *Org. Chem.*, 1995, 60, 3257; (b) J. Kuang, X. Xie and S. Ma, *Synthesis*, 2013, 45, 592; (c) J. Kuang, H. Luo and S. Ma, *Adv. Synth.*Catal., 2012, 354, 933.
- 16 L. Fajarĺ, E. Brillas, C. Alemán and L. Juliá, J. Org. Chem., 1998, 63, 5324.
- 17 J. Kuang and S. Ma, J. Org. Chem., 2009, 74, 1763.
- 18 (a) Y. Li and Z. Yu, J. Org. Chem., 2009, 74, 8904; (b) Q. Xiao, B.
 Wang, L. Tian, Y. Yang, J. Ma, Y. Zhang, S. Chen and J. Wang, Angew. Chem. Int. Ed., 2013, 52, 9305.
- 19 (a) S. O. Simonetti, E. L. Larghi, A. B. J. Bracca and T. S. Kaufman, *Nat. Prod. Rep.*, 2013, **30**, 941; (b) M. N. V. Sastry, S. Claessens, P. Habonimana and N. D. Kimpe, *J. Org. Chem.*, 2010, **75**, 2274; (c) J.-
- P. Lumb, K. C. Choong and D. Trauner, J. Am. Chem. Soc., 2008, 130, 9230; (d) V. Srivastava, A. S. Negi, J. K. Kumar, U. Faridi, B. S. Sisodia, M. P. Darokar, S. Luqman and S. P. S. Khanuja, Bioorg Med. Chem. Lett., 2006, 16, 911; (e) J. P. Lumb and D. Trauner, J. Am. Chem. Soc., 2005, 127, 2870; (f) P. Stjernlöf, C.-H. Lin, C. Sonesson, K. Svensson and M. W. Smith, Bioorg. Med. Chem. Lett.,
- Sonesson, K. Svensson and M. W. Smith, *Bioorg. Med. Chem. Lett.*, 1997, 7, 2759.
 K. K. K. L. N. D. L. L. L. K. D. Letter, *C. et al.*, *T. L. L.*
- 20 (a) K. Mishra, N. Basavegowda and Y. R. Lee, *Catal. Sci. Technol.*, 2015, 5, 2612; (b) L. K. Xia and Y. R. Lee, *RSC Adv.*, 2014, 4, 36905.

4 | Chem. Commun., [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]