This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cyclometalated (boroxinato)gold(III) complexes from arrested transmetalation

Amberle R. Browne, a Nihal Deligonul, a Bryce L. Anderson, b Matthias Zeller, c Allen D. Hunter, c and Thomas G. Gray* a

Organic boroxines are ubiquitous, but metallaboroxine analogues remain rare. The first (boroxinato)gold species are demonstrated here, as are the first observations of phosphorescence from boroxinato complexes. Four new compounds are crystallographically characterized.

Boroxines are non-aromatic, cyclic anhydrides of boronic acids.1,2 Interest in boroxines has catapulted because of their utility in assembling porous network materials. Because boroxines form reversibly, the assembly process is self-correcting. Yaghi and co-workers have devised two-3 and three-dimensional4 covalent organic frameworks that condense by the formation of boroxine rings. These monolithic materials combine large void spaces with low densities and high thermal stability. Tour and co-workers5 had previously shown that arylboroxines cross-link polymeric materials to impart flame-retardancy. Polymer-electrolytes have been realized in reactions of B2O3 with ethylene glycol6,7 and ethylene glycol monomethyl ether.6,7 Telechelic polymers with B(OH)2 termini form “star” species with central boroxine cores.8,9 Many properties of boroxine-based materials derive in part from reversible assemblage of the B3O3 heterocycle.

Surprisingly, metallaboroxine derivatives are rare. Aryl transfer (transmetalation) is the typical reaction of arylboronic acids with metal centers, especially in the presence of base. Boron transmetalation is the defining step of the Suzuki-Miyaura cross coupling reaction.10–15 Transmetalation reactions of boron are gaining importance in the synthesis of metal σ-organometalics. We and others have applied boron transmetalation to the synthesis of (phosphine)- and (N-heterocyclic carbene)gold(I) aryls.16–26 Reaction conditions can be selected to yield mono-gold(I) species or geminally diaurated aryls.20,21 Analogous transmetalation reactions, mediated by boron, afford cyclometalated iridium(III) in room-temperature reactions.22 Similar investigations have found stoichiometric transmetalation reactions for a variety of metals27–29 and metalloids, and a comprehensive review is available.30

We have recently shown that chlorogold(III) complexes can react as electrophiles in Suzuki-Miyaura couplings to afford gold(III) aryls in the presence of base and catalytic quantities of palladium.34 This reaction proceeds at room temperature. Nevado and co-workers35 have published arylation reactions between gold(III) and arylboronic acids; these transformations require extended heating at 150 °C. Hansmann, Stephan, Hashmi, and co-workers36 have described reactions of gold(I) alkynyl complexes with B(C6F5)3 leading to π-coordinated gold(I) alkynylborationes. With heating, these species transform into gold(I) pentafluorophenyls in an intramolecular transmetalation from boron. You and co-workers37 examined the reactivity of arylboronic acids with cyclometalated gold(III) dihalides. Evidence was presented for aren carbon-hydrogen bond activation, transmetalation, and reductive elimination, but formation of (boroxinato)gold species was not described.

Here we describe trioxadiborrin complexes that result from arrested transmetalation reactions. Trioxadiborrin ligands are 2-chelators related structurally to β-diketonates. The first gold(III) trioxadiborrins are disclosed, along with crystallographic characterization of several. Reported also is the first systematic study of the photophysics of trioxadiborrin complexes.

Interaction of (4-tolylpyridyl)gold(III) chloride with boronic acids at room temperature gave no evidence of reaction. However, the trifluoroacetate species I, reported by Tilset and co-workers,38 proved more reactive, Scheme 1. Room-temperature reactions of I with (4-isopropoxyphenyl)boronic acid in toluene with either K2CO3 or KOt-Bu gave full conversion to the (trioxadiborrin)gold(III) product in 4 h and 3 h, respectively. Trioxadiborrin complexes of
(4-tolylpyridyl)gold(III) are identified by the 1H chemical shift of the hydrogen ortho to pyridyl nitrogen. This proton resonates near δ 9.3 ppm for trioxadiborrins in CDCl$_3$ solution. The corresponding chemical shift for (4-tolylpyridyl)gold(III) aryls is 7.8 ppm, and 8.4 ppm for 1. Scheme 1 summarizes optimized reaction conditions.

![Scheme 1](image)

Scheme 1. Optimized reaction conditions.

Table 1 collects new compounds and isolated yields. The reaction proceeds in high yield for boronic acids having electron-donating groups. For example, 4-isopropoxy and 4-tert-butylphenyl boronic acids afford trioxadiborrins (4, 5, and 12) in good isolated yields. The heterocyclic 3-thienyl group is supported (6), as is ferrocenyl (7). Arylboronic acids with ring fusion (8) or modestly electron-withdrawing substituents (9–10) form boroxinate complexes in unimpaired yields, as does 4-acetylphenylboronic acid with a Lewis acidic carbonyl carbon in the para position. The isolation of 11 in 68% yield shows that alkylboronic acids are competent boroxinate ligand precursors. Isolated compounds are off-white powders (except 7, which is orange) and sparingly soluble to soluble in methylene chloride.

Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>X</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CH$_3$</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$</td>
<td>-CH$_2$Pr</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>CH$_3$</td>
<td>-Bu</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>CH$_3$</td>
<td>S</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>CH$_3$</td>
<td>Fe</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>CH$_3$</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>CH$_3$</td>
<td>-CH$_2$Pr</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>CH$_3$</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>CH$_3$</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>-CH$_2$Pr</td>
<td>84</td>
</tr>
</tbody>
</table>

Compounds 4, 7, 9, and 10 were characterized by X-ray diffraction crystallography. The structure of 4 appears as Figure 1. The geometry of the 4-tolylpyridyl (tpy) ligand is unexceptional. Gold adopts the familiar planar geometry of low-spin d^9 metal centres. Gold-oxygen bond lengths reflect the relative $trans$-influences of carbon and nitrogen. The Au-O bond length opposite carbon is 2.041(4) Å; that $trans$ to nitrogen is 1.972(4) Å.

The packing diagram of 4 shows that neighbouring molecules stack in a pairwise manner, Figure S2, ESI. Close approaches, within the sums of the van der Waals radii, occur between gold and C13 (3.310 Å), and B1 and O1 (3.276 Å), of adjoining complexes.

A density-functional theory calculation, with heavy atoms in crystallographic positions and hydrogen atoms optimized, finds an interaction energy of 4.8 kcal mol$^{-1}$ in the gas-phase, after correction for basis set superposition error. Pairwise stacking recurs in the structure of 7, with the result that ferrocenyl substituents adopt a syn-configuration. A packing diagram appears as Figure S4, ESI. This packing suggests that boron atoms within the ligands remain Lewis acidic, as does gold.

Trioxadiborin complexes of cyclometalated gold(III) are luminescent. Shown in Figure 2 is the emission spectrum of 4 in 2-methyltetrahydrofuran at room temperature; this compound is representative of the series. Excitation at anywhere within the absorption profile elicits vibronically structured emission that quenches on exposure to air. Table S2, ESI, compiles photophysical parameters. Emission lifetimes range from 1.44–2.53 µs at 298 K, suggesting a triplet excited state. Spectral shapes show little influence of the boroxine aryl substituents, implying that phosphorescence originates from the (tpy)Au11 moiety.

Static and time-dependent density-functional theory calculations were performed on 4. Figure 3 depicts a frontier Kohn-Sham orbital energy level diagram along with plots of selected orbitals. The two highest occupied Kohn-Sham orbitals (HOMOs) localize on the arylboroxinato fragment; they derive from an E_{1g} HOMO of benzene. These orbitals are nearly degenerate, differing by only 0.05 eV. The lowest unoccupied Kohn-Sham orbital (LUMO) resides almost wholly on the cyclometalating tpy ligand. The B=O$_3$ linkage is a spacer that isolates the boroxine aryls from the gold center and its cyclometalating ligand.
Vertical excitation energies were estimated from time-dependent density-functional theory calculations. Compositions of excited states are collected in Tables S3, ESI. Absorptions in the visible and near-UV regions are assignable as ligand-centred and ligand-metal to ligand charge transfer transitions. The first Franck-Condon triplet is ligand-centred, and that the first few Franck-Condon singlets have majority ligand character. The optical properties of gold(III) boroxinato complexes derive from Au and the organic moieties.

Investigations of boroxinato complexes have lagged for want of reliable syntheses. We show here that metallaboroxines support long-lived triplet excited states at room temperature. Further investigations of (boroxinato)gold(III) species are ongoing.

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award DE-FG02-13ER46977 to T. G. G. X-ray diffractometers at Youngstown State University were funded by NSF Grants CHE 0087210 and DMR 1337296, Ohio Board of Regents Grant CAP-491, and by Youngstown State University. N. D. thanks the Republic of Turkey for a fellowship. We thank Professor D. G. Nocera (Harvard University) for access to instrumentation.

Notes and references

(2) Xiang, Z.; Cao, D. J. Mater. Chem. A 2013, 1 (8), 2691.
(21) Peay, M. A.; Heckler, J. E.; Deligonul, N.; Gray, T. G. Organometallics 2011, 30 (18), 5071.
(31) Browne, A. R.; Deligonul, N.; Anderson, B. L.; Rheingold, A. L.; Gray, T. G. Chemistry 2014.