This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proofreading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
TiO₂ Nanotubes with Ultrathin Walls for Enhanced Water Splitting

Ahmad M. Mohameda, Amina S. Aljaberb, Siham Y. AlQaradawi and Nageh K. Allama,b,***

We demonstrate, for the first time, the synthesis of titania nanotubes with ultrathin (3-5 nm) wall thickness. As revealed by the incident photon-to-current collection efficiency (IPCE) and electrochemical impedance spectroscopy measurements, the ultrathin walls, less than the charge carriers diffusion length, were essential to ensure fast and efficient charge carriers collection.

One-dimensional metal oxide nanoarchitectures have demonstrated great performance in many technologies including solar energy conversion 1-3. In particular, TiO₂ nanotube arrays formed by electrochemical anodization have demonstrated outstanding performance in solar fuel generation and solar cells applications 4,5. Although the use of nanotubular form decouples the light absorption and the transfer of charge carriers, enhancing the dynamics of charge carriers in TiO₂ is still a challenge 6,7. In this regard, many studies have been devoted to improve the dynamics including passivation of defects 8, the use of co-catalysts among others 9,10. As many studies have shown the dependence of the functionality of the material on its physical dimensions, the best way to improve the transport and collection of charge carriers is to optimize the inherent intrinsic properties of the material 7,11,12. To this end, controlling the length and the diameter of TiO₂ nanotubes has shown tremendous positive effects on the performance of the materials in solar energy conversion 12-14. However, the effect of wall thickness was poorly discussed in literature, despite the fact that it is one of the determinant factors controlling the dynamics of charge carriers, especially in photovoltaic water splitting systems 7,11,14,15. Most of the published articles are dealing with wall thicknesses that are greater than the diffusion length of charge carriers in titania 7. Herein, we report the first demonstration of the fabrication of vertically aligned titania nanotube arrays with very thin wall thickness (3-5 nm) and their use for solar water splitting. The thin-walled nanotubes facilitate the diffusion of the photogenerated holes to the semiconductor/electrolyte interface during water splitting, allowing for efficient separation of charge carriers.

The diffusion length of charge carriers in titania is around 10 nm 7, and until now there is no reproducible method to produce titania nanotubes with wall thickness that is considerably lower than the diffusion length. Inspired by the work of Amer et al 16, who were able to fabricate thin-walled ZrO₂ nanotubes, we used a mixture of non-aqueous (glycerol) and aqueous (water) electrolytes to anodize titanium in order to achieve titania nanotubes with ultrathin walls. The detailed experimental set-up and conditions are summarized in the Electronic Supplementary Information (ESI) section. In order to show the effect of the wall thickness, two sets of samples were fabricated; namely thick-walled nanotubes (NT1) using the conventional anodization method and thin-walled nanotubes (NT2) using our modified fabrication method, see ESI for more details.

Figure 1 shows FESEM images of the fabricated NT1 and NT2. The thin-walled nanotubes (Fig. 1a) are highly ordered, tightly packed with wall thickness ranging between 3 and 5 nm, length of ~ 1 µm, and inner diameter of 60±5 nm. In contrast, the thick-walled nanotubes (Fig. 1b) are not well-aligned with irregular outer diameters that contain ridges and circumferential serrations, similar to those usually seen upon anodizing Ti in formamide-based electrolytes. The difference in homogeneity and packing between NT1 and NT2 can be related to the use of highly viscous electrolyte (glycerol) in case of NT1 as was detailed elsewhere 14,17,18.

5 Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835. (Ahmad.allam@aucegypt.edu)
6 Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar.
†Electronic Supplementary Information (ESI) available: details of the synthesis of thin and thick-walled titania nanotubes.
See DOI: 10.1039/x0xx00000x

Fig 1: FESEM images of (a) thin-walled and (b) thick-walled titania nanotubes

As the as-anodized nanotubes are amorphous, we annealed them in air to crystallize them. Figure 2 shows the obtained XRD pattern of the annealed thin-walled nanotubes at 450°C for 4h. It confirms the crystallization of the titania nanotubes in the regular
anatase phase with the appearance of the characteristic diffraction peaks at 25°, 38.1°, 47.8°, 52.8°, and 53.9°, corresponding to the (101), (004), (200), (105), and (211) facets, respectively. Note that unlike thick-walled nanotubes where the predominant facet is (101), the most predominant peak for the thin-walled nanotubes is the (105) crystalline phase. The predominance of the high energy facet (105) increases the hydrogen bonding on the surface of the titania, which results in increasing the barrier for forming larger crystallites. To confirm that Scherrer equation is used to calculate the crystallite size. The calculated crystallite size is ~ 7.12 nm, with lattice parameters of a = 2.414 nm and c = 3.56 nm, giving a stress along a = 5.38 and along c = 2.74. The relative standard deviation of the determined average particle size is ~5% and the instrument broadening was corrected for using NIST 640c silicon. Note that the obtained crystallite size for the thin-walled nanotubes (7 nm) is much smaller than that reported for the conventionally prepared thick-walled nanotubes (40-70 nm). Such a small grain size has an effect on the photocatalytic activity of the material as explained later.

![Fig 2: XRD pattern of the annealed thin-walled nanotubes](image)

To get more insights into the composition of the thin-walled nanotubes, we have performed x-ray photoelectron spectroscopy (XPS) analysis for the annealed samples using a Thermo Scientific K-alpha XPS with an Al anode. Spectra were charge referenced to O 1s at 532 eV. The formation of oxide is evident from the O 1s and Ti 2p peaks with the molar ratio of Ti/O being close to the stoichiometric proportion. Note that both Ti 2p1/2 and 2p3/2 peaks are observed (Figure 3a) with a separation of 5.7 eV, which confirm the presence of Ti. The O 1s spectrum (Fig. 3b) is composed of two peaks appearing at 530.9 and 532.1 eV that are characteristic of Ti oxide (Ti-O-Ti) and chemisorbed OH groups on the nanotube’s surface, respectively.

The effect of the wall thickness on the charge carrier dynamics and the performance of titania nanotubes is still unclear in literature. On one side, it is reported that thick wall thickness would ensure the creation of large depletion region (space charge region) and consequently there would be an enough electric potential difference between the sides of the wall (potential drop). The generated electric field in that case would directly result in separation of charge carriers and preventing recombination.

The potential drop (ΔΦ0) across the wall thickness can be calculated using Eq. 1:

\[
ΔΦ_0 = kT \frac{e^2}{6eLD}
\]

where \(r \) is half the wall thickness and \(L_D \) is the Debye length, which can be calculated using Eq. 2:

\[
L_D = \left[\frac{\varepsilon_0eK}{2e^2N_D} \right]^{1/2}
\]

where \(N_D \) is the charge carrier density, \(\varepsilon \) and \(\varepsilon_0 \) are the dielectric constant and the permittivity in air for titania, respectively. In this case, there must be a minimal band bending of 50 mV in order to prevent the charge recombination. This band bending (\(\omega \)) can be consumed by having an efficient depletion region to accommodate the band bending, which can be calculated using Eq. 3:

\[
\omega = \sqrt{\frac{2e\varepsilon_0V_B}{eN_D}}
\]

where \(V_B \) is the amount of band bending. As the wall thickness of the nanotubes supports only a potential depletion zone that is half its width, a wall thickness of ~24 nm is needed.

On the other side, a thinner wall thickness would result in a lower band bending with the band potential being very close to the flat band potential. However, the thin wall thickness would prevent the formation of a large depletion region, and consequently there would not be enough potential drop across the wall, leading to less separation of the photogenerated charge carriers. When the wall thickness is less than the diffusion length in titania, which is thought to be about 10 nm, only in this case, there is no electric diffusion layer needed to separate electrons and holes, as the holes simply diffuse through the tube walls to the semiconductor/electrolyte interface, see Scheme 1.
Another illumination variation of photocurrent density at 200 mW cm$^{-2}$ for bare TiO$_2$ nanotubes, as compared to that of thick walled nanotubes (40-60 nm). Small crystallite size produces large number of under-coordinated Ti atoms on the grain surfaces, causing a significant drop in charge collection and transport efficiency for both thin and thick-walled nanotubes. The photocurrent produced by the thin-walled titania nanotubes is almost twice that produced by thick-walled nanotubes under similar conditions, highlighting the better charge dynamics for thin-walled nanotubes. However, the dark current in case of thick-walled nanotubes is lower than that of the thin-walled counterparts. The high dark current in case of thin-walled nanotubes can be related to the smaller crystallite size (7nm) compared to that of thick walls (40-60 nm). Small crystallite size produces a large number of under-coordinated Ti atoms on the grain surface. In order to counteract this, Ti atoms absorb water molecules, leading to the formation of defects and a distortion of the crystal structure. This distortion results in the formation of dipole-dipole repulsion between the interior of the grain and the positive centres to the outside, which can be manifested by the formation of parallel surface defects (dipoles) and the increase of dipole-dipole repulsion. This defect dipole was shown to increase the dark current. Another privilege of the thin-walled nanotubes is that the onset potential is lower than that for the thick-walled nanotubes. This can mainly be attributed to the better charge kinetics and lower resistance as confirmed later via electrochemical impedance measurements.

Incident Photon to current collection efficiency (IPCE) experiments were performed without an applied bias in order to better understand the charge carriers collection efficiency in both thin and thick-walled nanotubes. The experiments were performed in a two-electrode cell with the nanotubes film as the working photoelectrode and platinum foil as the counter electrode in 1 M KOH solution. The IPCE was calculated using Eq. 4, where λ is the wavelength of incident light, j_{ph} is the photocurrent density under illumination at λ and I_0 is the incident light intensity at λ.

$$IPCE\% = \frac{j_{ph}(mA/cm^2) \times 1239.8(V \times nm)}{I_0(W/cm^2) \times \lambda(nm)} \times 100$$

Figure 4b shows the obtained IPCE, where the thin-walled nanotubes show higher collection efficiency (47%) than the thick-walled nanotubes (15%). These results clearly show the direct effect of reducing the wall thickness on enhancing the charge carrier separation and collection. Also, it is evident that controlling the tube thickness is more effective than relying on the potential depletion region for thick-walled nanotubes.

Another factor that should be considered is the surface area of the nanotubes, which is closely related to their geometrical features. Our calculations showed the superiority of the fabricated thin-walled nanotubes over the thick-walled counterparts. The thin-walled titania nanotubes have a geometric roughness factor (G) factor of 185 compared to 60 for the thick-walled nanotubes. More details on the calculations are available at the ESI.

To get more insights into the effect of wall thickness on the properties of titania nanotubes, electrochemical impedance spectroscopy (EIS) measurements were done using Biologic SV-200 potentiostat for both thin and thick-walled nanotubes. The EIS measurements were performed in 1 M KOH electrolyte at room temperature (22±2 °C) under dark conditions. A three-electrode electrochemical cell was used with the nanotubes as the working electrode, Pt as the counter electrode and Calomel as the reference electrode. The applied voltage was swept from -1 V to 0.6 V, while the frequency range was 100 mHz to 100 KHz.

Figure 5 shows the obtained Nyquist plots. The thin-walled titania shows higher conductivity compared to the thick-walled counterparts, which confirmed the efficient charge carrier transport for the thin-walled nanotubes. This was asserted by the Mott-Schottky analysis, which revealed a flat band potential of -0.7 V versus SCE with charge carrier density of 5×10^{18} cm$^{-3}$. The obtained flat band potential and carrier density are in agreement with those reported in literature.

$$Re(Z(r),\Omega) = \frac{1}{\omega^2 C_0 Z^2(\omega,\Omega)}$$

FIG 4: (a) I-V and (b) IPCE characteristics of thin-walled and thick-walled titania nanotubes measured in 1M KOH aqueous solutions under dark and illuminated (AM 1.5) conditions.

FIG 5: Nyquist plot of both thin and thick-walled titania nanotubes.
In summary, a new synthetic approach to produce thin-walled titania nanotubes, with wall thickness less than the charge carriers diffusion length, is presented. The calculated crystallite size for the thin-walled nanotubes is as small as 7nm, leading to the creation of a large number of under coordinated Ti atoms on the grain surface and consequently high dark current. The thin-wall nanotubes showed almost double the photocurrent of the thick-wall nanotubes upon their use in water splitting arrangement. The IPCE and electrochemical impedance measurements confirmed the superiority of the thin-walled nanotubes over their thick-walled counterparts. The Mott-Schottky analysis revealed a flat band potential of -0.7 V versus SCE with charge carrier density of \(5\times10^{18} \text{cm}^{-3}\). Our work confirmed the importance of using ultra-thin-walled titanai nanotubes as photoanodes for efficient solar water splitting.

Notes and references

§ This work was made possible by NPRP Grant no. NPRP 6-569-1-112 from the Qatar National Research Fund (a member of Qatar Foundation).

