This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Organocatalysts with carbon-centered activity for CO$_2$ reduction with boranes†

Yanxin Yang,‡ Maotong Xu,‡ and Datong Song*

Abstract: We report two organocatalysts for CO$_2$ hydroboration to methylborylethers, which upon hydrolysis can produce methanol. These organocatalysts feature carbon-centered reversible CO$_2$ binding, broad borane scopes, and high catalytic activities.

The use of fossil fuels has caused a drastic increase of CO$_2$ emissions over the past few decades. While the increase in CO$_2$ level in the atmosphere raises serious environmental concerns, it also presents an opportunity for using CO$_2$ as a sustainable C$_1$ feedstock for chemical syntheses. Many promising methods have been developed for the conversion of CO$_2$ to value-added chemicals, such as carbonates and derivatives, carboxylic acids and derivatives, formaldehyde, CO$_2$ alkanes, methylamines, and methanol. The catalytic reduction of CO$_2$ to methanol is particularly interesting as it converts the combustion product back to a liquid fuel. Three general routes have been reported for the catalytic conversion of CO$_2$ to methanol: hydrogenation, hydroboration, and hydroboration-hydrogenation. A few transition metal and main group metal catalysts have been reported for the hydroboration of CO$_2$ into methylborylether, which upon hydrolysis produces methanol. The metal-free phosphine–borane frustrated Lewis pairs (FLPs) and a few borohydride species have also shown catalytic activity towards the same transformation. Most of the above catalysts are plagued with intrinsic air- and moisture-sensitivity. In 2014, Cantat and co-workers reported the air- and moisture-stable N-heterocycle-based catalysts that only contain carbon, hydrogen, and nitrogen. These catalysts feature nitrogen-centered activity for catalysis. Unfortunately, these catalysts have limited borane scope, i.e., 9-borabicyclo[3.3.1]nonane (9-BBN) only. Despite these recent advances in CO$_2$ reduction into methanol via catalytic hydroboration with heteroatom-centered reactivity, a catalyst with carbon-centered activity is unknown for this transformation. It is worth pointing out that although N-heterocyclic carbenes (NHCs) are known to catalyze the hydrosilylation of CO$_2$ to methylsilylethers and the methylation of amines using CO$_2$ as the carbon source, the hydroboration of CO$_2$ into methylborylethers catalyzed by NHCs remains unknown.

Previously our group discovered the reversible CO$_2$ insertion into the C–H bond of the actor 4,5-diazafluorenyl ligand supported by spectator-metal centers. To confirm the spectator role of the metal centers, we further demonstrated this new reactivity with the metal-free compound, N-methyl-4,5-diazafluorenide, 1 (Scheme 1), by replacing spectator metal centers with a methyl group. To probe what structural features are essential for this new type of CO$_2$ reactivity, we simplified the molecule from the three-ring system in 1 to a two-ring system in 2 (Scheme 1), because one of the pyridine moieties (color coated in gray) has no obvious role in CO$_2$ binding. Gratifyingly, 2 can indeed react with CO$_2$ reversibly by inserting CO$_2$ into the C–H bond (Scheme 1) on the C$_5$ ring. Both 1 and 2 bind with CO$_2$ at the reactive carbon center, which is reminiscent of CO$_2$-binding activity of NHCs. The carbon-centered CO$_2$-binding property of 1 and 2 led us to explore the catalytic activity of these compounds toward hydroboration of CO$_2$. These results are reported herein. To the best of our knowledge, the air- and moisture-stable and C/H/N-only compounds 1 and 2 are the first examples of carbon-centered catalysts for the hydroboration of CO$_2$ into methylborylethers.

Our initial tests showed that 1 could catalyze the hydroboration of CO$_2$ with 9-BBN and catecholborane (HBCat). For example, when a CD$_2$Br solution of 1 and 10 eq. of 9-BBN was heated at 70°C overnight under 1 atm of CO$_2$, the major product [H$_2$]CO$_2$OBBN was observed along with a small amount of [H$_3$]CO$_2$OBBN in the H- and C NMR spectra (see Fig. S16, S17). Similarly, when a CD$_2$Br solution of 2 and 10 eq. of 9-BBN was heated at 70°C overnight under 1 atm of CO$_2$, the major product [H$_2$]CO$_2$OBBN was observed along with a small amount of [H$_3$]CO$_2$OBBN in the H- and C NMR spectra (see Fig. S16, S17).
solution of 1 and 30 eq. of HBcat was heated at 70 °C under 1 atm of 13CO$_2$ for 2 h, NMR experiments showed that 13CH$_3$OBcat was the only 13CO$_2$ reduction product (see Fig. S18, S19). These preliminary results encouraged us to test the catalytic performance of 1 further. A C$_2$D$_5$Br solution of 1 and 100 eq. of HBcat was exposed to 1.5 atm of CO$_2$ at 25 °C and the reaction was monitored with 1H and 13B NMR spectroscopy. The plot of TON vs time for this reaction is shown in Fig. 1. The reaction started with a short induction period followed by fast catalysis. As HBcat was getting depleted toward the end of the reaction, the reaction rate was approaching 0. No induction period was observed at 70 °C and the reaction profile consisted of two stages: fast catalysis and plateau. The TOFs at the fast catalysis stage of the reactions were extracted from the plot: 41 and 231 h$^{-1}$ for 25 °C and 70 °C reactions, respectively. Such TOFs put 1 amongst the most active organocatalysts for this transformation.

When a C$_2$D$_5$Br solution of 1 and 100 eq. of HBcat was exposed to 1.5 atm of CO$_2$ at 25 °C, CH$_3$OBcat was produced with a TON of 97 within 6 h (Table 1, entry 1). When the same reaction was carried out at 70 °C, the reaction reached completion within 2 h (Table 1, entry 2); to test whether the catalyst was still active after 100 turnovers, 21.5 h after the complete consumption of the first 100 eq. of HBcat, another 100 eq. of HBcat was added to the reaction mixture, which was then re-charged with 1.5 atm of CO$_2$ and reheated at 70 °C. The second batch of HBcat was consumed within 3 h to give an overall TON of 196 (Table 1, entry 3), indicating that catalyst 1 was still highly active.

When 9-BBN was used as the reductant under the same conditions, the formations of CH$_3$(OB)OBNN and CH$_3$OBNN were observed at 25 °C within 8 h with a total TON of 58 (Table 1, entry 4); if the same reaction was carried out at 70 °C, the TON reached 66 within 2 h (Table 1, entry 5) and again CH$_3$(OB)OBNN and CH$_3$OBNN were both produced. The lower reaction rates in entries 4 and 5 compared to those in entries 1 and 2, respectively, could be attributed to the low solubility of 9-BBN. When a less reactive reductant pinacolborane (HBpin) was used, the catalytic reaction only gave 14 total turnovers in 48 h at 100 °C, yielding three
reduction products HCOO\textsubscript{2}pin, CH\textsubscript{3}(OBpin\textsubscript{2}) and CH\textsubscript{2}OBpin (Table 1, entry 6). Using 100 eq. of BH\textsubscript{3}SM\textsubscript{2}e (with respect to catalyst 1) as the reductant under 1.5 atm of CO\textsubscript{2} the reaction achieved a TON of 294 with BH\textsubscript{3} within 44 h at 25 °C to yield (CH\textsubscript{2}OBB)\textsubscript{2} (Table 1, entry 7). Increasing the reaction temperature from 25 °C to 70 °C only improved the reaction rate by a factor of ~2 (Table 1, entry 8).

Next, we tested the catalytic activity of 2. When a CDC\textsubscript{3} solution of 2 and 100 eq. of 9-BBN was exposed to 1.5 atm of CO\textsubscript{2} at 25 °C, CH\textsubscript{3}(OBpin\textsubscript{2}) and CH\textsubscript{2}OBpin were produced with an overall TON of 61 within 19 h (Table 1, entry 9); the reaction is much slower than that catalyzed by 1. When the same reaction was carried out at 70 °C, however, the reaction rate is comparable to that catalyzed by 1 at 70 °C, i.e., the reaction reached 66 TON within 2 h (Table 1, entry 10). Compared to 1, 2 showed a higher activity when HBpin was used as the reductant, i.e., the reaction catalyzed by 2 gave CH\textsubscript{3}OBpin as the dominant CO\textsubscript{2} reduction product with a TON of 75 in 46 h at 90 °C (Table 1, entry 11). In contrast, when HBcat was used as the reductant, catalyst 2 showed lower activity than 1 (Table 1, entry 12). We speculate that the difference in catalytic activity between 1 and 2 may originate partly from the preferred interactions between the catalyst and borane: the larger system in 1 interacts with the aromatic backbone of HBcat more strongly, while the longer aliphatic propyl chain and smaller system in 2 favor the aliphatic backbone of HBpin. Interestingly, 2 showed much higher catalytic activity than 1 when BH\textsubscript{3}SM\textsubscript{2}e was used as the reductant, i.e., complete conversion to (CH\textsubscript{2}OBBBB)\textsubscript{2} was observed in 7 h at 25 °C with a TON of 298 and average TOF of 42.6 h-1 (Table 1, entry 13). This reaction also has a short induction period at 25 °C (Fig. 2). A TOF of 56 h-1 at the fast catalysis stage was extracted from the plot of TON vs time. Such TOFs make 2 one of the best organocatalysts for this transformation.

In summary, we have demonstrated compounds 1 and 2 not only bind CO\textsubscript{2} reversibly via the formal insertion of CO\textsubscript{2} into a C–H bond of the C\textsubscript{5} ring, but also catalyze the hydroboration of CO\textsubscript{2} to methylborylethers which upon hydrolysis can produce methanol. These air- and moisture-stable compounds that consist of only carbon, hydrogen, and nitrogen are the first catalysts with carbon-centered activity for the reduction of CO\textsubscript{2} to methylborylethers. These catalysts feature broad borane scope and their catalytic activities are comparable to the best organocatalysts with heteroatom-based activity. The mechanism of the catalytic reactions are currently being investigated via experimental and computational methods in our laboratory.

We acknowledge Natural Science and Engineering Research Council of Canada (NSERC) for funding. Y. Y. greatly thanks the government of Ontario for an Ontario Trillium Scholarship. M. X. gratefully thanks University of Toronto for the University of Toronto Excellence Award and Charlie Kivi for X-ray crystallography.

Notes and references

§ Compound 2 is an orange oil and can be synthesized using a modified literature procedure. Compared to 1, whose solution is stable in air for several hours, the solution of 2 can be stored at ~15 °C in air for weeks without significant change. Compound 2 is soluble in all common organic solvents. For the synthetic protocol of 2 and CO\textsubscript{2} binding experiments, see ESI.

The Schlenk bomb charged with all other reagents and solvent was immersed in liquid N\textsubscript{2} to freeze the solution; the headspace was then evacuated. The entire bomb was then immersed in a 70 °C dry ice-isopropanol bath to keep the solution frozen and cool the headspace. The bomb was then opened to 1 atm of CO\textsubscript{2} for 10 minutes to allow the temperature to equilibrate. Subsequently, the bomb was sealed and allowed to warm to 25 °C to achieve ~1.5 atm pressure. Safety Warning: If CO\textsubscript{2} gas was introduced below ~78 °C, dry ice would condense in the reaction vessel and the final pressure becomes time-dependent and can no longer be calculated easily. Using our protocol with a low-melting solvent (i.e., the solvent is not frozen at ~70 °C), the final pressure is again time-dependent, because of the dramatically increased solubility of CO\textsubscript{2} at ~70 °C. In both scenarios prolonged CO\textsubscript{2} exposure could cause serious explosions due to uncontrolled high pressures and make the results incomparable to others due to unknown CO\textsubscript{2} pressure.

§ The slightly slower conversion of the second batch of HBcat was likely due to the inefficient mixing of the reactants caused by the large amount of solid produced in the reaction.

