ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Pressure-dependent Helix Inversion of Poly(quinoxaline-2,3-diyl)s Containing Chiral Side Chains in Non-aqueous Solvents

Yuuya Nagata,^{*a} Ryohei Takeda,^a and Michinori Suginome^{*a,b}

Received 00th April 2014, Accepted 00th April 2014

DOI: 10.1039/x0xx00000x

www.rsc.org/chemcomm

Poly(quinoxaline-2,3-diyl)s with chiral (S)-2-butoxymethyl side chains dissolved in 1,2-dichloroethane experience a reversible pressure-dependent helix inversion from *P*- to *M*-helical structures between 0.1 MPa and 200 MPa.

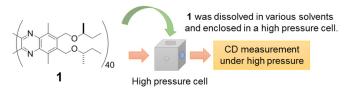
Pressure is one of the most fundamental thermodynamic parameters in order to regulate molecular conformations and chemical reactions.^{1,2} Since the pioneering work of Bridgman in 1914,³ which demonstrated that high hydrostatic pressure is able to denature egg white proteins, much effort has been devoted to controlling the conformation of biomolecules such as DNA,⁴ RNA,⁵ and various proteins⁶ in solution under hydrostatic pressure. In 1991, Barciszewski and co-workers demonstrated DNA that (poly(dGdC)·poly(dGdC)) exhibited a conformational change from the B- to Z-form after having been exposed to 600 MPa for 19 h in an aqueous buffer solution,^{4a} which was explained in terms of a pressure-induced dehydration of the DNA under these conditions. In general, hydration or dehydration processes, involving a large number of water molecules, play an important role in conformational changes of such biomolecules in aqueous solutions.⁷

The quest for new classes of chiral functional materials has recently focused considerable attention on the control over the reversal of the screw sense of synthetic helical polymers bearing chiral side chains triggered by external stimuli.8 To date, temperature,9 light,10 metal ions,11 pH value,12 and solvents13 have been employed to control the helical chirality of polymer backbones. However, to the best of our knowledge, reports on the switch of the main-chain chirality of synthetic helical polymers by hydrostatic pressurization still remain elusive. One of our recent reports has demonstrated that the purely single-handed screw sense of poly(quinoxaline-2,3-diyl)s (PQXs) bearing (S)-2-butoxymethyl side chains is susceptible to a solvent-dependent helix inversion of the helical backbone between CHCl₃ (M-helix) and 1,1,2-trichloroethane (1,1,2-TCE, P-helix) without other conformational change.¹⁴ It was furthermore possible to use these PQXs as effective chiral catalysts, and the solvent-dependent switch of helical chirality allowed a highly enantioselective synthesis of both product enantiomers in various asymmetric reactions.¹⁵ This helical scaffold could also be used for the fabrication of solid polymer films exhibiting selective reflection of circularly polarized light (CPL) in the visible light

region, whereby a switch of the handedness of the CPL could be induced.¹⁶ Herein, we would like to disclose an *in situ* pressuredependent helix inversion of PQXs bearing chiral side chains during high pressure circular dichroism (CD) measurements.

RSCPublishing

In a preliminary attempt to investigate the impact of hydrostat'. pressure on the main-chain chirality, we measured CD and UV-v. absorption spectra of PQX 40mer 1, bearing (S)-2-butoxymethyl sich chains, at ambient (0.1 MPa) and elevated (200 MPa) pressure (Table 1). The ambient temperature was set to 25 °C, and a 1 measurements were carried out after an adequate equilibration. The CD intensity was evaluated via Kuhn's dissymmetry factor gab which is defined as the CD intensity normalized by the UV-v absorbance to exclude errors originated from the compression of solvent at high pressure. Consistent with our previous reports, adopted an absolute M-helical structure at 0.1 MPa (>99%), and showed no significant change in its CD spectrum at 200 MPa (entr 1). Although we also attempted to measure the CD and UV specti of 1 in 1,1,2-TCE at 200 MPa, this was hampered by partial precipitation, which is most likely due to the low solubility of an 1,1,2-TCE (entry 2). In order to improve the solubility of 1, we subsequently employed solvent mixtures of CHCl₃ and 1,1,2-TCE. In mixtures consisting of 20-50% 1,1,2-TCE, 1 adopted an M-helical conformation at 0.1 and 200 MPa (entries 3–5). Using 60% and 65 o of 1,1,2-TCE, 1 adopted a P-helical conformation at 0.1 MPa, but (. M-helical conformation at 200 MPa (entries 6 and 7). This pressure dependent helix inversion was not observed for 1,1,2-TCE volume fractions >70% (entries 8 and 9). A series of CHCl₃/1,1,2-TC solvent mixtures exhibited a negative difference for Kuhn s dissymmetry factor (Δg_{abs} ; $\Delta g_{abs} = g_{abs/200 \text{ MPa}} - g_{abs/0.1 \text{ MPa}}$), *i*. hydrostatic pressurization induced an M-helical conformation Assuming a constant solvent- and pressure-independent g_{max} value (f 2.31×10^{-3} (CHCl₃, 0.1 MPa), the screw-sense excess (se) of 1 in a 35/65 mixture of CHCl₃/1,1,2-TCE can be estimated to be 50% P) at 0.1 MPa and 43% (M) at 200 MPa.

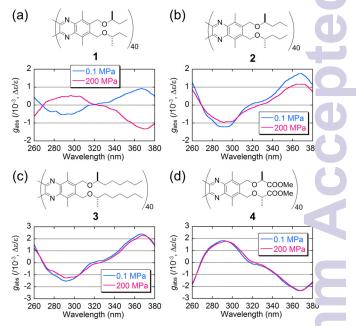

In toluene, CH_2Cl_2 , 1,1,1-trichloroethane (1,1,1-TCE), and tetrahydrofuran (THF), we could not observe any substanti 1 changes of the main-chain chirality of 1 upon hydrostat pressurization (entries 10–13). Although the screw sense of 1 we retained at 200 MPa, the CD intensities changed significantly in 1 BuCl and 1-BuCN (entries 14 and 15). For 1-BuCl and 1-BuCl

This journal is © The Royal Society of Chemistry 2015

ChemComm, 2015, **00**, 1-4 **1**

positive Δg_{abs} values were obtained, suggesting that static pressurization induced, in contrast to CHCl₃/1,1,2-TCE mixtures, the formation of P-helical conformations in these solvents. In 1,2dichloroethane (1,2-DCE), 1 showed a clear pressure-dependent helix inversion between 0.1 and 200 MPa (entry 16). Similar to CHCl₃/1,1,2-TCE mixtures, a negative Δg_{abs} value was observed in 1,2-DCE. Provided that the absolute g_{max} value in 1,2-DCE is comparable to that in CHCl₃ (2.31×10^{-3}) , this helix inversion in 1,2-DCE corresponds to an se change from 39% (P, 0.1 MPa) to 56% (M, 200 MPa). In 1,3-dichloropropane (1,3-DCP), 1 adopted a P-helical conformation at 0.1 and 200 MPa (entry 17). These results suggested that a CHCl₃/1,1,2-TCE (v/v = 35/65) mixture or 1,2-DCE represent the most promising solvents for an effective hydrostatic pressure-induced helix inversion. In order to eliminate any potential ambiguity that might arise from a binary solvent system, we used 1,2-DCE for the subsequent studies.

Table 1. Dissymmetry factor g_{abs} of **1** in various solvents at 0.1 or 200 MPa. Values for Δg_{abs} between 0.1 and 200 MPa are also displayed.


		$g_{ m abs}$ /10 ^{–3 a}		
Entry	Solvent	0.1	200	$\varDelta g_{ m abs}$
Lifting	Sorvent	MPa	MPa	/10 ^{-3 b}
1	CHCl ₃	-2.31 (<i>M</i>)	-2.31 (M)	0.00
2	1,1,2-TCE	+3.15 (P)	_ <i>c</i>	_ c
3	CHCl ₃ /1,1,2-TCE = 80/20	-2.45 (M)	-2.56 (M)	-0.11
4	$CHCl_3/1, 1, 2-TCE = 60/40$	-2.42 (M)	-2.67 (M)	-0.25
5	CHCl ₃ /1,1,2-TCE = 50/50	-2.07 (M)	-2.54 (M)	-0.47
6	CHCl ₃ /1,1,2-TCE = 40/60	-0.27 (M)	-1.85(M)	-2.12
7	CHCl ₃ /1,1,2-TCE = 35/65	+1.15(P)	-1.00(M)	-2.15
8	CHCl ₃ /1,1,2-TCE = 30/70	+2.24(P)	+0.60(P)	-1.64
9	CHCl ₃ /1,1,2-TCE = 20/80	+2.72(P)	+2.32(P)	-0.40
10	Toluene	-2.02(M)	-1.89(M)	+0.13
11	CH ₂ Cl ₂	-2.29(M)	-2.35(M)	-0.05
12	1,1,1 - TCE	-2.24 (<i>M</i>)	-2.19 (M)	+0.05
13	THF	-2.22(M)	-2.15(M)	+0.07
14	1-BuCl	-1.14(M)	+0.02(P)	+1.16
15	1-BuCN	+1.10(P)	+1.51(P)	+0.41
16	1,2-DCE	+0.91 (P)	-1.30(M)	-2.21
17	1,3-DCP	+1.26(P)	+1.06(P)	-0.20

 $a^{c}g_{abs}$ at 368.0 nm. $b^{b}\Delta g_{abs}$ between 0.1 and 200 MPa at 368.0 nm. $c^{c}g_{abs}$ could not be determined due to insufficient solubility.

Following that, we carried out a screening of the effect of the chiral PQX side chains on the pressure-dependent helix inversion in 1,2-DCE (Figure 1). As previously mentioned, the CD spectra of 1, bearing (S)-2-butoxymethyl side chains, at 0.1 and 200 MPa are almost perfect mirror images of each other, which supports a pressure-dependent helix inversion (Figure 1a). A series of 40mers bearing (S)-2-pentyloxymethyl (2), (S)-2-octyloxymethyl (3), or methyl L-lactate-derived side chains (4),¹⁷ was examined in order to

2 | ChemComm, 2015, 00, 1-4

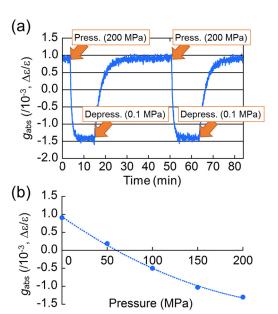
evaluate the effect of different side chains on potential hydrostat pressure-induced changes of the chirality of the polymer backbone. A common feature in all these chiral side chains is the metnyisubstituted S-stereogenic center at the γ -position. Although the sic chain structure of 2 is similar to that of 1, a pressure-dependent helix inversion was not observed between 0.1 and 200 MPa. Similarly, 1 helix inversion was observed between 0.1 and 200 MPa for (S)-2octyloxymethyl-substituted 3, even though 3 showed the mo efficient screw-sense induction in our previous report.^{14b} However, containing methyl L-lactate-derived side chains, adopted an Mhelical structure in 1,2-DCE, while the absolute configuration of the stereogenic center in the chiral side chain was identical to the Phelical polymers 1–3. At high pressure, 4 still adopted an *M*-helic structure, and a switch of the helix chirality was not observe Although we also prepared other polymers, bearing (S)-2-butoxy and (S)-3-octyloxymethyl groups, these polymers exhibited and insufficient solubility in 1,2-DCE. Based on these results, the use of (S)-2-butoxymethyl side chains was found to be of cri importance in order to gain sensitivity towards hydrostatic pressure Although we also prepared polymers of **1** with higher degree polymerization (60mer, 100mer, and 200mer), bearing (S)-2butoxymethyl side chains, these polymers were also found to be insoluble in 1,2-DCE at 200 MPa (see SI).

Figure 1. CD spectra of 1–4 in 1,2-DCE at 0.1 or 200 MPa, where bCD intensities are expressed in terms of g_{abs} ($\Delta \varepsilon / \varepsilon$).

Subsequently, we investigated the time-resolved CD intensition change of 1 in 1,2-DCE as a function of pressurization (0.1 to 200 MPa) and depressurization (200 to 0.1 MPa; Figure a). The pressure-dependent helix inversion process was found to 'a reversible, and rate constants for the helix inversion reaction were determined as 2.40×10^{-2} s⁻¹ (*P* to *M* at 200 MPa) ar. 1 5.41×10^{-3} s⁻¹ (*M* to *P* at 0.1 MPa, See SI) by considerir ,

This journal is © The Royal Society of Chemistry 2015

simple first-order reaction kinetics between P- and M-helices. Half-live values for the helix inversion were determined as 29 s (P to M at 200 MPa) and 128 s (M to P at 0.1 MPa), which clearly demonstrated that the helix inversion proceeds faster at high pressure than at ambient pressure.


We also investigated the correlation between pressure and g_{abs} of **1** in 1,2-DCE (Figure 2b), and found that pressurization induced a nonlinear decrease of g_{abs} . According to Hawley,¹⁸ the Gibbs energy difference (ΔG) in an isothermal process before and after pressurization can be expressed as

$$\Delta G = \Delta V \times (P - P_0) - \Delta \beta / 2 \times (P - P_0)^2, \quad (1)$$

where ΔV and $\Delta \beta$ represent the difference of the partial molar volume of the dissolved polymer and the compressibility factor, respectively. According to Green's theory,¹⁹ ΔG of the helix inversion may also be expressed as

$$\Delta G = -2RT_0 \times \{\operatorname{atanh}(g_{\operatorname{abs}} / g_{\operatorname{max}}) - \operatorname{atanh}(g_{\operatorname{abs},0} / g_{\operatorname{max}})\}, \quad (2)$$

wherein gabs,0 and gabs refer to the dissymmetry factor before and after pressurization, respectively, g_{max} to the dissymmetry factor for the purely single-handed polymer (P-helix, 100%), T_0 to the temperature (298.15 K), and R to the gas constant (8.314 J K^{-1} mol⁻¹). Due to the low solubility of 1 in 1,2-DCE, the corresponding g_{max} value could not be determined accurately, and therefore an assumed g_{max} value of 2.31 \times 10⁻³ (CHCl₃; Table 1) was used at this stage in order to obtain approximate values for ΔV and $\Delta \beta$. A nonlinear least-square fitting of ΔG versus P was carried out in order to minimize the sums of the squares of the deviation by varying the two parameters ΔV and $\Delta\beta$. Convergence of these parameters at $\Delta V = -36.8 \text{ cm}^3 \text{ mol}^{-1}$ and $\Delta\beta = -0.103$ cm³ mol⁻¹ MPa⁻¹ were observed (see SI), and despite using a non-aqueous solvent, the observed ΔV value is comparable to ΔV values of pressure-induced protein unfolding.²⁰ As discussed by Green et al., a conformational change of a helical polymer is induced by a cooperative accumulation of very small energy differences between P- and *M*-helices.²¹ In the case of the present pressure-dependent helix inversion of PQXs, a minute molar volume change per repeat unit may cooperatively accumulate and become sufficiently large in order to enable the screw-sense inversion of the helical main chain even in organic solvents. While the reason was still not clear, 2-4 did not exhibited the pressure-dependent helix inversion in spite of their structures and the solvent effect similar to 1 in 1,2-DCE. It seems that an appropriate combination of the chiral side chain and the solvent is essential to obtain the large ΔV for the pressure-dependent helix inversion.

Figure 2. (a) Time-resolved CD intensity change of 1 in 1,7 - DCE at 368.0 nm exposed to pressurization (200 MPa) and depressurization (0.1 MPa) cycles. (b) Correlation betweer pressure and g_{abs} of 1 in 1,2-DCE at 368.0 nm.

In summary, we have investigated the induction of a specin helical sense in the main chain of poly(quinoxaline-2,3-diyl) containing chiral (S)-2-butoxymethyl side chains, in variou solvents when exposed to different levels of hydrostatic pressure. We observed a clear pressure-dependent helical sen inversion in 1,2-dichloroethane or CHCl₃/1,1,2-trichloroethane mixtures. For this high pressure-induced helix inversion t occur, the presence of (S)-2-butoxymethyl side chains wa found to be of critical importance. Currently, an unequivoce' clarification of the origin of the observed pressure effect, e., by molecular dynamics simulations, still remains difficult, due to the very small energy difference between conformation Therefore, further studies, exploring potential applications helical poly(quinoxaline-2,3-diyl)s with switchable chirality as a new class of chiral supporting materials, are currently undertaken in our laboratory, alongside in-depth investigation into the origin and mechanism of this pressure-dependent heli inversion.

The authors are grateful to Prof. Dr. Tadayuki Nishiumi and Mr. Takahito Komoda (Department of Applied Biological Chemistr), Faculty of Agriculture, Niigata University) for high-pressure C , measurements. Financial support for this research was provided to the Japan Science and Technology Corporation (CREST "Development of High-performance Nanostructures for Proce 3 Integration" and "Establishment of Molecular Technology towards the Creation of New Function" Area).

Notes and references

This journal is © The Royal Society of Chemistry 2015

ChemComm, 2015, **00**, 1-4 | **3**

^a Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

E-mail: suginome@sbchem.kyoto-u.ac.jp ^b JST, CREST (CREST, "Development of High-performance Nanostructures for Process Integration" and "Establishment of Molecular Technology towards the Creation of New Function" Area), *Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.* †Electronic Supplementary Information (ESI) available: Experimental procedures and characterization data for new compounds. See DOI: 10.1039/b000000x/

- (a) R. H. Wentorf, *Brit. J. Appl. Phys.*, 1967, **18**, 865; (b) W. J. Lenoble, *Chem. unserer Zeit*, 1983, **17**, 152; (c) M. Ross, *Rep. Prog. Phys.*, 1985, **48**, 1; (d) G. A. Samara, *Physica B & C*, 1986, **139**, 3; (e) F. G. Klarner and F. Wurche, *J. Prakt. Chem.*, 2000, **342**, 609.
- 2 For pressure-dependent chirality inversion of asymmetric photoreaction; Y. Inoue, E. Matsushima and T. Wada, *J. Am. Chem. Soc.*, 1998, **120**, 10687.
- 3 P. W. Bridgman, J. Biol. Chem., 1914, 19, 511.
- 4 (a) A. Krzyzaniak, P. Salanski, J. Jurczak and J. Barciszewski, *FEBS Lett.*, 1991, 279, 1; (b) S. Takahashi and N. Sugimoto, *Angew. Chem. Int. Ed.*, 2013, 52, 13774; (c) *Molecules*, 2013, 18, 13297.
- 5 A. Krzyzaniak, J. Barciszewski, J. P. Furste, R. Bald, V. A. Erdmann, P. Salanski and J. Jurczak, *Int. J. Biol. Macromol.*, 1994, **16**, 159.
- 6 K. Heremans and L. Smeller, BBA-Protein Struct. M., 1998, 1386, 353.
- 7 J. Barciszewski, J. Jurczak, S. Porowski, T. Specht and V. A. Erdmann, *Eur. J. Biochem.*, 1999, **260**, 293.
- 8 (a) R. P. Cheng, S. H. Gellman and W. F. DeGrado, *Chem. Rev.*, 2001, 101, 3219; (b) J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte and N. A. J. M. Sommerdijk, *Chem. Rev.*, 2001, 101, 4039; (c) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, *Chem. Rev.*, 2001, 101, 3893; (d) T. Nakano and Y. Okamoto, *Chem. Rev.*, 2001, 101, 4013; (e) E. Yashima, K. Maeda and T. Nishimura, *Chem. Eur. J.*, 2004, 10, 42; (f) E. Yashima, K. Maeda, H. Iida, Y. Furusho and K. Nagai, *Chem. Rev.*, 2009, 109, 6102.
- 9 (a) M. M. Bouman and E. W. Meijer, *Adv. Mater.*, 1995, 7, 385; (b) J. Watanabe, S. Okamoto, K. Satoh, K. Sakajiri, H. Furuya and A. Abe, *Macromolecules*, 1996, 29, 7084; (c) K. Maeda and Y. Okamoto, *Macromolecules*, 1998, 31, 5164; (d) K. S. Cheon, J. V. Selinger and M. M. Green, *Angew. Chem. Int. Ed.*, 2000, 39, 1482; (e) M. Fujiki, *J. Am. Chem. Soc.*, 2000, 122, 3336; (f) K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger and B. A. Garetz, *J. Am. Chem. Soc.*, 2003, 125, 7313; (g) A. Ohira, M. Kunitake, M. Fujiki, M. Naito and A. Saxena, *Chem. Mater.*, 2004, 16, 3919.
- 10 (a) G. Maxein and R. Zentel, *Macromolecules*, 1995, 28, 8438; (b) S. Mayer, G. Maxein and R. Zentel, *Macromolecules*, 1998, 31, 8522; (c) J. Li, G. B. Schuster, K. S. Cheon, M. M. Green and J. V. Selinger, *J. Am. Chem. Soc.*, 2000, 122, 2603; (d) D. Pijper and B. L. Feringa, *Angew. Chem. Int. Ed.*, 2007, 46, 3693; (e) D. Pijper, M. G. M.
- 4 | ChemComm, 2015, 00, 1-4

Jongejan, A. Meetsmia and B. L. Feringa, J. Am. Chem. Soc., 2008, 13 4541.

- 11 (a) I. Otsuka, R. Sakai, T. Satoh, R. Kakuchi, H. Kaga and T. Kakucli, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5855; (b) I. Otsuka, K. Sakai, R. Kakuchi, T. Satoh and T. Kakuchi, Eur. Polym. J., 2008, 4, 2971; (c) F. Freire, J. M. Seco, E. Quinoa and R. Riguera, Angew. Chem. Int. Ed., 2011, 50, 11692.
- 12 (a) Y. Okamoto, T. Nakano, E. Ono and K. Hatada, *Chem. Lett.*, 1991, 525; (b) F. Sanda, K. Terada and T. Masuda, *Macromolecules*, 2005, **30**, 8149.
- 13 (a) M. M. Green, C. Khatri and N. C. Peterson, J. Am. Chem. Soc 1993, 115, 4941; (b) G. Bidan, S. Guillerez and V. Sorokin, Ad-Mater., 1996, 8, 157; (c) B. M. W. Langeveld-Voss, M. P. T Christiaans, R. A. J. Janssen and E. W. Meijer, Macromolecules, 199 31, 6702; (d) H. Goto, E. Yashima and Y. Okamoto, Chirality, 2000 17 396; (e) M. Fujiki, J. R. Koe, M. Motonaga, H. Nakashima, K. Terav and A. Teramoto, J. Am. Chem. Soc., 2001, 123, 6253; (f) H. Nak R. Nomura and T. Masuda, Macromolecules, 2001, 34, 1496; (g) K. K. L. Cheuk, J. W. Y. Lam, J. W. Chen, L. M. Lai and B. Z. Tang Macromolecules, 2003, 36, 5947; (h) K. K. L. Cheuk, J. W. Y. Lam, M. Lai, Y. P. Dong and B. Z. Tang, Macromolecules, 2003, 36, 9752 (i) K. Maeda, K. Morino and E. Yashima, J. Polym. Sci., Part A: Poly 1. Chem., 2003, 41, 3625; (j) K. Morino, K. Maeda and E. Yashima, Macromolecules, 2003, 36, 1480; (k) K. Maeda, N. Kamiya and Yashima, Chem. Eur. J., 2004, 10, 4000; (1) H. C. Zhao, F. Sanda and Masuda, Polymer, 2005, 46, 2841; (m) K. Yamazaki, A. Yokoyama ar T. Yokozawa, Macromolecules, 2006, 39, 2432; (n) T. Hasegawa, Y Furusho, H. Katagiri and E. Yashima, Angew. Chem. Int. Ed., 2007, 4 5885; (o) T. Fukushima and K. Tsuchihara, Macromol. Rapid Commu 2009. 30, 1334.
- 14 (a) T. Yamada, Y. Nagata and M. Suginome, *Chem. Commun.*, 2010
 46, 4914; (b) Y. Nagata, T. Yamada, T. Adachi, Y. Akai, T. Yamamo, and M. Suginome, *J. Am. Chem. Soc.*, 2013, 135, 10104.
- 15 (a) T. Yamamoto and M. Suginome, Angew. Chem. Int. Ed., 2009 539; (b) T. Yamamoto, T. Yamada, Y. Nagata and M. Suginome, J. Am. Chem. Soc., 2010, 132, 7899; (c) T. Yamamoto, Y. Akai, Y. Nagata and M. Suginome, Angew. Chem. Int. Ed., 2011, 50, 8844; (d) Y. Aka, T. Yamamoto, Y. Nagata, T. Ohmura and M. Suginome, J. Am. Cher Soc., 2012, 134, 11092; (e) M. Suginome, T. Yamamoto, Y. Nagata, "Yamada and Y. Akai, Pure Appl. Chem., 2012, 84, 1759.
- 16 Y. Nagata, K. Takagi and M. Suginome, J. Am. Chem. Soc., 2014, 13 9858.
- 17 Y. Nagata, T. Kuroda, K. Takagi and M. Suginome, *Chem. Sci.*, 2014 5, 4953.
- 18 S. A. Hawley, Biochemistry, 1971, 10, 2436.
- 19 S. Lifson, C. Andreola, N. C. Peterson and M. M. Green, J. Am. Cl. m. Soc., 1989, **111**, 8850.
- 20 C. A. Royer, BBA-Protein Struct. M., 2002, 1595, 201.
- 21 M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook and Lifson, *Science*, 1995, **268**, 1860.

This journal is © The Royal Society of Chemistry 2015