This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Elucidating the Intercalation Mechanism of Zinc Ions into \(\alpha \)-MnO\(_2\) for Rechargeable Zinc Batteries

Boeun Lee, Hae Ri Lee, Haesik Kim, Kyung Yoon Chung, Byung Won Cho, Si Hyoung Oh*

The intercalation mechanism of zinc ions into 2 x 2 tunnels of \(\alpha \)-MnO\(_2\) cathode for rechargeable zinc batteries was revealed. It involves a series of single and two-phase reaction steps and produces buserite, a layered compound with an interlayer spacing of 11 Å as a discharge product.

Recently, abundant polyvalent cations, such as Mg\(^{2+}\), Zn\(^{2+}\), and Al\(^{3+}\), have been studied as charge transport carriers for new battery systems with high energy densities and the commercial viability necessary for mid to large-scale energy storage systems.\(^{1-4}\) This trend has gained momentum as the markets for electrical vehicles and load-leveling for intermittent power sources has grown rapidly. For transportation purposes, advanced Li batteries such as Li-air or Li-sulfur cells show promise because of their high energy densities and the capacity for extended driving ranges given a space and weight limit for the vehicles.\(^{5,6}\) For stationary purposes, energy storage systems with a low material cost and reliable performance are required, where polyvalent ion charge carriers play a pivotal role. Rechargeable zinc batteries are considered one of the best candidates for these applications, as they consist of environmentally friendly materials, such as manganese oxide cathodes, zinc metal anodes, and aqueous electrolyte systems containing ZnSO\(_4\) or ZnCl\(_2\).\(^{7,10}\) In addition, this combination is economical to manufacture compared to other polyvalent systems or Li-ion batteries. As for \(\alpha \)-MnO\(_2\), its discharge capacity is observed to be approximately 210 mAh g\(^{-1}\), with a practical discharge potential of 1.3 V at a moderate current rate, leading to an energy density of 225 Wh kg\(^{-1}\) based on the total weight of electrode materials.\(^{2,10}\) This is much larger than the values reported for rechargeable magnesium batteries which consist of Mo\(_2\)S\(_6\) (Chevrel phase) cathodes and magnesium metal anodes (146 Wh kg\(^{-1}\)).\(^{1,2}\) However, rechargeable zinc batteries employing tunneled manganese dioxide cathodes experience a sharp initial capacity fading and suffer from a poor performance at high current densities. In order to improve the electrochemical properties, the cathode reaction mechanisms must be more thoroughly studied. Recently, our group reported that the intercalation of zinc into the 2 x 2 tunnel of \(\alpha \)-MnO\(_2\) ([001] direction) involves a reversible transition of MnO\(_2\) polymorphs from a tunneled to a layered structure (\(\delta \)-MnO\(_2\)) driven by the electrochemical reactions at the cathode.\(^{10}\) The MnO\(_2\) phase at end of discharge is identified as Zn-birnessite which has a layered structure similar to chalcophanite, ZnMn\(_2\)O\(_2\)·3H\(_2\)O, but the overall structure is slightly distorted, and hence, adapt itself to a monoclinic space group, P-1.\(^{10-13}\) The interlayer distance of Zn-birnessite is 7 Å, which is similar to the tunnel size of \(\alpha \)-MnO\(_2\).\(^{14,18}\) During this phase transition, it is observed that the manganese from the tunnel wall is actively dissolved into the electrolyte and at the end of discharge, almost 1/3 of the total manganese in \(\alpha \)-MnO\(_2\) is extracted from the structure without collapsing and the electrolyte becomes highly concentrated with manganese ions. However, during the charging process, the ions return to the cathode to reversibly incorporate into the layered structure to construct MnO\(_2\) bridges between the layers thereby forming 2 x 2 tunnels of \(\alpha \)-MnO\(_2\).\(^{10}\) In this work, we show that the intercalation of zinc ions into \(\alpha \)-MnO\(_2\) actually leads to the formation of buserite, a layered structure with a much larger interlayer distance (~ 11 Å), after a series of reaction steps and the large stress accompanied by this phase transition causes the gradual collapse of the tunnels or layers upon electrochemical cycling.

The discharge-charge profiles of the \(\alpha \)-MnO\(_2\)/zinc battery at the 1\(^{st}\), 2\(^{nd}\) and 4\(^{th}\) cycles at a current rate of C/20 (1\(^{st}\) and 2\(^{nd}\)) and C/5 (4\(^{th}\)) are shown in Figure 1a, where discharge capacities of approximately 195 mAh/g at C/20 and 167 mAh/g at C/5 were observed(1C = 210 mA/g). The \(\alpha \)-MnO\(_2\) nanorod was used to...
promote fast diffusion of zinc ions into the tunnel as well as to detect any morphological changes. Figure 1b indicates that the discharge capacity decreases gradually with cycling and the capacity retention at 30th cycle reached 70%. Plateau potentials at around 1.25 V were observed for the first discharge, indicating that two phases are involved in the electrochemical reaction at this region. However, both plateau and sloping potentials were observed from the 1st charge process. To further investigate the phase evolutions occurring during the electrochemical process, in-situ X-ray diffraction (XRD) patterns were recorded for the initial two successive cycles (Figure 2, Figure S1). The patterns clearly indicate that a new phase arises because of the interaction of zinc with α-MnO₂ in regions II and III (Figure 2b, Figure S1). However, a single phase region is also observed near the very beginning of discharge (region I) and the end of charge (region IV), where characteristic sloping potential is shown in the electrochemical curves. There is a strong peak at 2θ = 8.06° with less intense peaks at 2θ = 16.18° and 24.39° clearly indicating the formation of a layered structure with an interplanar spacing around 11 Å, i.e., buserite. These peaks can be indexed to reflections from the (001), (002), (003) crystallographic planes, respectively. These peak positions for buserite do not change throughout the whole process, but the intensity grows as the discharge proceeds, indicating that buserite is the product of the reaction of Zn²⁺ ions with α-MnO₂. Buserite is crystallized in an orthorhombic crystal system, one of the most commonly found philomanganates in Mn ocean nodules with a channel width of approximately 10-11 Å, and an important precursor for other types of manganese dioxides. Unlike birnessite, it is suggested that buserite contains extra water layers along the center of the channels.

Figure 3a shows several selected XRD patterns from Figure 2b. It shows that mixed phases of α-MnO₂ and buserite were observed in the middle of the intercalation/de-intercalation process and the discharge product at 0.7 V mostly consists of buserite, with a minor portion of unreacted α-MnO₂. Furthermore, α-MnO₂ is completely recovered after a full charge up to 1.9 V. Similar patterns are observed for the second cycle shown in Figure 2b indicating the process is very reversible. It is reported that this process involves the electrochemical reduction of manganese (Mn⁴⁺ → Mn²⁺) and the subsequent dissolution of manganese into electrolyte by a chemical disproportionation (2Mn⁴⁺ → Mn⁴⁺ + Mn²⁺(aq)) during discharge and the intercalation of manganese ions into the buserite channels during the charging process, while zinc ions incorporate into the tunnels during discharge and leave the structure during charging. Therefore, counter-diffusion between Mn²⁺ and Zn²⁺ ions occurs during the electrochemical process in regions II and III. At the beginning of discharge, only zinc ions diffuse into/out of the 2 x 2 tunnel of α-MnO₂, where only a single phase reaction occurs. It is noteworthy that the single phase region for the 2nd discharge is larger than that of the initial discharge. This is most likely due to the presence of potassium ions, which reside in the tunnel that are originally de-intercalated from the structure at the end of the 1st charge. It is reported that these cations at the center of the tunnel in α-MnO₂ are extractable without the tunnel collapsing. Without these K⁺ ions, Zn²⁺ ions can infiltrate more freely into the tunnel during the discharge process.

In aqueous solutions, Zn²⁺ ions are typically octahedrally coordinated with water molecules, such as [Zn(H₂O)₆]⁴⁺. However, the water molecules in this complex are strongly polarized by the high charge density of the central divalent cation. This leads to the spontaneous hydrolysis reaction (1):

\[
[Zn(H₂O)₆]^{2⁺} + H₂O ⇌ [Zn(H₂O)₅(H₂O)]^{2-\text{h}⁺} + H₃O⁺ \tag{1}
\]

where the equilibrium constant (K) and the degree of hydrolysis (h) depend on the pH of the solution. At a pH 4(pH of the electrolyte solution), h is estimated to be close to 1.9. This implies that at pH 4, one or more than one OH⁻ group is coordinated to zinc ion and the effective charge from the complex would be diminished, since the high ionic charge of the central cation is screened by the coordinating OH⁻ group and distributed by the partial charges formed by polarized intimate water molecules. This is very important in terms of the diffusion of Zn²⁺ ions through the tunnels and channels, as the electrostatic interactions arise between Zn²⁺ ions and the framework of the MnO₂ hosting material. Since the width of the buserite tunnel is large (approximately 11 Å), zinc ions may move through the channel with water molecules still coordinated as a form of [Zn(H₂O)₅(OH)₂]²⁻ to so that the charge of the Zn²⁺ ion is partly shielded. In layered MnO₂ compounds, Zn²⁺ ions are known to adopt octahedral configurations on the manganese vacancy site coordinated with three oxygen atoms adjacent to vacancy sites and three from water molecules inside the channel when the amount of Zn²⁺ ions is large. When the amount of Zn²⁺ ions less, the ions adopt a tetrahedral coordination above/below the manganese vacancy site with one water molecule. Including these coordinated water molecules, buserite is known to have triple water layers in the channels, which may aid in the insertion or removal of zinc ions.

Figure 2. (a) The charge-discharge profile of the zinc/α-MnO₂ for the first two cycles at a scan rate of C/20 (1C = 210 mAh g⁻¹ of the active mass) and (b) the corresponding in-situ XRD patterns during the electrochemical cycling. The regions of interest are described as I, II, III, and IV in (a).
The high-resolution transmission electron microscopy (HR-TEM) images in Figure S3 show that the original nanorod morphology of α-MnO₂ and internal tunnel or channel structure is well-preserved after the discharge and recharge, implying that the structures of the original, discharged, and recharged cathodes are closely related. Specifically, the layered structure of birnessite is clearly observed although it was created by the shrinkage of the buserite. A closer inspection of the TEM images in Figure S3 shows that in addition to nanorods, scraps of small particles were found on the surface of the nanorods, especially on the dried discharged electrode. Elemental analyses of these scraps and the nanorod in Figure S4 show that although the overall composition between Zn and Mn for nanorods and scraps together is similar to 3.0 (region C) as observed previously, which is the ratio for chalcopyrite (ZnMn₂O₄•3H₂O), the scraps (region D) were observed to be Zn-rich oxides (ZnₓMn₃Oₓ), whereas the Zn content in the nanorod (region B) is relatively less. This suggests that Zn-birnessite cannot hold as many zinc ions inside its tunnels as Zn-buserite does, because the tunnel size decreases dramatically and the electrostatic interaction between zinc ions increases sharply during the drying process. Therefore, it is reasonable to assume that these zinc-rich oxides were most likely formed during the drying process as zinc ions and water molecules are discharged from the channel.

Figure S2 shows that although the overall composition between Zn and Mn for nanorods and scraps together is similar to 3.0 (region C) as observed previously, which is the ratio for chalcopyrite (ZnMn₂O₄•3H₂O), the scraps (region D) were observed to be Zn-rich oxides (ZnₓMn₃Oₓ), whereas the Zn content in the nanorod (region B) is relatively less. This suggests that Zn-birnessite cannot hold as many zinc ions inside its tunnels as Zn-buserite does, because the tunnel size decreases dramatically and the electrostatic interaction between zinc ions increases sharply during the drying process. Therefore, it is reasonable to assume that these zinc-rich oxides were most likely formed during the drying process as zinc ions and water molecules are discharged from the channel.

The large volumetric changes between α-MnO₂ and Zn-buserite can trigger a great deal of residual structural stresses during the electrochemical cycling. This can lead to the collapse of the layered structure upon repeated cycling. Previous research reports that the growth of an amorphous phase occurs as the electrochemical cycling proceeds, with a decrease in the discharge capacity. In terms of structural stability during cycling, it would be advantageous to have a tunnel with a size comparable to the initial buserite layer width. Therefore, a good candidate material would be todorokite which has a 3 x 3 tunnel size (~10 Å) with a similar intercalation mechanism. It has been reported that the cyclic stability of todorokite is better than α-MnO₂ although it has a smaller capacity. These findings give a hint on developing cathode materials for other energy storage systems based on the intercalations of multivalent cations. The detailed reaction mechanism for this material is currently being studied, the results of which will be reported in a later communication.

Conclusions

The correct intercalation mechanism of zinc ions into α-MnO₂ during electrochemical cycling was reported. The mechanism involves a reversible phase transition between tunnelled (α-MnO₂) and layered (Zn-buserite) MnO₃ polymorphs, which is induced by a series of single- and two-phase electrochemical reactions on the cathode. It turns out that the previously observed Zn-birnessite is not a direct reaction product of zinc insertion into α-MnO₂, but is formed by the loss of the intercalated zinc ions and water molecules from the layers of buserite.

This work was supported by the Dream Project funded by the Korea Institute of Science and Technology [KIST-2013-2E23996] and the Secondary Battery R&D program of MOTIE/KEIT, [10042840, Development of LMO cathode material of high capacity(≥120 mAh/g) and high density(≥2.0g/mL) for EV.

Notes and references

Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea. Email : sho74@kist.re.kr
* Corresponding author.
† Electronic Supplementary Information (ESI) available: Experimental details, GITT calculation. See DOI: 10.1039/b000000x/