ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

P-O-B³ linkage in borophosphate glasses evidenced by high field ¹¹B/³¹P correlation NMR.

G. Tricot,^a B. Raguenet,^b G. Silly, ^b M. Ribes,^b A. Pradel, ^b H. Eckert^{c,d}

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

www.rsc.org/

The long-standing debate about the existence of $P-O-B^3$ linkage in glasses has been solved by high-field scalarcorrelation NMR. Previously suggested by dipolar-NMR methods, the presence of such species has been definitively demonstrated by ¹¹B(³¹P) J-HMQC NMR techniques. The results indicate that borophosphate networks contain P-O-B³ bonds and present thus a higher degree of atomic homogeneity than previously thought.

Growing interest in borophosphate based glasses has been observed during the last decades because of their potential applications in new energy sources as low temperature sealing glasses, all-solid batteries electrolytes or radioactive waste confinement matrices.¹⁻⁵ It is wellestablished that the excellent properties of B2O3-P2O5 based glasses result from the association between the phosphate and the borate species, giving rise to mixed units that stabilise the glass network and induce an interesting non-linear evolution of macroscopic properties known as the 'mixed glass former effect'. Within the glass network, P⁵⁺ ions always adopt tetrahedral configuration whereas boron can be found in four- (B^4) and three-fold (B^3) coordination states, the first and second species being dominant at low- and high-B₂O₃ contents, respectively. The extent of mixing between these three structural units is a key parameter for monitoring the global network topology and understanding the particular properties of these materials. While the association between P and B^4 has been demonstrated and extensively studied by vibrational and magic angle spinning solid state nuclear magnetic resonance (MAS-NMR) spectroscopies,⁵⁻¹⁵ direct and unambiguous conclusions about the mixing between P and B³ are still lacking. In 2005, state of the art NMR methods $({}^{11}B({}^{31}P)$ Rotational Echo Double Resonance $(REDOR)^7$ and ${}^{31}P({}^{11}B)$ Cross Polarisation HETeronuclear CORrelation⁶) were employed to tackle this issue. While the 2D correlation maps edited by Jäger et al. did not show any P/B³ interaction (due to the pulse sequence's ineffectiveness in handling both B^3 and B^4 signals simultaneously), the REDOR technique

afforded evidence of a non-zero P/B³ interaction.⁶⁻⁷ However, the weak dephasing can be interpreted either as a long distance interaction between unconnected B³ and P sites,⁷ or as an indirect evidence of P-O-B³ linkages.⁸ Therefore, no definitive model is available from through-space correlation NMR and it was stat debated if the borophosphate glass network was *homogeneous* at formed by interconnected P, B⁴ and B³ units or *heterogeneous* and 'composed by (i) interconnected B and P tetrahedra and (ii) domains' in which B⁴ units are exclusively linked to B³ moieties.

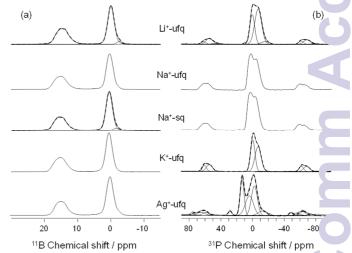


Figure 1. (a) ¹¹B and (b) ³¹P MAS-NMR spectra of the $45M_2O-35B_2O_3-20P_2O_5$ glasseries obtained at 18.8 T with a 3.2-mm probehead operating at a spinning frequence of 20 kHz. The ¹¹B spectra have been acquired with 10° pulses of 0.7 µs, 64 transients and a recycle delay (rd) of 4 s. The ³¹P spectra have been recorded with 30° pulses of 1.7 µc 32 transients and a rd of 120 s. The spectra are accompanied with representative deconvolutions in dotted lines.

This structural model, undebated for almost 10 years, has been reinvestigated in this contribution in the light of new evidences

This journal is © The Royal Society of Chemistry 2012

J. Name., 2012, **00**, 1-3 [|] 1

provided by (i) high magnetic field (18.8 T) NMR, allowing for highly resolved ¹¹B spectral analysis with well separated B^3/B^4 regions; (ii) 1D/2D dipolar- but also scalar- mediated NMR pulse sequences performed with a prototype 3.2mm ¹¹B/³¹P measurement probe on (iii) a glass series with different network former species having the composition $45M_2O-35B_2O_3-20P_2O_5$ with M=Li, Na, K or Ag. The samples have been prepared through the melt-quenching method at 1100°C with standard quenching (sq: 10^2 K.s⁻¹) for M=Na and ultra-fast twin roller quenching (ufq: 10^6 K.s⁻¹) conditions for M=Li, Na, K and Ag, according to previously published procedures.^{10,12}

The local order has been investigated with ³¹P and ¹¹B 1D MAS-NMR spectra (Fig. 1). The ¹¹B spectra (Fig. 1a) show resolved B⁴ and B³ regions at 0 and 18 ppm. As determined from the spectra deconvolution (Tab. 1), the samples contain B^4 and B^3 species in close proportions. The constant NMR parameters (Tab. 1) of B³ and B⁴ units suggest a minor influence of the surrounding cations and indicate that B^4 is mainly present as $B(OP)_1(OB)_3$ species.¹⁴ The ³¹P spectra (Fig. 1b) present broad and asymmetric features resulting from the superimposition of different signals with close chemical shifts.^{8-10,12-15} Two major components can be identified from the spectral deconvolution (Tab. 1, ESI) indicating that the glass network is mainly composed by Q_1^0 and Q_2^0 species, i.e. P^{5+} attached to 1 and 2 B^{3+} species (m=1,2 in the Q^n_m notation), respectively, without any connectivity with other P^{5+} ions (n=0 in the Q^n_m notation). Only the Ag-sample presents an additional signal assigned to a P connected to B species (Fig. 1, ESI). Altogether, the 1D MAS-NMR results indicate a similar local order in all the samples, independently of the nature of the M cation or the quenching method.

Table.1 : ^{11}B NMR parameters : chemical shift (δ_{iso} in ppm, +/- 0.1), full width at half maximum (fwhm in ppm, +/- 0.2), quadrupolar coupling constant (Cq in MHz, +/- 0.1), asymmetry parameter (η_Q , +/- 0.1) B^4/B^3 relative proportions (Rel. Prop. in %, +/- 2), second moment ($M_2(^{11}B(^{31}P)$ in 10^6 rad^2.s^{-1},+/- 10%).

Sample	\mathbf{B}^4	B^3	Rel. Prop.	$M_2(^{11}B/^{31}P)$
	δ_{iso} ; fwhm	δ_{iso} ; C_0 ; η_0	$B^3; B^4 / \%$	$B^{4}; B^{3}$
Li-ufq	0.1;2.3	17.5; 2.7; 0.5	53.2;46.8	5.0;1.7
Na-ufq	0.4;2.3	17.9; 2.7; 0.5	53.3;46.5	5.2;1.6
Na-sq	0.4;2.3	18.2; 2.7; 0.5	53.0;47.0	4.9;1.7
K-ufq	0.5;2.1	18.1; 2.6; 0.5	53.3;46.7	4.9;1.5
Ag-ufq	0.1;2.3	17.4; 2.6; 0.5	61.8;38.2	4.8;1.5

The medium range order has been analysed in a first step using dipolar correlation NMR, which is sensitive to spatial proximity. These first ever reported high resolution 2D ¹¹B/³¹P through space correlation maps have been generated at 18.8 T using the recently developed ¹¹B(³¹P) dipolar Heteronuclear Multiple Quantum Coherence (D-HMQC) method (Fig. 2a, ESI).¹⁵⁻¹⁶ The 2D map obtained on the Li-containing sample (Fig. 2a) has been acquired in 7 hours. Two separate correlation signals can be observed indicating spatial proximity between both borate species (B^4 and B^3) and the phosphate units, in a good agreement with the correlation map obtained at lower field (9.4 T) on a similar sample.¹⁰ The REDOR¹² ¹⁸ curves obtained on the 5 samples are presented in Fig. 2b, accompanied with representative parabolic fits used to derive the dipolar second moment $(M_2(^{11}B\{^{31}P\}))$ values for the B^3 and B^4 species. While the B⁴ curves present a stronger dephasing than the B^3 curves, a comparison between the five glass samples indicates that the REDOR curves for the B⁴ species are all very similar to each other, and the same is true for the B³ REDOR curves. These results suggest that the P/B organisation is similar in the five samples. The M₂ values derived from the parabolic fits are reported in Tab.1 and support the previously reported conclusions. In the case of the B^4

Page 2 of 3

units, the M_2 value (5 ×10⁶ rad².s⁻²) indicates the presence of about one B-O-P linkage (on average) per unit^{8,10,13,14} suggesting the dominant presence of B⁴(OP)₁(OB)₃ groups within the glass structure, consistent with the chemical shift analysis reported abov. The low M_2 values associated with the B³ units (1.6 10⁶ rad².s⁻¹ agree with previously found results obtained in other borophosphate glasses. However, interpretation of these results as evidence of P-C-B³ linkage is still questionable as these techniques can only provic. through-space information.

obtained by the scalar-correlation NMR experiment, which exploits indirect spin-spin couplings for the creation of heteronuclear doubl quantum coherences. Compared to the dipolar based experiment, ¹¹B(³¹P) J-HMQC¹⁹ (Fig. 2b, ESI) presents a lower sensitivity, due to rather long echo delay required for coherence creation, that results in significant signal losses due to spin-spin relaxation. Typically, 110 h (instead of 7 h in case of the dipolar map) were required to reco 1 the 2D map on the Li-sample (Fig. 2c), in spite of the hig.. sensitivity afforded by the high magnetic field used for th experiment. However, in spite of a lower signal to noise ratio, the 2 map perfectly confirms the correlation scheme derived from the dipolar 2D map and delivers the first unambiguous and duevidence for the presence of P-O-B³ linkages in borophosphare glasses.

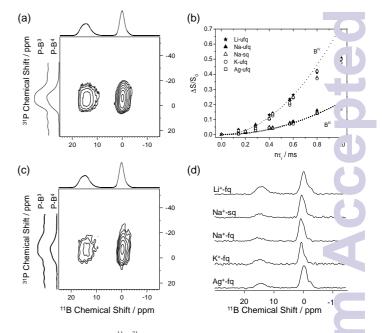


Fig.2: (a) 2D through-space ${}^{11}B/{}^{31}P$ correlation map obtained at 18.8 T on the Li- sample (7 h of acquisition : 2474 x 50 data points, 10 and 5 μ s ${}^{11}B$ and ${}^{31}P \pi/2$ pulse lengths, 2⁵ transients and 2 ms SR4²₁ dipolar recoupling). (b) ${}^{11}B/{}^{31}P$ REDOR curves obtained t 9.4 T with 10 and 5 μ s ${}^{11}B$ and ${}^{31}P \pi/2$ pulse lengths and 32 transients. (c) 2D throug bond ${}^{11}B/{}^{31}P$ correlation map obtained at 18.8 T on the Li- sample (110 h of acquisition 2474 x 50 data points, 10 and 5 μ s ${}^{11}B$ and ${}^{31}P \pi/2$ pulse lengths, 2048 transients and 5 ms echo-delay. (d) 1D through-bond ${}^{11}B/{}^{(31}P)$ J-HMQC spectrum obtained at 18.8 T (the 45M₂O-35B₂O₃-20P₂O₅ glass series with 2-4 k transients.

Having been evidenced in the Li- and ultra-fast quenched sam le, the presence of P-O-B³ linkage in the other samples was investig 'ed by using the 1D version of the ¹¹B(³¹P) J-HMQC experiment. These DQ filtered ¹¹B spectra are summarised in Fig. 2d and show th both B⁴ and B³ are connected to P⁵⁺ units in all the glasses. Thubond connectivity between phosphate units and three-coordinate 1 boron is not dependent on a particular formulation or synthesis procedure and must be considered as a common motif 1 borophosphate glasses.

This journal is © The Royal Society of Chemistry 2012

The quantitative analysis of the $^{11}\text{B}/^{31}\text{P}$ dipolar interaction, derived from the REDOR experiment (Fig. 2b), can thus be re-interpreted. Keeping in mind that for each B-O-P linkage an M₂ increment of 4-5 \times 10⁶ rad².s⁻² is observed,^{7,8,14} the M₂ values obtained for the B³ species (1.5 to 1.7 \times 10⁶ rad².s⁻²), suggest that approximately 30 \pm 10% of all B³ units present a B-O-P linkage. The three structural basic units (P, B³ and B⁴) interact altogether to create the mixed glass network and it is now clearly established that the borophosphate glass network presents a good atomic homogeneity even at high B₂O₃ amount.

Notes and references

^{*a*} LASIR UMR-CNRS 8516, université de Lille, Sciences et Technologies, Villeneuve d'Ascq F-59655, France.

^b ICGM UMR-CNRS 5253, université de Montpellier, Montpellier F-34095, France.

^c Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, São Carlos, São Paulo, Brazil.

^d Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, D-48149 Münster, Germany

Electronic Supplementary Information (ESI) available: [Tab. 1 31 P NMR parameters; Fig. 1 11 B(31 P) D-HMQC experiment performed on the Ag-sample]. See DOI: 10.1039/c000000x/

- I.W. Donald, B.L. Metcalfe, S.K. Fong and L.A. Gerrard, J. Non-Cryst. Solids, 2006, 352, 2993-3001.
- 2 R.K. Brow and D.R. Tallant, J. Non-Cryst. Solids, 1997, 222, 396-406.
- 3 A. Magistris, G. Chiodelli and M. Villa, *J. Power Sources*, 1985, **14**, 87-91.
- 4 N.H. Ray, Phys. Chem. Glasses, 1975, 16, 75-80.
- 5 T. Tsuchiya and T. Moriya, J. Non-Cryst. Solids, 1980, **38-39**, 323-328.
- 6 M. Zeyer-Düsterer, L. Montagne, G. Palavit and C. Jäger, *Solid State Nucl. Magn. Reson.*, 2005, 27, 50-64.
- 7 S. Elbers, W. Strojek, L. Koudelka and H. Eckert, *Solid. State. Nucl. Magn. Reson.*, 2005, 27, 65-76.
- 8 D. Raskar, M. Rinke and H. Eckert, J. Phys. Chem. C, 2008, **112**, 12530-12539.
- 9 M. Rinke and H. Eckert, Phys. Chem. Chem. Phys., 2011, 13, 6552-6565.
- 10 B. Raguenet, G. Tricot, G. Silly, M. Ribes and A. Pradel, J. Mater. Chem., 2011, 21, 17693-17704.
- 11 V. Michaelis, P. Kachhadia and S. Kroeker, *Phys. Chem. Glass- Eur.* J. Glass Sci., 2013, 54, 20-26.
- 12 B. Raguenet, G. Tricot, G. Silly, M. Ribes and A. Pradel, *Solid State Ionics*, 2012, 208, 25-30.
- 13 S. Scotti, M. Villa, P. Mustarelli and M. Cutroni, *Solid State Ionics*, 1992, 53-56,1237-1244.
- 14 D. Larink, H. Eckert, M. Reichert and S. Martin, J. Phys. Chem. C, 2012, 116, 26162-26176.
- 15 Z. Gan, J. Magn. Reson., 2007, 184, 39-43.
- 16 G. Tricot, O. Lafon, J. Trebosc, L. Delevoye, F. Mear, L. Montagne and J-P. Amoureux, *Phys. Chem. Chem. Phys.*, 2011, 13, 16786-16794.
- 17 J.R. Garbow, T. Guillon, J. Magn. Reson. 95 (1991) 442-445.

This journal is © The Royal Society of Chemistry 2012

- M. Bertmer and H. Eckert, Solid State Nucl. Magn. Reson., 1999, 15, 139-152.
- 19 A. Lesage, D. Sakellariou, S. Steuernagel and L. Emsley, J. Ar Chem. Soc., 1998, **120**, 13194-13201.