This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A super-paramagnetic nano-architecture, which could be separated and re-dispersed easily for reusing, was designed for effective dye-sensitized H$_2$ evolution. By the enhancement of electron-transfer and surface-repair ability of graphene, the visible-light-driven hydrogen evolution rate over exposed Pt (111) facet loaded Fe$_3$O$_4$/GO catalyst was remarkably enhanced.

In the past decades, over-consumption of fossil fuel and related environmental pollution problems makes scientists urgent to search for efficient, clean and renewable energy resource to solve those energy crisis. Hydrogen is recognized to be an ideal next-generation energy because of its higher combustion enthalpy than conventional fuels and “zero-pollution” (yielding only water after oxidation). Splitting water by solar energy is a promising strategy for hydrogen generation. Plenty of advances have been reported to enhance the efficiency of visible-light-driven H$_2$ evolution, including the application of high active catalysts, improving the charge separation by the aids of carbon materials, expanding the photo-responsive range by dye sensitization and modify the dispersion of catalyst in reactive system to improve the reactive interface area between the catalyst and the solution.

Some problems still exist in the H$_2$ evolution reaction (HER) research field. For one thing, the H$_2$ evolution activity and stability are far from satisfactory. For another, it is expensive and time-consuming to separate the photo-catalysts and co-catalysts from the reactive system. High cost of catalysts has become one of the problems that limit their application in the HER field. In fact, magnetic separation of catalyst could endow the HER process with a “magnetic switch”. It is convenient to realize control the reaction process by regulating the magnetic field outside the HER system. That could inevitably enhance the safety of HER reactive system.

Herein, we report, for the first time, a super-paramagnetic nano-architecture for the dye-sensitized H$_2$ evolution under visible light irradiation (λ≥420 nm) over exposed Pt (111) facet loaded Fe$_3$O$_4$/GO catalyst. As illustrated by Scheme 1, the nano-architecture is composed of ternary components: (1) The Fe$_3$O$_4$ hollow spheres to provide the catalyst with super-paramagnetic property and sufficient hydrophilic groups; (2) The graphene (GR) sheets enhance transfer the photo-generated charge and modify the surface of Fe$_3$O$_4$; (3) Active Pt quantum dots that distribute uniformly across the GR sheets to act as the co-catalyst. Such nano-architecture material exhibits favourable activity and stability for visible light driven H$_2$ evolution. Besides, the composite catalyst responds sensitively to external magnetic field. It is convenient to separate the catalyst from reactive system and re-disperse them into the solution for recycling use.

Photo-catalysts were synthesized by hydrothermal method (details in ESI†). In Fig. 1 (a), the diffraction peaks could be assigned to different crystal planes of cubic Fe$_3$O$_4$ (JCPDS#65-3107). Diffraction peaks of Pt and GR were not obvious in the XRD pattern though the X-ray photoelectron spectroscopy (XPS) in Fig. 2 (a)
demonstrated that the Fe$_3$O$_4$@Pt and Fe$_3$O$_4$@Pt@GR catalysts are composed of Fe, C, O and Pt elements (Fig.1e). Furthermore, the XPS peaks at 70.9 eV and 74.3 eV could be assigned to the Pt 4f$_{5/2}$ and Pt 4f$_{7/2}$ states, respectively. The Pt 4f XPS spectra indicate that the Pt element exists as metallic state in the Fe$_3$O$_4$@Pt and Fe$_3$O$_4$@Pt@GR.

Fig.1 (b) reveals that the Fe$_3$O$_4$ are hollow spheres which were assembled by lots of Fe$_3$O$_4$ nano-crystals. The 0.29 and 0.25 nm interlayer distance could be assigned to the (220) and (311) planes of cubic Fe$_3$O$_4$, respectively. As to the Fe$_3$O$_4$@Pt, some gray quantum dots co-exist with the Fe$_3$O$_4$ nano-crystals (Fig.1 (c)). The gray quantum dots shows 0.19 and 0.23 nm inter-planar distances, which could respectively be assigned to the (100) and (111) plane of tetragonal Pt. For the Fe$_3$O$_4$@Pt@GR, the Fe$_3$O$_4$ microspheres are anchored on the GR sheets to form a two-dimensional nano-architecture (Fig.1 (d)). Moreover, there are large amounts of gray quantum dots connected on the GR surface. The quantum dots on GR have the interlayer distances of 0.19 and 0.23 nm, which also respectively corresponds to the (100) and (111) planes of Pt. The result indicates that the GR offered a good template for the growth of Pt quantum dots.

It is interesting to find that the the Pt dots tend to expose their (100) planes in the Fe$_3$O$_4$@Pt catalyst while the dots mainly expose their (111) facets in the Fe$_3$O$_4$@Pt@GR, as shown in Fig. 1 (g). It seems that the GR sheets may have inductive effect on the preferential growth of Pt. Similar phenomenon has also been reported for the synthesis of single crystal Pt nano-sheets in molten salt medium systems.

As shown in Fig. 2 (a), the Fe$_3$O$_4$ spheres show very little remnant magnetization and coercivity, indicating that the spheres are super-paramagnetic iron oxide. The super-paramagnetic property of Fe$_3$O$_4$ spheres is consistent with their XRD and HRTEM characterizations that the spheres are composed of smaller nano-crystals. The super-paramagnetic property of Fe$_3$O$_4$ could be retained when we assembled it with Pt and GR to form the nano-architecture of Pt@Fe$_3$O$_4$ and Pt@Fe$_3$O$_4$@GR. The saturation magnetization (Ms) of Pt@Fe$_3$O$_4$ and Pt@Fe$_3$O$_4$@GR could reach 63 and 61 emu/g, respectively. The Ms is large enough for the catalyst to be magnetized and separated easily from the solution for recycle use by utilizing magnet field (Fig. 3 (b)). The catalysts could also be demagnetized only by removing the external magnet field due to its super-paramagnetic nature. The catalysts could disperse well in water dispersion to form an aqueous solution (Fig. 3 (c)). This is related to the carboxyl groups (COO’) connected on the catalysts (Fig. 3 (b)). The COO’ groups could not only improve the hydrophilicity of catalysts but enhance their water-dispersion via electrostatic repulsive force. The nano-architecture could therefore be re-dispersed in water again by slight shaking, as shown in Fig. 3 (b). Furthermore, the intensity of Fe-O groups decreased obviously with the addition of GR, indicating that the GR may “cover” or interact with the Fe-O groups on the surface of Fe$_3$O$_4$ microspheres. In agreement with the FTIR results, the peaks at 284.7, 286.5, and 288.9 eV also verify the existence of C-C, C-O and C=O bonds (Fig. 3 (d)).

The H$_2$ evolution test has been carried out to compare the activity and stability of different catalysts, as shown in Fig. 3 (a). In the first run, small amounts of H$_2$ (25 µmol) were produced in Eosin Y (EY)-Fe$_3$O$_4$ system after 6 h irradiation (λ ≥ 420 nm). H$_2$ evolution was enhanced to 432 µmol in 6 h when the Pt@Fe$_3$O$_4$ was used as...
catalyst. The enhancement of H₂ evolution could be attributed to the high activity and low over-potential of Pt for proton reduction. 614 μmol H₂ was produced over the EY-sensitized Pt@FeO₃@GR photo-catalyst in 6 h, which were 24.6 and 1.4 times higher than that of FeO₃ and Pt@FeO₃. Moreover, Pt@FeO₃@GR exhibits better stability than the FeO₃ and Pt@FeO₃. In the 2nd run, the H₂ production over Pt@FeO₃@GR could be revived to 95.8% while that over the Pt@FeO₃ was only recovered to 78%. Therefore, the stability of catalyst could be improved obviously by decorating the products with GR sheets.

The concentrations of dyes and catalysts were 1×10⁻³ mol/L and 10 mg/mL, respectively. Single-exponential fit for EY. Double-exponential fit for EY-FeO₃@Pt and EY-FeO₃@Pt@GR (d) Apparent quantum efficiencies (AQEs) of H₂ evolution under the irradiation at different wavelengths. (c) Photo-luminescence of EY, EY-FeO₃@Pt and EY-FeO₃@Pt@GR (e) Fluorescence lifetime divided into a short and a long exponential decay.

Table 1 Decay parameters of EY in the presence of FeO₃@Pt and FeO₃@Pt@GR.

<table>
<thead>
<tr>
<th>System</th>
<th>Lifetime (ns)</th>
<th>Pre-exponential factors A</th>
<th>A</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EY</td>
<td>τ₁=1.21</td>
<td>0.0736</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>FeO₃@Pt</td>
<td>τ₁=0.806</td>
<td>A₁=0.0416</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>FeO₃@Pt@GR</td>
<td>τ₁=1.01</td>
<td>A₁=0.067</td>
<td>0.64</td>
<td>1.00</td>
</tr>
<tr>
<td>Pt@GR</td>
<td>τ₂=1.67</td>
<td>A₂=0.0125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The effect of GR is further investigated by the photo-current and photo-luminescence test. As shown in Fig. 3 (b), the EY-FeO₃@Pt@GR exhibits higher photocurrent than the EY-FeO₃ and EY-FeO₃@Pt. As a zero-band semiconductor, the GR sheets could transfer the photo-generated electron effectively to the Pt active sites. The large enhancement of photo-current indicates excellent conductive effect of GR sheets. Besides, the luminescent intensity of EY decreased dramatically with the addition of FeO₃@Pt@GR (Fig. 3 (c)), which also implies effective electron transfer between the excited EY* and the catalysts. Fluorescence lifetime of EY was investigated to reveal more information about the energy transfer process (Table 1). The emission of EY exhibits a single-exponential decay and its lifetime is 1.21 ns. The single-exponential decay divided into a short and a long exponential decay when the FeO₃@Pt or FeO₃@Pt@GR catalyst was tested (Table 1). The long and short emission decay could respectively be assigned to the unbounded EY and the EY linked to the catalyst. It is apparent that the EY-Pt@FeO₃@GR exhibits longer fluorescence lifetime than the EY-FeO₃@Pt system, indicating that the GR could prolong the lifetime of excited EY in the TEOA solution. Longer lifetime could leave more time for the photo-electrons to pass through the GR sheets before being quenched by the sacrificial reagent TEOA, as a result improving the H₂ evolution.

The effect of GR on the e⁻h⁺ separation may not be the only reason for the enhancement of H₂ evolution. The surface states could also affect the efficiency of H₂ evolution. In Fig. S1(a-d), the Fe₂p½ and Fe₂p½ peaks can be de-convoluted by six peaks around 710, 712, 718, 723, 725 and 732 eV. The two satellite peaks around 718 and 732 eV could be assigned to Fe²⁺ in the FeO₃ phase, indicating that the surface of microspheres are slightly oxidized in the air. The other four peaks respectively correspond to the Fe³⁺ (712, 732 eV) and Fe²⁺ (725, 745 eV) in the FeO₃ phase. Area ratio of the Fe³⁺/Fe²⁺ in FeO₃ phase were calculated to be 1.27/1, 0.90/1 and 1.20/1 for the FeO₃, FeO₃@Pt, and FeO₃@Pt@GR (Fig. S1(d)) respectively. The Fe³⁺/Fe²⁺ ratio on FeO₃@Pt surface deviates seriously from that on the surface of FeO₃. The result indicates lots of surface defects existing on the surface of FeO₃@Pt. As for the FeO₃@Pt@GR, the Fe³⁺/Fe²⁺ ratio on its surface revives back to 1.20/1. The decreasing of Fe³⁺/Fe²⁺ ratio indicates that the GR could “repair” or “cover” the surface defects of FeO₃ microspheres. As a result, application efficiency of the photo-generated charges could be improved because more photo-electrons were separated and transferred to the co-catalysts before quenched by the surface defects. In order to investigate the effect of FeO₃ on the performance of hydrogen evolution, the hydrogen evolution rate over Pt@GR was also collected and compared with that of FeO₃@Pt@GR (Fig. S11). H₂ evolution over the FeO₃@Pt@GR was lower than that over the Pt@GR, indicating that some photo-electrons were quenched by the defects on the FeO₃ surface. The O 1s spectra are also investigated to reveal more information of the surface. The O 1s spectra of photo-catalysts could be de-convoluted into three peaks around 530, 531 and 533 eV, which respectively corresponds to the oxygen in the FeO₃ crystal lattice oxide oxygen (O²⁻), hydroxyl (–OH), and absorbed water (H₂O)²⁻. Relative content of different oxygen species are summarized in Fig. S1(h). The amount of O²⁻ on the FeO₃@Pt surface is obviously less than that on the surface of FeO₃. The decreasing of O²⁻ indicates plenty of low oxygen coordination defects existing on the FeO₃@Pt surface. Those surface defects provide more “annihilation” sites for the photo-generated electrons, and therefore aggravate the failing of photo-current and H₂ evolution. Surface defects may also decrease the stability of catalysts due to the surface corrosion on in the alkaline TEOA reactive solution (pH=11).

Furthermore, different exposed facet of Pt quantum dots may also have effect on the H₂ evolution (Fig. 1 (g)). The Pt (111) facets have three advantages over its (100) facet for the production of H₂. Firstly, the Fermi energy of Pt (111) and (100) facet is respectively about -1.29 eV and -1.95 eV, suggesting that the photo-electrons are more feasible to be transferred to the (111) facets. Secondly, the
number of chemisorbed H atoms on the Pt (111) facets was much more than that on the Pt (100) facets. Besides, the Pt (111) facets have more suitable sites for the recombination H-H atoms. These advantages result in the higher activity of Pt (111) facets for the H\textsubscript{2} evolution. As a result, the better performance of Fe\textsubscript{3}O\textsubscript{4}@Pt@GR is also relevant to the large amounts of Pt (111) facets on the GO sheets.

Apparent quantum efficiencies (AQEs) of the EY-Fe\textsubscript{3}O\textsubscript{4}@Pt and EY-Fe\textsubscript{3}O\textsubscript{4}@Pt@GR system had also been collected from 430 to 550 nm (Fig. 3 (d)). The EY-Fe\textsubscript{3}O\textsubscript{4}@Pt@GR system show higher AQE than the EY-Fe\textsubscript{3}O\textsubscript{4}@Pt system under each irradiation wavelength. The improvement of AQE could also be related to the conductive and “repair” effects of GR, as well as the advantages of Pt (111) face. According to above results, a mechanism could be proposed for the H\textsubscript{2} evolution, as shown in Scheme 1. When the Fe\textsubscript{3}O\textsubscript{4}@Pt@GR is introduced into the EY-TEOA solution system, the EY molecules could adsorb on the surface of GR sheets, the Fe\textsubscript{3}O\textsubscript{4} micro-spheres, and the Pt (111) facets by physical or chemistry adhesion. Upon visible light irradiation, the electrons at the highest-occupied molecular orbital (HOMO) of EY could absorb the light energy and be excited to the lowest-unoccupied molecular orbital (LUMO). Inevitably, some photo-electrons may be quenched by defects on the Fe\textsubscript{3}O\textsubscript{4} surface. Most of the photo-generated electrons are trapped by the GR sheets due to its excellent electron-accepting and electron-transporting ability. The trapped electrons then pass through the GR sheets, accumulated on the Pt (111) facet and lead to the hydrogen production from water.

In summary, magnetic nano-architecture was synthesized by hydrothermal method for dye-sensitised hydrogen evolution. The super-paramagnetic Fe\textsubscript{3}O\textsubscript{4}@Pt@GR catalyst shows sensitive response to outside magnetic field. It is convenient to separate the catalyst from reactive system and re-disperse them into dye-sensitized reactive system for reuse. GR plays a crucial role in improving the activity and stability of the magnetic photo-catalyst. This report may offer a feasible strategy to improve the efficiency and stability of magnetic catalysts, as well as reduce the cost for visible-light-driven H\textsubscript{2} evolution.

This work is supported by the NSF of China (grant no. 21433007, 21173242) and the 973 and 863 Programs of Department of Sciences and Technology of China (2012AA051501, 2009CB220003) respectively.

Notes and references

2. Z. Han, R. Eisenberg, Acc. Chem. Res. 2014, 47, 2537
20. J. Ge, Y. Yin, J. Mater. Chem., 2008, 18, 5041
27. X. Hu, M. Ma, M. Zeng, Y. Sun, L. Chen, Y. Xue, Tao Zhang, X. Ai, R. Mendes, M. Rümmeli, L. Fu, Appl. Mater. Interfaces 2014, 6, 22527