ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Journal Name

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Construction of dibenzo-fused seven- to ninemembered carbocycles via Brønsted acid-promoted intramolecular Friedel–Crafts-type alkenylation

Takashi Otani,^{*a} Kanako Ueki,^b Kinryo Cho,^b Kan Kanai,^b Kotaro Tateno^b and Takao Saito^{*ab}

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Brønsted acid-promoted intramolecular hydroarylation of alkynylbenzenes carrying an arylalkyl group at the orthoposition leads to alkylidenedibenzo[a,d]cycloheptenes, octenes and -nonenes in up to quantitative yield with complete regioselectivity. The scope and limitation of this reaction and application to the synthesis of tricyclic antidepressants are described.

5-Alkylidene-10,11-dihydro-5*H*-dibenzo[a,d]cycloheptenes **1** are an important structural motif found in many biologically active compounds, as exemplified by tricyclic antidepressants (TCAs). For example, amitriptyline (**1a**),^{1,2} which has been prescribed since the 1950s, has been the most widely used TCA to treat a number of mental disorders. Structurally similar nortriptyline (**1b**)³ is also one of the often-prescribed TCAs.

Because of their medical importance, various synthetic methods for 1 have been developed to date.^{2,4} Widely reported syntheses of **1** exploit the corresponding ketone (dibenzosuberone (4)) backbone; treatment of dibenzosuberone with Grignard reagent (R¹CH₂MgX) and the following elimination of water from the resulting carbinol complete the synthesis of **1** (Fig. 1, eqn (1)).² This protocol is quite practical to access the seven-membered ring system 1, but is unattractive to construct the homologous eight-5 and nine-membered6 ring systems 2 and 3 because the corresponding ketone precursors 5 and 6 are not commercially available nor easily prepared. Indeed, access to the nine-membered ring system is very difficult, and to our knowledge, synthesis of 13-alkylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene **3** has not been achieved to date.⁷

Palladium-catalysed alkenylation (i.e., reductive Heck reaction)^{8,9} and gold, platinum or gallium-catalysed Friedel–Crafts (F.C.)-type alkenylation¹⁰ of alkynylbenzenes carrying a heteroatom-tethered aryl group in the ortho-position have emerged as useful reactions for the synthesis of benzo- or

This journal is © The Royal Society of Chemistry 2012

dibenzo-fused seven- and eight-membered oxygen- and nitrogen-heterocycles. Curiously, however, these types (f reactions have not been applied for the synthesis of the allcarbon counterparts 1-3.^{11,12} Concerning F.C.-ty[5] alkenylations, other groups¹³ and we¹⁴ have demonstrated that strong Brønsted acids,¹⁵ such as trifluoromethanesulfon. (triflic) acid (TfOH), are more highly active promoters the Lewis acids in several reactions.¹⁶ This background prompte us to investigate intramolecular F.C.-type hydroarylation of *c* alkyn-1-yl(arylalkyl)benzenes 7–9 leading to dibenzo-fuse seven- to nine-membered carbocycles 1-3 (eqn (2)).

RSC**Publishing** o nineid-promoted enylation Kotaro Tateno^b and

J. Name., 2012, **00**, 1-3 [|] 1

We initially examined the feasibility of a Brønsted acid catalysed cyclization of 1-(3,3-dimethyl-1-butyn-1-yl)-2-(3phenylpropyl)benzene (8a) to dibenzocyclooctene derivative 2a in dichloromethane at 0 °C (Table 1). When 8a was treated with 10 mol% of triflic acid for 4 h, the reaction did not complete and formed 2a, albeit in a low yield of 21% (entry 1). The yield of 2a was improved by increasing the amount of triflic acid (entries 2 and 3), and the use of 100 mol% resulted in quantitative formation of 2a in the short reaction time of 10 min Other (entry 4). strong acids such as bis(trifluoromethane)sulfonimide (entry 5) and sulfuric acid (entry 6) also facilitated this reaction; however, trifluoroacetic acid and hydrogen chloride (ether solution) showed almost no activity (entries 7 and 8). We also examined a cationic gold(I) complex (5 mol%) prepared from AuCl(PPh₃) with AgOTf; however, the reaction formed only a trace amount of 2a in spite of stirring at room temperature for 1 h followed by heating at reflux for 1 h in chloroform (entry 9).¹⁷

 a Hydrogen chloride ether solution (1.0 M) was used. b Not detected. c In chloroform. d Prepared from AuCl(PPh₃) with AgOTf. e 60 min at room temperature and 60 min at 50 °C.

With the effective reaction conditions in hand, we explored the compatibility of substituents on the alkyne terminus for the synthesis of dibenzocyclooctene and -heptene derivatives (Table 2). Secondary and primary alkyl groups, such as isopropyl and propyl groups, are more suitable groups for this reaction (entries 1 and 2). However, phenyl-substituted **8d** produced a complex mixture without formation of the cyclized product **2d** (entry 3), and the TMS-substituted **8e** produced TMS-group eliminated exo-methylene compound **2e'** in 9% yield (entry 4). The conditions are applicable for construction of a seven-membered ring system **1** (n = 1), and **1c**, **1d** and **1e'** were synthesized from **7c–e** in good to high yields (entries 5–7).

To demonstrate the utility of this protocol for the synthesis of medicines, amitriptyline (1a), nortriptyline (1b) and their derivatives were targeted. Although these reactions required 5 equiv of triflic acid, the cyclization of 7a and 7b produced 1a and 1b in 56% and 68% yields, respectively (entries 8 and 9).

2 | *J. Name.*, 2012, **00**, 1-3

Similarly, substrates **7f** and **8f–h** having hydroxyl or primary amino groups were also tolerant under the super acid conditions and the corresponding alcohols and amines were obtained in acceptable yields (entries 10–13).

Next, we examined the effects of the substituents on the aromatic rings and stereoselectivity of the addition process (Table 3). The reaction of 8i, in which a methoxy group was installed in the phenylene moiety (R²), with triflic aci, afforded the corresponding adduct 2i as a mixture of syn- and anti-addition products, along with dimer 10 (entry 1). contrast, less acidic sulfuric acid produced syn-addition produced (Z)-2i exclusively in moderate yield (entry 2). Similarly, th. reaction of 8j, having a methoxy group at R³ on the pendar aryl group, with triflic acid produced a mixture of syn- and antiadducts 2i, whereas sulfuric acid delivered syn-addition product (E)-2i with complete selectivity (entry 3 vs. 4). The separate formation of (E)-2i and (Z)-2i from 8i and 8j, respective (entries 2 and 4), indicates that both syn-addition products are kinetic products. To prove further the above-mentioned product selectivity, we also examined the triflic and sulfuric a promoted reaction of methyl-substituted substrates 8k, 8l and 7g (entries 5-9). Consistent with the above, sulfuric acid delivered syn-addition products highly selectively (entries 6, 7) and 9), while triflic acid produced almost 1:1 mixtures of synand anti-addition products with high combined yields (entries and 8). The structures of (Z)-2j and (E)-1g were unambiguously confirmed by X-ray crystal analysis. The reaction of **7h** bear the electron-withdrawing trifluoromethyl group on the pendar aryl group (\mathbb{R}^3), with triflic acid formed a mixture of syn- ar. anti-adducts ((E)- and (Z)-1h) along with a small amount of tbutyl-eliminated compound 1h' (entry 10); however, the reaction with sulfuric acid was completely suppressed (entry 11). The reaction of 7i, bearing an *n*-propyl group on the

 Table 2
 Synthesis of dibenzocycloheptenes and -octenes having various substituents on the alkyne terminus

						_
Entry	S.M.	п	\mathbf{R}^{1}	Time (min)	Product (yield)	
1	8b	2	iPr	10	2b (85)	7
2	8c	2	nPr	10	2c (75)	
3	8d	2	Ph	40	$2d (ND)^a$	
4	8e	2	TMS	30	2e' (9)	
5	7c	1	<i>t</i> Bu	10	1c (97)	
6	7d	1	nPr	15	1d (96)	
7	7e	1	TMS	20	1e' (50)	
8 ^b	7a	1	CH ₂ CH ₂ NMe ₂	10	1a (56)	
9 ^b	7b	1	CH ₂ CH ₂ NHMe	10	1b (68)	
10 ^b	7f	1	CH ₂ CH ₂ OH	10	1f (44)	
11 ^b	8f	2	CH ₂ CH ₂ NMe ₂	10	2f (48)	
12 ^b	8g	2	CH ₂ CH ₂ OH	10	2g (34)	
13 ^b	8h	2	CH ₂ CH ₂ NH ₂	10	2h (25)	
^a Not det	ected. ^b 5	equiv	of TfOH were used.			d

This journal is © The Royal Society of Chemistry 2012

Journal Name

R ²		1	Acid CH	(100 mol%) 2Cl ₂ , 0 °C	R ²		H + R ²		MeO		CF ₃	CLI
		\sim	`R³		s) Dr	/n-addition	<i>anti</i> -add product	lition	10	1h'		
Entry	S.M.	п	\mathbf{R}^1	R ²	R ³	Acid	Time (min)	syn-addition	anti-addition	Yield ^a	Ratio (syn-:anti-addit	ion
								product	product		product)	
1	8i	2	tBu	OMe	Н	TfOH	10	Z-2i	E-2i	72^{d}	79:21	
2	8i	2	tBu	OMe	Н	H_2SO_4	10	Z-2i	E-2i	54^e	>99:1	
3	8i	2	<i>t</i> Bu	Н	OMe	TfOH	30	E- 2 i	Z-2i	92	79:21	
4	8i	2	<i>t</i> Bu	Н	OMe	H_2SO_4	10	E- 2 i	Z-2i	45	>99:1	
5	8k	2	<i>t</i> Bu	Me	Н	TfOH	10	Z-2j	<i>E</i> -2j	quant.	45:55	
6	8k	2	<i>t</i> Bu	Me	Н	H_2SO_4	20	Z-2i	<i>E</i> -2i	quant.	>99:1	
7	81	2	tBu	Н	Me	H_2SO_4	20	<i>E</i> -2i	Z-2i	86	>99:1	
8	7g	1	<i>t</i> Bu	Н	Me	TfOH	10	E-1g	Z-1g	94	50:50	
9	7g	1	tBu	Н	Me	H_2SO_4	10	E-1g	Z-1g	95	99:1	
10	7ĥ	1	tBu	Н	CF ₃	TfOH	10	<i>E</i> -1h	Z-1h	35	55:45	
11	7h	1	<i>t</i> Bu	Н	CF ₂	H ₂ SO ₄	60	<i>E</i> -1h	Z-1h	NR		
12	7i	1	nPr	Н	Me	TfOH	10	E-1i	Z-1i	91	50.50	
13	7i	1	nPr	Н	Me	H ₂ SO ₄ ^g	2.5^{h}	E-1i	Z-1i	66	60:40	
14	7i	1	nPr	Н	Me	H_2SO_4	20	E-1i	Z-1i	9	>95:5	

^{*a*} Combined yield of *syn*- and *anti*-addition product. ^{*b*} Determined by ¹H NMR. ">99:1" denotes no *anti*-addition product was observed by ¹H-NMR. ^{*d*} Dimer **10** was obtained in 13% yield. ^{*e*} Dimer **10** was obtained in 1% yield. ^{*f*} **1h**' was also obtained in 10% yield. ^{*g*} Additional 1 equiv of H₂SO₄ was added after 15 min. ^{*h*} Total time.

alkyne terminus (\mathbb{R}^1), with triflic acid also proceeded efficiently (entry 12). However, the reaction of **7i** with sulfuric acid is slower than that of the *t*-butyl counterpart **7g**, and thus a longer reaction time and addition of another equivalent of sulfuric acid were required for full conversion of **7i**, which resulted in the formation of *syn*- and *anti*-addition products **1i** (60:40, entry 13). Finally, we found that quenching the reaction before complete consumption of **7i** forms stereochemically pure *syn*-addition product (*E*)-**1i**, albeit in 9% yield (entry 14).

Based on the above results, we propose a possible reaction pathway (Scheme 1). By treatment with a Brønsted acid, regioselective protonation of the β -carbon atom of **A** forms a relatively stable benzylic vinyl cation **B**, after which the pendant aryl group attacked the α -carbon atom from the less hindered H-side in a F.C. manner to give the formal *syn*addition product **C**. Under the super acidic conditions, however, olefin isomerization of the *syn*-addition product **C** occurs, which results in the formation of a mixture of *syn*- and *anti*- addition products C. Table 3 suggests that triflic acid rather than sulfuric acid and the smaller n-propyl group rather than th t-butyl group promote the rapid olefin isomerization.

To evaluate further the scope of this protocol, the construction of a nine-membered ring was explored (Table 4) Gratifyingly, triflic acid promoted the cyclization of 9 to albeit in moderate yields (entries 1, 3–8), but the reaction of 5 a with sulfuric acid formed only a complex mixture (entry 2). It is noteworthy that the flexible butylene chain-tethered aryl group participated in a formal 9-*exo*-dig cyclization.¹² In addition, oxidative cleavage of the alkene double bond¹⁸ of **3b** led to the corresponding ketone **6** in 61% yield (eqn (3)). Ketone **6** we alker the synthesis of dibenzocyclononene derivatives.

In summary, we have developed a Brønsted acid-promote 1 intramolecular Friedel–Crafts-type alkenylation that produces dibenzo-fused seven- to nine-membered carbocycles in up 1 quantitative yield with up to complete control of the olefin.

Journal Name

geometry, and achieved construction of dibenzo-fused cyclononene derivatives **3** for the first time.

 Table 4
 Synthesis of dibenzocyclononenes

2	9a	<i>t</i> Bu	Н	Н	H_2SO_4	$3a (ND)^a$
3	9b	nPr	Н	Н	TfOH	3b (42)
4	9c	nPent	Н	Н	TfOH	3c (39)
5	9d	<i>t</i> Bu	Me	Η	TfOH	3d $(43)^b$
6	9e	nPr	Me	Η	TfOH	$3e (40)^c$
7	9f	<i>t</i> Bu	Н	Me	TfOH	3f $(42)^d$
8	9g	nPr	Н	Me	TfOH	$3g(31)^d$

^{*a*} Not detected. ^{*b*} Major:minor = 52:48. ^{*c*} Major:minor = 74:26. ^{*d*} Major:minor = 51:49.

Notes and references

^{*a*} Research Center for Chirality, Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.

^b Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.

E-mail: totani@rs.tus.ac.jp (T.O.); Fax: +81 (0)3-5261-4631

E-mail: tsaito@rs.kagu.tus.ac.jp (T.S.); Fax: +81 (0)3-5261-4631

[†] Electronic supplementary information (ESI) available: Experimental details, characterization data and NMR spectra. CCDC 1047277 ((Z)-2j) and 1047278 ((E)-1g). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x//

- 1 For a review on amitriptyline, see: C. Barbui and M. Hotopf, Br. J. *Psychiatry: J. Mental Sci.*, 2001, **178**, 129.
- Syntheses of amitriptyline, see for examples: (a) R. D. Hoffsommer,
 D. Taub and N. L. Wendler, J. Org. Chem., 1963, 28, 1751. (b) L.
 Kupracz and A. Kirschning, Adv. Synth. Catal., 2013, 355, 3375.
- 3 A. V. Prochazka, M. J. Weaver, R. T. Keller, G. Fryer, P. A. Licari and D. Lofaso, *Arch. Intern. Med.*, 1998, **158**, 2035.
- 4 For selected examples of the synthesis of 1 without using a ketone, see: (a) R. L. Letsinger, J. D. Jamison and A. S. Hussey, *J. Org. Chem.*, 1961, 26, 97. (b) M. Prashad, Y. Liu, X. Y. Mak, D. Har, O. Repic and T. J. Blacklock, *Tetrahedron Lett.*, 2002, 43, 8559. (c) K. Banert and O. Plefka, *Angew. Chem., Int. Ed.*, 2011, 50, 6171.

- 5 6,7-Dihydrodibenzo[a,d]cycloocten-12(5H)-one (5) was prepared from 2-formylbenzoic acid, see: S. O. Winthrop, M. A. Davis, Herr, J. Stewart and R. Gaudry, J. Med. Chem., 1963, 6, 130.
- For the synthesis of 5,6,7,8-tetrahydro-13*H*-dibenzo[*a*,*d*]cyclonone 13-one (6), only one paper was found, see: P. Caubere, M. S. Mourad and G. Guillaumet, *Tetrahedron*, 1973, **29**, 1851.
- Construction of 6,7,8,13-tetrahydro-5*H*-dibenzo[*a,d*]cyclononel.e. skeleton: via a *p*-quinone methide derivative, see; (*a*) T. Takeya, ...
 Motegi, T. Itoh and S. Tobinaga, *Chem. Pharm. Bull.*, 1997, **45**, 615.
 Via a ring expansion of benzocyclobutenol, see; (*b*) K. Kobayashi, /...
 Konishi, M. Itoh and H. Suginome, *J. Chem. Soc., Perkin Trans.* 1993, 825.
- 8 For a recent review on the synthesis of heterocycles via transitio metal catalysed hydroarylation of alkynes, see: Y. Yamamoto, *Cher Soc. Rev.*, 2014, **43**, 1575.
- 9 (a) H. Finch, N. A. Pegg and B. Evans, *Tetrahedron Lett.*, 1993, 34
 8353. (b) K. C. Majumdar, S. Chakravorty, T. Ghosh and B. Sridhi ; *Synlett*, 2009, 3127. (c) K. C. Majumdar, T. Ghosh and S. Ponra *Tetrahedron Lett.*, 2013, 54, 4661. (d) K. C. Majumdar, T. Ghosh ... S. Chakravorty, *Tetrahedron Lett.*, 2010, 51, 3372.
- 10 (a) C. Nevado and A. M. Echavarren, *Chem.-Eur. J.*, 2005, 11, 3155.
 (b) C. Ferrer, C. H. M. Amijs and A. M. Echavarren, *Chem.-Eur. J.*, 2007, 13, 1358. (d) V. A. Peshkov, O. P. Pereshivko and E. V. Ví 1 der Eycken, *Adv. Synth. Catal.*, 2012, 354, 2841. (e) M. Gruit, A. Pews-Davtyan and M. Beller, *Org. Biomol. Chem.*, 2011, 9, 1148. (*j* A. S. K. Hashmi, W. Yang and F. Rominger, *Adv. Synth. Catal.*, 2012, 354, 1273. (g) S. G. Modha, D. D. Vachhani, J. Jacobs, L. Meervelt and E. V. Van der Eycken, *Chem. Commun.*, 2012, 4^c 6550. (*h*) H.-J. Li, R. Guillot and V. Gandon, *J. Org. Chem.*, 2010, ?
 8435. (*i*) D. Hildebrandt, W. Huggenberg, M. Kanthak, T. Ploger, I. M. Muller and G. Dyker, *Chem. Commun.*, 2006, 2260.
- 11 Synthesis of 9-methylene-9*H*-tribenzo[*a,c,e*]cycloheptene, see: (*a*) Carreras, G. Gopakumar, L. Gu, A. Gimeno, P. Linowski, Petuškova, W. Thiel and M. Alcarazo, *J. Am. Chem. Soc.*, 2013, 135 18815. Synthesis of 7-methyl-5*H*-dibenzo[*a,c*]cycloheptene, see: () D. Pflästerer, E. Rettenmeier, S. Schneider, E. de Las Heras Ruiz, M. Rudolph and A. S. K. Hashmi, *Chem.-Eur. J.*, 2014, 20, 6752
- 12 Recently, the first example of a 9-exo-dig-type cyclization by a cationic Au(I)-catalysed Friedel–Crafts-type alkenylation using a conformationally restricted substrate was reported, see: N. E. Wrig' and S. A. Snyder, Angew. Chem. Int. Ed., 2014, 53, 3409.
- 13 (a) P. Y. Savechenkov, A. P. Rudenko, A. V. Vasil'ev and G. Fukin, *Russ. J. Org. Chem.*, 2005, 41, 1316. (b) L. Zhang and S. A Kozmin, *J. Am. Chem. Soc.*, 2004, 126, 10204. (c) P. Y. Savechenkov, A. P. Rudenko and A. V. Vasil'ev, *Russ. J. Org. Chem.*, 2004, 4 1633. (d) S. GowriSankar, K. Y. Lee, C. G. Lee and J. N. Kim. *Tetrahedron Lett.*, 2004, 45, 6141.
- 14 T. Otani, S. Kunimatsu, T. Takahashi, H. Nihei and T. Saito, *Tetrahedron Lett.*, 2009, 50, 3853.
- 15 T. Akiyama, Chem. Rev., 2007, 107, 5744.
- 16 T. Otani, S. Kunimatsu, H. Nihei, Y. Abe and T. Saito, Org. Lett. 2007, 9, 5513.
- 17 V. A. Peshkov, O. P. Pereshivko and E. V. Van der Eycken, *Aa Synth. Catal.*, 2012, **354**, 2841.
- 18 D. Yang and C. Zhang, J. Org. Chem., 2001, 66, 4814.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 2012