This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Supramolecular Scaffolds on Glass Slides as Sugar Based Rewritable Sensor for Bacteria

Madhuri Gade, Ajay Paul, Catherine Alex, Devika Choudhury, Hirekodathakallu V. Thulasiram, Raghavendra Kikkeri

We describe here the sugar functionalized β-cyclodextrin/ferrocene glass slides as fully reversible bacterial biosensors under the influence of external adamantane carboxylic acid. The prototype D-mannose- E. coli ORN 178 and L-fucose- P. aeruginosa interactions serve as a model to illustrate the new approach.

Food- and water-borne diseases cause over 3 million deaths every year, of which, according to WHO publication, about 90% are children younger than 5 years from poor families and communities in developing countries. Major reasons for rapid increase in global pathogen infections are strain mutations and emergence of antibiotic resistance. However, appropriate medical treatment based on early diagnosis can decrease fatalities. Currently, detection of pathogenesis using DNA based PCR assay and protein-based ELISA techniques but these methods require trained personnel and are also influenced by the environment. A different approach for detection is based on carbohydrates that are used as biomarkers for pathogens and is based on the highly selective recognition of bacterial lectins through specific oligosaccharide epitopes. Carbohydrate-protein interactions are weak but multivalent interactions amplify recognition. We and others have harnessed these interactions as templates for recognition of bacteria.

In this paper we describe a technique to prepare a glass substrate covered with sugar dendrimers which can be used as a platform for detection of bacteria. Our approach utilizes the special high tendency of β-cyclodextrin (β-CD) to form host-guest complexes with small molecules, especially with adamantane and ferrocene molecules and the ability to attach a multitude of sugar molecules in close proximity by attaching them to its skeleton. We have synthesized a β-CD scaffold which contains seven sugar molecules with increased carbohydrate mediated interactions. This new sugar-modified β-CD derivative was used for developing a sensor on glass substrates. The attachment of this compound to the glass surface was achieved by formation of host-guest β-CD-ferrocene complexes. The specific advantage of ferrocene over adamantane linker is the difference in the strength of the host-guest complexation, which yield facile method to regenerate the surface to develop a protocol for removal of the bacteria and sugar after binding so that the same slide can be used continuously for similar or different pathogen-carbohydrate interactions.

We used mannose- and fucose as sugars and the specific bacterial strains mannose-FimH of E. coli ORN 178 and fucose-PIM-2 of P. aeruginosa to establish the selectivity, sensitivity and reversibility of the detection platform.

Figure 1. Molecular structures and schematic representation of different steps to immobilize sugar-modified β-CD supramolecular scaffolds onto glass slides.
Mannose-modified β-cyclodextrin (C-2) was synthesized as described previously. C-3 was synthesized from peracetylated fucose 2 which was glycosylated with bromoethanol in the presence of NIS and TIOH, converted to thiocyanate, followed by Zn/AcOH reduction to yield 3. This derivative was reacted with peracetylated hepta iodo-β-CD 4 in the presence of Cs₂CO₃ yielding 5 that was deacetylated in the presence of sodium methoxide to yield C-3 (Scheme 1).

Ferrocene derivative L-1 was prepared by coupling mono-boc protected ethylene diamine and ferrocene monocarboxylic acid, followed by deprotection using TFA in DCM (Scheme 1).

Robust ferrocene-based monolayers were formed by assembling ferrocene derivative L-1 on silylepoxide-coated glass or silicon slides. This was done by washing glass slides (approx. 1x1 cm in size) with piranha solution followed by dipping them immediately into a solution of 3-glycidyloxypropyltrimethoxysilane (GOPTMS) in toluene. The substrates were heated at 85 °C for 52 h in a pressure tube, rinsed with toluene to remove excess GOPTMS and were dipped in a solution of L-1 (0.02 mM) in ethanol for 24 h. Finally the substrates were rinsed with ethanol to remove excess ferrocene derivative and to remove residual epoxide groups (Fig 1). The process yielded glass slides covered with monolayers of the ferrocene derivative L-1 which were analyzed by SIMS-TOF and XPS. Presence of L-1 on the glass slides was confirmed by the relative abundance of carbon, oxygen and iron atoms on the chips (Fig S1 & S3). In the final step, the freshly prepared ferrocene monolayers were immersed in solutions of the β-CD derivatives, C-2 or C-3 (10 µM), for 30 mins at RT, and sugar coated surfaces were formed by complexation of the ferrocene skeleton in the cyclodextrin cavity. The substrates were rinsed with deionized water to remove the uncomplexed compound and the slides were checked again by SIMS-TOF and XPS to reveal the presence of sulphur atoms in addition to those that were found on the slide before complexation, confirming the presence of C-2 or C-3 on the surfaces (Fig S2 & S3). Finally, concentration of mannose on slide was quantified by phenol-sulfuric acid assay. Glass slides thus modified were used for binding different bacterial strains via interaction with the sugar molecules found on the slides.

Three bacterial strains, differing in their sugar recognition properties, were used to assess whether the sugar functionalized glass slides could recognize specific bacterial strain. We used E. coli ORN 178 having mannose receptor (FimH), its mutant strain E. coli ORN 208 and P. aeruginosa having fucose binding PIM-2 receptor. First,
bacteria were grown at 37 °C and a standard growth curve was recorded at OD_{600}. Glass slides coated with L-1, C-1/L-1, C-2/L-1 and C-3/L-1 were dipped in a solution with concentration of approximate 10^6 bacteria for 30 minutes. The slides were then washed several times with distilled water to remove unbound or weakly bound bacteria and finally, bound bacteria were treated with DAPI or FITC or rhodamine and imaged microscopically. Glass slides coated with L-1, C-1 or C-3 were not found to bind bacteria of *E. coli* strain. However, C-2 functionalized glass slides revealed a strong cluster of ORN 178, which was not removed even upon washed several times with distilled water to remove unbound or DAPI or FITC or rhodamine and imaged microscopically. Glass slides with recognition, we determined the sensitivity of the detection platform. In order to assess the selectivity of the platforms in bacterial interactions, produced a platform for detection of specific types of bacterial cells bound to the surfaces could be observed by fluorescent staining of the clusters Figure 3 & S4. It is interesting to note that this is also the minimum number of bacterial cells needed for formation of each bacterial colony.

In order to assess the feasibility of the system to serve as a biosensor, it was crucial to demonstrate the reversibility of the system, i.e., to prove that the slides could be used for more than one binding event and regeneration – generation cycles. This was done by utilizing the high binding constant of βCD- adamantane complex (5.7 X 10^9 M^{-1}) as compared to that of Ferrocene (9.9 X 10^7 M^{-1}). When glass substrates coated with C-2 sugar bound to ORN 178 bacteria were incubated in a solution of adamantane carboxylic acid (0.1 mM) for 5 minutes, the sugar was repelled from the slide. The adamantane skeleton replaced ferrocene in the cavity of the β-cycloextrin skeleton and detached it from the glass surface. After washing of the glass substrate with PBS, fresh ferrocene modified surfaces were obtained. Visualizing through fluorescence microscopy revealed no bacterial aggregation and corroborated the regeneration process. When the same slide was incubated again in solutions of C-2 or C-3 for 30 minutes, sugar respective bacterial aggregations were observed on the glass slides (Scheme 2, Fig 4). Several cycles (5) of degeneration – generation processes were performed and the reproducibility was found to be excellent.

Conclusions

We have demonstrated that CD-based glycodendrimers placed on glass substrates by formation of complexes, controlled by host-guest interactions, produced a platform for detection of specific types of bacteria, such as *E. coli* and *P. aeruginosa* with high sensitivity. The interactions that control the binding are carbohydrate-protein interactions and the sensitivity is determined by the sugar moieties placed on the slide. The assay is reversible; and regeneration of the glass substrate has been demonstrated. The platform described here can be used for continuous bacterial sensing and could potentially be used as a detection method of choice in point of care testing. The possibility of producing microarrays with multitude types of carbohydrate on a single glass substrate for high-throughput detection of several bacteria on a single platform is currently under study.

Notes and References

Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. Fax: +91-20-25899790; Tel: +91-20-25908207; E-mail: rkikkeri@iiserpune.ac.in
†R. K. and M.G. thank IISER Pune, Indo-German (DST-MPG) program and DAE (Grant No.2011/37C/20BRNS) and UGC, India for financial support. We thank Prof. Orndorff for providing the E. coli strains. We thank Dr. Rina Arad Yellin for critically reviewing the manuscript.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x/