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Abstract: The detection and identification of a drug in a corpse through the analysis of 

fly larvae feeding on the body by spectroscopic techniques promises to be of a great 

value, because of their sensitivity, promptness, low costs and simplicity. Therefore, the 

purpose of this study was to develop a method based on Fourier-transform infrared 

(FTIR) microscopy to identify and discriminate flunitrazepan in necrophagous flies 

(Chrysomya megacephala, Chrysomya albicepse and Cochliomyia macellaria) as a non-

invasive and non-destructive technique. Thirty-two Winstar mice were divided into two 

groups of sixteen and supplemented in two categories: group 1 – ethanol, and group 2 – 

standard flunitrazepan at the dose of 2 mg kg
-1
. Spectra from the larvae samples were 

analysed by principal component analysis–linear discriminant analysis (PCA−LDA), 

and variable selection techniques such as successive projection algorithm (SPA−LDA) 

and genetic algorithm (GA−LDA) to determine if control versus flunitrazepan could be 

segregated. In addition, the multivariate classification accuracy results were tested based 

on sensitivity, specificity, positive (or precision) and negative predictive values, Youden 

index, positive and negative likelihood ratios. For control vs. flunitrazepan category, the 

sensitivity and specificity levels, using 46 wavenumbers by SPA−LDA gave relatively 

good accuracy (up to 82.3% control vs. flunitrazepan). The resulting GA−LDA model 

also successfully classified both classes with respect to the main biochemical alterations 

induced by flunitrazepan using only 40 wavenumbers (up to 88.2% control vs. 

flunitrazepan). Compared to classical methods, this new approach could represent an 

alternative and an innovative tool for faster and cheaper evaluation in 

entomotoxicology. 

Key-Words: Fourier-transform infrared microspectroscopy; flunitrazepan; Chrysomya 

megacephala, Chrysomya albicepse; Cochliomyia macellaria; Classification analysis 
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Introduction 

 Entomotoxicology ranks among the newest branch of the forensic entomology 

that deals with the identification and quantitation of drugs and other toxins in carrion-

feeding arthropods in decomposing tissues, and the study of drug-induced changes in 

arthropod growth with respects to the estimate of the post-mortem interval (PMI) by 

entomological methods.
1,2
 The use of necrophageous species as a matrix for qualitative 

compound (drugs
3,4
, metals

5,6
 and pesticides

7,8
) detection has been detected in insect 

tissues and generally accepted by forensic toxicologists. Although there has been recent 

progress in the detection of toxic substances in intact insects, there are some limitations 

such as insufficient knowledge of insect development and activity, proper use and 

validation of analytical procedures and lack of a general consensus concerning 

experimental set-up and sampling. 

 Several analytical drug detection/quantification procedures have been used for 

the analysis of insect tissues. These include radioimmunoassay (RIA)
9,10
, gas 

chromatography/mass spectrometry (GC/MS)
11,12

, and high performance liquid 

chromatography-mass spectrometry (HPLC-MS)
13,14

, coupled with classic extraction 

techniques such as protein precipitation, liquid-liquid extraction (LLE) or solid phase 

extraction (SPE). Although these techniques carried out in entomotoxicological reports 

are expensive, invasive, destructive, involve numerical preparation steps and most of the 

time they require pools of specimens to detect any present drug. As a consequence, 

there has been increased interest in the use of alternative of new methods for detection 

and identification of a drug being present in a corpse. 

 The detection and identification of a drug present in a corpse through the 

analysis of fly larvae feeding on the body by spectroscopic techniques promises to be of 

great value, because of their sensitivity, promptness, low costs and simplicity. Recently, 
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we have used Near-infrared spectroscopy (NIRS) as a novel non-destructive method for 

the identification of flunitrazepan in Chrysomya megacephala (Fabricius) (Diptera: 

Calliphoridae) larvae, puparia and adults,
15
 with the resulting study successfully 

detecting the biochemical alterations for the insect. NIRS is characterized by broad 

overlapping spectral peaks produced by the overtones and combination of infrared 

vibrational modes. While these results are encouraging, other databases of vibrational 

spectra for entomotoxicological results must be established. Fourier-transform infrared 

(FTIR) spectroscopy is one technique with potential applications in the field of 

entomotoxicology. FTIR has the ability to rapidly generate a “biochemical cell-

fingerprint” of the material under analysis.
16
 IR is also characterized by a minimum of 

sample handling, requiring no extractions and is non-destructive.
17
 Unlike conventional 

techniques used in the analysis of insect tissues, IR yields a precise image of all the 

chemical bonds present in the sample and offers the opportunity to very quickly observe 

all metabolic modifications induced by a specific compound.
18
 In this context, it could 

be interesting to develop a strategy based on infrared spectroscopy for detection and 

identification of a drug in a corpse. 

 On the other hand, the use of appropriate chemometric tools for multivariate 

calibration and classification is largely responsible for advancing spectroscopic 

techniques, for instance, IR and NIR. Computational approaches [e.g., principal 

component analysis (PCA)
19
, linear discriminant analysis (LDA)

20
, genetic algorithm

21
 

and successive projections algorithm (SPA)
22
] permit the processing of large amounts of 

spectroscopic data variables that subsequently require data reduction approaches in 

order to identify sources of variance across spectra and inter-class variation to be 

identified. 
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 Not only is the choice and development of the computational approaches is 

important to ensure reliable drug detection and quantification using spectroscopic 

techniques; multivariate classification quality features such as sensitivity, specificity, 

positive (or precision) and negative predictive values, Youden index, and positive and 

negative likelihood ratios should be calculated to ensure the validity of the results in 

accordance with International guidelines.
23
 When reviewing entomotoxicological 

publications, the methods tend to lack proper validation.  

 Herein, we have attempted to evaluate the potential of a novel non-destructive 

method based on attenuated total reflection-FTIR (ATR) microspectroscopy for 

identification of flunitrazepan in 32 larvae. Flunitrazepam is the N-methyl-2'-fluoro-

analogue of nitrazepam and is available in a number of western European countries for 

use as a hypnotic (Rohypnol and Noriel® and anesthetic (Narcozep® agent). The 

detection of flunitrazepan, the most frequently abused pharmaceutical drug in the world, 

in necrophagous flies (Chrysomya megacephala, Chrysomya albicepse and Cochliomyia 

macellaria) as a non-invasive and non-destructive technique does not appear to be well-

documented. In our study, sample preparation, spectroscopic measurement, data 

preprocessing, feature selection and analytical validation were addressed. To our 

knowledge, there is no reported use of FTIR microscopy for the detection and 

identification of a drug being present in a corpse. 

 

Materials and Methods 

 

 Thirty-two Winstar mice (Rattus norvegicus) with an average weight of 300 g 

were divided into two groups of sixteen and supplemented in the following way: group 

1 – ethanol, and group 2 – standard flunitrazepan at the dose of 2 mg kg
-1
. One hour 
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after the supplementation, the mice were sacrificed, individually housed in fly traps and 

distributed at eight points along a track of a nearby forest. In the third and fourth days, 

10 larvae were collected from each mouse and analyzed with ATR microspectroscopy. 

The average weight of one larva was estimated at 80 mg. All experiments were 

performed in compliance with the relevant laws and institutional guidelines, where the 

Ethics committee of the Federal University of Rio Grande do Norte (UFRN/Brazil) 

have approved the experiments [Research and Ethics Committee (REC) approval no.: 

044/2013]. 

 IR spectra [n= 264, 32 larvae (Chrysomya megacephala, Chrysomya albicepse 

and Cochliomyia macellaria) and eight random points] were collected from larva 

(placing larva individually on their backs on the plate) using the Bruker Lumus FTIR 

spectrometer with motorized ATR crystal (Bruker Optics Ltd, Coventry, U.K.). Prior to 

analysing each specimen, the diamond crystal within the spectrometer was washed and 

a background spectrum was obtained to account for atmospheric composition. 

 The data import, pre-treatment and construction of chemometric classification 

models (PCA-LDA, SPA–LDA and GA–LDA) were implemented in MATLAB 

R2014a software (http://www.mathworks.com). Raw spectra were pre-processed by 

cutting between 1800 and 900 cm
-1 
(235 wavenumbers at 3.84 cm

-1
 spectral resolution) 

and baseline-corrected. For PCA-LDA, SPA–LDA and GA–LDA models, the samples 

were divided into training (70%), validation (15%) and prediction sets (15%) by 

applying the classic Kennard–Stone (KS) uniform sampling algorithm to the IR spectra. 

The KS algorithm was applied separately to each class for extract a representative set of 

objects from a given dataset by maximizing the minimal Euclidean distance between 

already selected objects and the remaining objects. The training samples were used in 

the modelling procedure (including variable selection for LDA), whereas the prediction 
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set was only used in the final evaluation of the classification. The optimum number of 

variables for SPA–LDA and GA–LDA was performed with an average risk G of LDA 

misclassification. Such a cost function is calculated in the validation set as: 

∑
=

=
VN

n

n

V

g
N

G
1

,

1
                                                                                                                            (1) 

where ng  is defined as 

),(min

),(

)(

2

)()(

)(

2

mInnlmI

nIn

n
mxr

mxr
g

≠

=                                                                                                   (2) 

where )(nI  is the index of the true class for the nth validation object nx .  

In this definition, the numerator is the squared Mahalanobis distance between 

object nx (of class index nI ) and the sample mean )(nIm  of its true class. The 

denominator in Eq. (2) corresponds to the squared Mahalanobis distance between object 

nx  and the center of the closest wrong class. 

 The GA routine was carried out during 40 generations with 80 chromosomes 

each. Crossover and mutation probabilities were set to 60% and 10%, respectively. 

Moreover, the algorithm was repeated three times, starting from different random initial 

populations. The best solution (in terms of the fitness value) resulting from the three 

realizations of the GA was employed. For this study, LDA scores, loadings, and 

discriminant function (DF) values were obtained for the specimen. 

 Sensitivity (the confidence in a positive result for a sample of the label class is 

obtained), specificity (the confidence that a negative result for a sample of non-label 

class is obtained), Positive predictive value (PPV) (measures the proportion of correctly 

assigned positive examples and its value varies between 0 and 1), Negative predictive 

value (NPV) (measures the proportion of correctly assigned negative examples and its 
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value varies between 0 and 1), Youden's index (YOU) (evaluates the classifier's ability 

to avoid failure), The likelihood ratios (LR+) (represents the ratio between the 

probability to predict an example as positive when it truly is positive, and the 

probability to predict an example as positive when it actually is not positive) (LR-) 

(represents the ratio between the probabilities to predict an example as negative when it 

is actually positive, and the probability to predict an example as negative when it truly 

is negative) were calculated as important quality standards in test evaluation. The 

quality metrics used in this study for evaluating the classification results can be 

calculated following the equations: 

Sensibility (%) = 100x
FNTP

TP

+                                                                                     (3)
 

Specificity (%) = 100x
FPTN

TN

+                                                                                    (4) 

PPV = 
FPTP

TP

+                                                                                                               

(5) 

NPV = 
FNTN

TN

+                                                                                                            
(6) 

YOU = SENS − (1 − SPEC)                                                                                           (7) 

LR(�) = 
SPEC

SENS

−1                                                                                                         
(8) 

LR(−) = 
SPEC

SENS−1

                                                                                                          
(9) 
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where FN is defined as false negative, FP as false positive, TP is defined as true positive 

and TN is defined as true negative. SENS is defined as sensibility and SPEC as 

specificity. 

 

Results and discussion 

 

 In total, n= 264 spectra were acquired. The average IR spectra for each original 

class [control, black line; flunitrazepan, red line] in the range of 900–1800 cm
-1 
after 

baseline correction is shown in Fig. 1. As can be seen, discriminating between the two 

categories of specimens on the basis of IR measurements is not straightforward, owing 

to the complexity of the spectra. Although all spectra had a similar shape in the region 

of 1150−1190 cm
-1
, 1470−1490 cm

-1
 and 1505-1520 cm

-1
, the spectra were shifted 

downwards. 

[Insert Fig. 1 here] 

 Distinguishing these categories only by spectral observation is difficult, so to 

identify markers, it is necessary to apply computation analysis [principal component 

analysis–linear discriminant analysis (PCA−LDA), and variable selection techniques 

such as successive projection algorithm (SPA−LDA) and genetic algorithm 

(GA−LDA)]. The optimum number of PCs for PCA and variables for SPA−LDA and 

GA−LDA was determined by power versus cost calculation using the minimum cost 

function G. These were adopted to systematically classify normal vs. flunitrazepan 

based on IR spectra. Further, comparisons were made between rates, interpretability and 

training times. 
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 Fig. 2 is a 2-D PCA–LDA Fisher scores plot of the derived spectral points from 

each category. We can see that the Fisher scores do not show good segregation. The 

PCA−LDA model was built using five PC (93% variance in the data). 

[Insert Figure 2 here] 

Then, SPA−LDA and GA−LDA were applied to the dataset to obtain the 

optimum number of variables by the minimum cost function G. Fisher scores for both 

models (SPA and GA) were obtained and this improved segregation between categories 

when compared with PCA–LDA. 

The SPA−LDA resulted in the selection of 46 variables (Table 1). Using solely 

46 selected wavenumbers, the Fisher scores were calculated for both categories of the 

data set, as shown in Fig. 3. As can be seen in Fig. 3, there is a greater effect of 

homogeneity among classes, with a little misclassification being obtained. Examination 

of the selected wavenumbers following SPA–LDA showed that the main biochemical 

alterations discriminating control vs. flunitrazepan were lipids, proteins, nucleic acids, 

carbohydrates and, to a lesser extent, DNA vibrations. Several selected wavenumbers 

appear to be of particular interest, namely, the variables at 1315 cm
-1
, 1389 cm

-1
, 1505 

cm
 -1
 and 1550 cm

-1
, associated with amide III of proteins, COO- symmetric stretch in 

fatty, amide II of proteins and C–O stretching predominantly a-sheet of Amide II, 

respectively. 

[Insert Figure 3 here] 

[Insert Table 1 here] 

GA−LDA was applied to the dataset (control vs. flunitrazepan) and resulted in 

the selection of 40 variables (Table 1). Figure 4 is a scores plot that shows that 

GA−LDA generates best segregation between the two categories. Several selected 

wavenumbers (GA–LDA) appear to be of particular interest, namely, the variables at 
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1334 cm
-1
 and 1527 cm, representing the Amide III from proteins and CH bending and 

CH2 wagging, respectively. These findings suggest that FTIR microscopy is a very 

promising technique for the non-destructive identification of flunitrazepan in C. 

Chrysomya megacephala, Chrysomya albicepse and Cochliomyia macellaria 

specimens. In addition, this finding is significant due to its potential for translation into 

entomotoxicology practice. Currently, no spectroscopic techniques are the gold standard 

in the detection procedures for the analysis of intact insects for toxicology decision-

making. 

Classification rates were carried out by using the best models. Table 2 presents 

the validation results for the optimized model (PCA–LDA, SPA–LDA and GA–LDA) 

of each category. According to results of sensitivity shown in Table 2, it is possible to 

see that the sensitivity rate from PCA–LDA, SPA–LDA and GA–LDA achieved scores 

of 64.7%, 70.5% and 64.7% for the control category, respectively, showing that the 

control category can be relatively classified by these methods. For the flunitrazepan 

category, the sensitivity values from PCA–LDA, SPA–LDA and GA–LDA models 

were 64.7%, 82.3% and 88.2%, respectively. Furthermore, the specificity as shown in 

Table 2 for both categories suggests that following SPA–LDA and GA–SPA, an 

improved accuracy in comparison with PCA–LDA was obtained. In general, 

distinguishing between the normal and flunitrazepan categories was more successful 

when using GA–LDA, demonstrating that ATR-FTIR microspectroscopy in conjunction 

with powerful chemometric approaches has the potential to detect and identify drugs 

present in a corpse. 

[Insert Table 2 here] 

 

Conclusions 
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 The results of this study show that ATR−FTIR microspectroscopy coupled with 

variable selected techniques (SPA or GA) on necrophageous flies may be an alternative 

approach for the detection and identification of flunitrazepan. We report a fast, clean 

and non-destructive methodology involving minimal sample preparation to categorize 

the specimens. In a case study for flunitrazepan samples, the resulting GA−LDA model 

successfully detected the biochemical alteration based on 40 wavenumbers and 

produced 82.3% and 88.2% sensitivity and specificity accuracy. For this dataset 

investigated, these selected wavenumbers (SPA-LDA and GA-LDA) appear to be of 

particular interest for the detection and identification of flunitrazepan. This is required 

to robustly validate the classification and biomarker extraction models for this 

necrophageous flies and identification of flunitrazepan. Although the determination of 

abused drugs in insects is usually provided by gold standard (SPE-chromatography 

methods), the proposed methodology can be applied to new drugs or necrophageous 

where the processing time and reagent costs required are a major advantage. This 

method was thoroughly validated in accordance with international guidelines, being 

considered suitable for use as an official methodology for entomological methods. 

Further validation of these approaches exploiting other biospectroscopy techniques and 

using larger and architecturally more robust datasets is required. 
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Captions for Figure 

 

Fig. 1:  Average spectrum for each original class (control, black line; flunitrazepan, red 

line). 

Fig. 2:Discriminant function x samples calculated by using the PCA–LDA model from 

two categories (control and flunitrazepan). 

Fig. 3: Discriminant function x samples calculated by SPA–LDA model from two 

categories (control and flunitrazepan) using 46 wavenumbers selected. 

Fig. 4: Discriminant function x samples calculated by GA–LDA model from two 

categories (control and flunitrazepan) using 40 wavenumbers selected. 
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Legends for Tables 

Table 1: Variables for SPA–LDA and GA–LDA determined from the minimum cost 

function G used to achieve classification of control and flunitrazepan for a given 

validation dataset. 

Table 2:Values of quality performance features from three classification methods 

(PCA–LDA, SPA–LDA and GA–LDA) by FTIR microspectroscopy of each category. 
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Fig. 3 
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Fig. 4 
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Tables 

Table 1 

 

Chemometric analysis Wavenumber (cm
-1

) selected 

SPA-LDA 1300 1304 1308 1315 1323 1327 1331 1339 

1345 1350 1355 1361 1367 1373 1378  1382 

1389 1396 1402 1409 1415 1420 1425 1430 

1434 1441 1445 1449 1454 1458  1462 1467 

1473 1478 1486 1492 1499 1505 1510 1517  

1522 1527 1534 1540 1545 1550 

GA-LDA 1304 1318 1319 1326 1327 1329 1331 1334 

1335 1342 1345 1352 1356 1369 1371  1382 

1386 1390 1391 1395 1403 1405 1421 1439 

1441 1445 1447 1448 1450 1451 1471 1472 

1477 1484 1486 1488 1500 1501 1505 1527 
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Table 2 

 

 

Stage performance features 

 

PCA-LDA 

 

SPA-LDA 

 

GA-LDA 

Control    

Sensitivity (%) 64.7 70.5 64.7 

Specificity (%) 76.4 70.5 64.7 

Positive predictive values (PPV) 73.3 70.5 64.7 

Negative predictive values (NPV) 68.4 70.5 64.7 

Youden index (YOU) 41.1 41.1 29.4 

Positive likelihood ratios (LR+) 2.7 2.4 1.8 

Negative likelihood ratios (LR−) 0.4 0.4 0.5 
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Flunitrazepan    

Sensitivity (%) 64.7 82.3 88.2 

Specificity (%) 64.7 82.3 88.2 

Positive predictive values (PPV) 64.7 82.3 88.2 

Negative predictive values (NPV) 64.7 82.3 88.2 

Youden index (YOU) 29.4 64.7 76.4 

Positive likelihood ratios (LR+) 1.8 4.6 7.5 

Negative likelihood ratios (LR−) 0.5 0.2 0.1 
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