Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Near Infrared Fluorescence-Magnetic Resonance Dual-Modal Imaging with Cy5-Labeled, Gd-Al Co-Doped Mesoporous Silica Nanoparticles

Ai Gao¹, Dan Zhang^{1,2}, Xue-Bo Yin^{1,*}

¹ Research Center for Analytical Sciences, College of Chemistry, Nankai University,

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of

Biosensing and Molecular Recognition, and Collaborative Innovation Center of

Chemical Science and Engineering (Tianjin), Tianjin, 300071, China

² Tianjin Key Laboratory of Aquatic Science and Technology, School of

Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin,

300384, China

* E-mail: xbyin@nankai.edu.cn; Fax: (86) 22 2350 3034

Analytical Methods Accepted Manuscript

Abstract

To obtain comprehensive information and to compensate the limits of individual modalities in molecular imaging, the research on dual-modal imaging probes (DMIPs) attracts much interest. Here, we reported a reliable and facile procedure to prepare near infrared fluorescence (NIRF)-magnetic resonance (MR) DMIPs using Cv5-labeled. Gd-Al co-doped mesoporous silica nanoparticles (MSNs). Amine-modified, Gd-Al co-doped MSNs were first synthesized through one-step co-condensation. Cy5-NHS ester was then coupled to the amino groups to produce the DMIPs, which were denoted as Gd-Al@MSNs-Cy5. High intensity of NIRF and relaxation rate $(17.7 \text{ mM}^{-1}\text{s}^{-1})$ were observed. Featuring the lower background, the deeper penetration depth, the cutting-edge NIRF imaging was achieved. Moreover, larger surface area of MSNs could be modified with more NIRF probes, Cy5, for improved NIRF. Following the Solomon–Bloembergen–Morgan theory, enhanced MR performance was illustrated by the relaxation rate because MSNs have porous structure that enables access of water into the interior, and co-doping with Al in the MSNs promotes the doped amount of Gd. The exchange rate of water is much more accelerated through doping Gd and Al since disordered pore arrangement is found in Gd-Al co-doped MSNs. The DMIPs in saline were injected into mice through tail vein for imaging and basic pharmacokinetics study. They were excreted by the stomach and intestine in 3 h, a circulation time long enough for imaging. Thus, Gd-Al@MSNs-Cy5 is attractive in clinical NIRF-MR dual-modal imaging by integrating the biocompatibility of MSNs, the NIRF of Cy5, and the high MR response of Gd.

Keywords

Fluorescence Imaging; Magnetic Resonance Imaging; Dual-Modality Imaging; Gadolinium; Mesoporous Silica

Introduction

Molecular imaging reveals the generation, development, and metastasis of tumor, allowing precise delivering of medicine and dynamic monitoring of personalized treatment.^{1,2} To obtain comprehensive information and to compensate the limits of individual modalities in clinical diagnostics, the dual-modal imaging probes (DMIPs) have been rapidly developed.³ Fluorescence and magnetic resonance (MR) imaging are considered to be a complementary pair. Fluorescence imaging shows high sensitivity but poor spatial resolution with relatively moderate tissue penetration depth, while MR imaging is unlimited in penetration depth and prominent in spatial resolution vet lacks sensitivity.⁴ The first fluorescence-MR DMIPs was introduced by Huber et al. in 1998, where rhodamine derivatives and Gd lay the foundations for fluorescence and MR imaging, respectively.⁵ However, several issues impede the real bio-medical applications of the fluorescence-MR DMIPs, including but not restricted to (1) high background and rather limited penetration depth of fluorescence; (2) insufficient MR imaging contrast agent payload; (3) inadequate surface areas to be modified or to contact with water in nanoparticle-based DMIPs; and (4) complex design and laborious preparation of DMIPs.

Analytical Methods Accepted Manuscript

Traditional fluorescence imaging is subjected to auto-fluorescence and low penetration depth of the tissue, leading to high level of background and inaccuracy. Whereas longer wavelength light, such as near infrared fluorescence (NIRF) that ranges from 650 to 1350 nm in wavelength, is less absorbed or scattered by tissues. ⁶ Featuring the lower background, deeper penetration depth, and higher spatial resolution, ^{7, 8} the cutting-edge NIRF imaging overmatches the other optical techniques. Currently developed NIRF imaging probes can be classified into two categories: Stokes type and anti-Stokes type (up-conversion). The later refers to precious rare earth elements doped nanoparticles, ⁹ while the former is more common, mainly include fluorescent proteins, ¹⁰ organic dyes, ¹¹ metallorganics, ¹² and nanometerials, e.g., gold clusters, ¹³ silver clusters, ¹⁴ and quantum dots etc. ¹⁵ For biodegradability, non-toxicity, convenient labeling concern, organic NIRF dyes have been widely used, like Cy5, ¹⁶ Cy5.5, ¹⁷ and indocyanine green. ¹⁸

Analytical Methods Accepted Manuscript

Unlike many other modalities, the 3D magnetic resonance (MR) imaging is both non-radiation and non-invasive. It is especially valuable in visualizing soft tissues. MR images are created by recording the demagnetization (relaxation) rates of magnetized protons of water in different chemical environment, then converting them into gravscale images.¹⁹ Since the chemical environments in different tissues are often dissimilar, the contrast is formed between adjacent tissues. The contrast agent will further enhance the inherent contrast by shortening the relaxation course of nearby protons. Examples are paramagnetic metal complexes or species containing Gd ²⁰ or Mn ²¹ and superparamagnetic iron oxide. ²² In particular, Gd-containing species are intensely studied because Gd^{3+} has up to seven unpaired electrons, a large magnetic moment is therefore expected. According to Solomon-Bloembergen-Morgan theory, the relaxation time decreases with increasing hydration number of Gd, accelerating the exchange rate of the inner shell and outer shell water, and enlarging the molecular weight of Gd compounds. ²³ Besides, multiple Gd centers in one molecular (unit) help quick relaxation.²⁴ Only one water binding site is left in two approved contrast agents in clinical MR imaging, Gd-DOTA and Gd-DTPA. New ligands with more than one site need careful design and synthesis. ²⁵ An alternative strategy to design improved Gd-contained contrast agents is loading them on nanoparticle carriers, increasing the molecular weight and the payload of Gd complexes simultaneously. ^{26, 27}

New methodologies enable functional nanoparticles synthesized with controllable morphology and structure. ²⁸ Modifying the surface alters their physical properties and expands their functions, which is the basis of theranostics. ²⁹ DMIPs are preferentially built on nanoparticles with respect to the enhanced permeability and retention effect that makes the tumor passive-targetable, thus precise imaging and drug-delivery become practical. ³⁰ Nevertheless, post-linking of Gd complexes on solid nanoparticles result in limited outer surface labelling, while doping Gd complexes in the inner affect the exchange rate of water. We therefore explore nanoparticles with substantial Gd-doped, without perturbing the exchange rate of water simultaneously. ³¹ The biocompatible mesoporous silica nanoparticles (MSNs)

are the best, as their porous structure enables access of water into the interior, along with larger surface area that can be modified. Previous literatures proved that co-doping with Al in the MSNs promotes the doped amount of Gd. ^{32, 33} Because Al³⁺ is similar to Si⁴⁺ in size; the negative charge is produced when Al³⁺ is incorporated into the MSNs during their formation. Gd³⁺ as a counter-ion is loaded by ion-exchange to balance the charge. Importantly, the exchange rate of water is much more accelerated through doping Gd and Al, since disordered pore arrangement is found in Gd-Al doped MSNs, where the interconnection of pores facilitate the free diffusion of water. ^{33, 34} In our previous work, Gd-Al doped MSNs was integrated to Ru(bpy)₃²⁺ via ion-exchange procedure as fluorescence-MR DMIPs. ³³ However, Ru(bpy)₃²⁺ may be leaked.

Here, we report a reliable and facile procedure to prepare NIRF-MR DMIPs using Cy5-labeled, Gd-Al co-doped MSNs (Gd-Al@MSNs-Cy5). Different to the simple MSNs in our previous work, ³³ amine-modified, Gd-Al co-doped MSNs (Gd-Al@MSNs-NH₂) were first synthesized through one-step co-condensation. Cy5-NHS ester was then coupled to the amino groups to produce the DMIPs. Different to the previous DMIPs, ^{33, 35, 36} Gd-Al@MSNs-Cy5 address the four issues well. Highly intensive NIRF from Cy5 enjoy the low background and high penetration depth. While co-doped Al increases the loading of Gd ions, the mesoporous structure enhances the exchange of water molecule, so high relaxation rate and contrast efficiency were observed. Importantly, mesoporous silica provides a biocompatible platform to integrate the signal sources, Gd ions and Cy5, with a simple preparation procedure and high yield. All of the properties were validated by the imaging and basic pharmacokinetics study with mice as model through tail vein injection.

Analytical Methods Accepted Manuscript

Experimental

Chemicals and apparatus

Cetyltrimethyl ammonium bromide (CTAB), diethanolamine (DEA), and (3-aminopropyl)triethoxysilane (APTES) were purchased from J&K Scientific. Tetraethoxysilane (TEOS) was from Concord, Tianjin, China. Aluminum chloride (AlCl₃) and gadolinium oxide (Gd₂O₃) were from Aladdin Industritrial. Absolute anhydrous N,N-Dimethylformamide (DMF) was from Heowns, Tianjin, China. Cyanine5 NHS ester (Cy5-NHS) was obtained from Fanbo, Beijing, China. GdCl₃ was produced by the reaction of Gd₂O₃ with hydrochronic acid. All other reagents were analytical grade. Ultrapure water was used throughout the experiment.

Fourier transform infrared (FTIR) spectra were recorded by a Nicolet Magna 560 IR spectrometer. Transmission electron microscopy (TEM) images were captured by an FEI Tecnai G2 transmission electron microscope. N₂ adsorption-desorption outcomes were analyzed with a Micromeritics TriStar 3000 surface area and pore size analyzer. Elemental contents were determined by Thermo IRIS Intrepid II XSP inductively coupled plasma atomic emission spectroscopy (ICP-AES). Fluorescence was recorded using a Hitachi FL-4500 fluorescence spectrophotometer, NIRF imaging was performed by a Kodak *in vivo* imaging systems FX. Relaxation time and MR imaging were executed with a Huantong (Shanghai, China) HT-MRSI60-60 KY MR imaging scanner.

Synthesis of Gd-Al@MSNs-NH₂

The synthesis of Gd-Al@MSNs-NH₂ resembles the previous works. ³⁷⁻⁴⁰ After dissolving 0.29 g CTAB (0.79 mmol) in a mixture of 6.4 mL water (0.36 mol) and 0.92 mL ethanol (0.02 mol) by sonication for 10 min, 0.05 g DEA (0.48 mol) was added and heated to 60 °C. TEOS was added drop-wise under vigorous stirring for 10 min (supplementary information, Table S1). Then, 0.20 mL of a GdCl₃ (0.13 mmol) and AlCl₃ (0.06 mmol) solution was added, and the reaction proceeded for 1 h. An equal volume of TEOS and APTES was added together and reacted for another 2 h period to integrate amine group in the exterior and interior surface. Subsequently, the

Analytical Methods

reaction system was allowed to cool, and the nanoparticles, Gd-Al@MSNs-NH₂, were washed with ethanol for three times. The collected were refluxed in an acidified ethanol for 6 h to remove CTAB, and finally dispersed in 10 mL ethanol after washing.

Labelling Cy5 on Gd-Al@MSNs-NH₂

25 mg dry Gd-Al@MSNs-NH₂ was dispersed in 8 mL anhydrous DMF containing 1 mg Cy5-NHS and 80 μ L tripropylamine. The mixture was stirred in dark at room temperature for 24 h. Then the nanoparticles, Gd-Al@MSNs-Cy5, were washed with ethanol for five times and dispersed in 5 mL water.

Toxicity of Gd-Al@MSNs-Cy5

The cell viability was recorded after HepG2 cells were incubated with Gd-Al@MSNs-Cy5 at different concentrations using a standard MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay to test the toxicity of Gd-Al@MSNs-Cy5. The cells were incubated to 96-well culture plates at a density of 5×10^3 cells per well in culture medium. Gd-Al@MSNs-Cy5 and Gd³⁺ ions at the concentrations from 0 to 20 mg L⁻¹ (based on Gd³⁺) were introduced to the medium and incubated HepG2 cells for 24 h. MTT solution (20 mL, 0.1 mg) were added to each well and the cells were incubated for another 4 h. N,N'-dimethyl sulfoxide (150 µL) was used to completely liberate the formazan crystals. The absorbance at 490 nm was measured for the calculation of the cell viability.

Fluorescence measurement and NIRF imaging

Steady-state fluorescence was excited with 630 nm wavelength at room temperature using a Hitachi FL-4500 fluorescence spectrophotometer. The excitation source is a 450 W xenon lamp coupled to a monochromator with a 1200 groves/mm grating. During *in vivo* and *ex vivo* imaging, female nude mice (6 weeks old, *BALB/c-nu*) were initially anesthetized with 4 % chloral hydrate in a dosage of 8.25 μ L g⁻¹, and further anesthetized with 2 % chloral hydrate. Then, 200 μ L of 10 mg mL⁻¹

Gd-Al@MSNs-Cy5 saline was injected through tail vein of the mice. The fluorescence was excited at 625 nm wavelength and collected at 690 nm. The black and white fluorescence images were superimposed for better visualization. At last, the mice were sacrificed and dissected to image the individual organs. The mice were obtained from the Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College with the license No. SCXK-2004-001, Tianjin, China. The mice have free access to solid rodent chow and water. All experimental protocols using animals were also approved by the Institutional Animal Care Committee of Nankai University.

Relaxation time measurement and MR imaging

Relaxation time was measured on an MR imaging scanner (1.2 T, 30 °C) using the inversion-recovery method. *In vitro* T1-weighted phantom imaging and *in vivo* MR imaging (using female Kunming mice, 8 weeks old, outbred stock) was based on spin-echo method. 300 μ L of 10 ng mL⁻¹ saline solution of Gd-Al@MSNs-Cy5 was injected into the mice through the tail vein. MR imaging was conducted using a T1-weighted sequence with TR/TE = 200/14 ms, FOV = 75 mm×75 mm, flip angle = 60 °, number of excitation = 3.

Results and discussion

Synthesis of the DMIPs

MSNs were prepared to load with Cy5 and Gd³⁺ for the synthesis of the NIRF-MR DMIPs. Hydrolyzation and co-condensation of TEOS and APTES are extensively reported to directly produce NH₂-functional MSNs with simple procedure and high yield. ^{35, 36} Precipitation is avoided and amine groups are homogeneously distributed, forming Gd-Al@MSNs-NH₂ in one step. ⁴⁰ The impact of the amount of both TEOS and APTES on the surface charge of the Gd-Al@MSNs-NH₂ is summarized in Table S1. More APTES, more positive charges, which means more amino groups are formed on the Gd-Al@MSNs-NH₂. The increase of absolute value of zeta-potential favors the dispersion and stability of the Gd-Al@MSNs-NH₂. The composition and

Analytical Methods

ratio in Sample 4 in Table 1 is the optimal, considering the stability, the Gd-loading amount, the relaxation rate, and the number of amines that coupled with Cy5. The Zeta potential of the Gd-Al@MSNs-Cy5 was tested and -7.8 mV, which is lower than that from mesoporous silica nanoparticles because of the existence of amino groups. The amine group-modified mesoporous structure provides a platform to integrate Gd ions and Cy5 for MR and NIRF dual-response.

Morphology and structure of the DMIPs

The morphology and microstructure of the DMIPs were characterized. All nanoparticles appeared to be uniform spheres as shown in the TEM images in Fig. 1. The average diameters of Gd-Al@MSNs-NH₂ and Gd-Al@MSNs-Cy5 were ca. 57 nm. In addition, mesoporous structure of the intragranular network of the nanoparticles was observed clearly (Fig. 1B). Since post-grafting of Cy5 to the surfaces and pores would not influence the dispersion and the structure of the nanoparticles, the exchange rate of water between the surroundings and the internals of nanoparticles was not interfered, thus maintaining the high relaxivity.

The mesoporous structure of Gd-Al@MSNs-NH₂ was further investigated by XRD and N₂ adsorption-desorption test. Doping with Al³⁺ decrease the size of the MSNs as a result of pH decrease of reaction system after addition of Al³⁺. ^{33, 38} Moreover, Al³⁺ co-dopant could greatly reduce the structural stress within the silicate matrix, induced by the charge and size mismatch of the trivalent Gd³⁺, which therefore disrupted the order of the MSNs structure. ⁴¹ Consequently, the XRD peaks of Gd-Al@MSNs-NH₂ went broaden and some of them disappeared. Long-range order MSNs like hexagonal MCM-41 are typically characterized to exhibit three sharp Bragg peaks (100), (110), (200) at two-theta angle less than 5 °, while only one broad, weak peak at low angles indexed as (100) diffractions of Gd-Al@MSNs-NH₂ was found, as shown in Fig. S1A (Supplementary Information). N₂ adsorption-desorption of Gd-Al@MSNs-NH₂ reflects their textural properties (Fig. S1B). A type IV isotherm with an evident hysteresis loop at high pressures account for the mesoporous nature and the small size of Gd-Al@MSNs-NH₂. Using Brunauer-Emmett-Teller test,

Analytical Methods Accepted Manuscript

the surface area is 882.7 m²g⁻¹, and total pore volume is 1.2 cm³g⁻¹. The maximum pore size is 2.5 nm (inset) based on Barrett-Joyner-Halenda (BJH) test. The BJH model is based on Kelvin equation, $lnp/p_0 = -2\sigma V_L \cos\theta/RTr_k$. The r_k obtained by Kelvin equation plus the thickness of liquid film is the pore diameter. Small size and large pores facilitate the loading of a substantial amount of Cy5 and the exchange of water to maintain the high relaxivity. Based on the results above, Fig. 1C illustrated the mesoporous structure with the co-doped Gd and Al as well as the labeled Cy5.

The conjugation of Cy5 with Gd-Al@MSNs-NH₂ was confirmed by the FTIR spectra. As shown in Fig. S2a (supplementary information), the band between 3500 and 3200 cm⁻¹ is assigned to the N-H stretching vibrations of primary amine; the peaks near 1640 and 1560 cm⁻¹ are the bending vibrations of primary amine, which approve the existence of the amine group on Gd-Al@MSNs-NH₂. As amide characteristic stretching vibrations appear at 1450 cm⁻¹ (Fig. S2b), and there are two sharp peaks at 1180 and 1130 cm⁻¹ related to stretching vibration of aromatic sulfonic acid groups on Cy5, so Cy5 is successfully linked to Gd-Al@MSNs-NH₂. The loading content of Cy 5 was 4.17×10^{-5} mol g⁻¹, which was calculated based on the fluorescence intensity from the probe with the emission of Cy5 solution as standard.

Fluorescence property of the DMIPs

The optical properties of the Gd-Al@MSNs-Cy5 were investigated. While Gd-Al@MSNs-Cy5 solution was cyan (Fig. 2A), NIRF emission was observed when illuminated by 365 nm UV light (Fig. 2B). As shown in Fig. 2C, the maximum emission wavelengths are 682 and 684 nm for Cy5 and Gd-Al@MSNs-Cy5, respectively, under 630 nm excitation. The nearly identical wavelengths indicate the luminescent property of Cy5 remained even Cy5 was linked to the MSNs. Strong NIRF from Cy5 can increase the signal-to-noise ratio during *in vivo* fluorescence imaging of the probe.

Relaxation property of the DMIPs

The content of Gd is a critical parameter of Gd-related contrast agents. When we

Analytical Methods

calculated longitudinal and the transverse relaxation rate, r1 and r2, the precise concentration of Gd is necessarily acquired. After Gd-Al@MSNs-Cy5 was dissolved in nitric acid/hydrofluoric acid mixture, it was subsequently analyzed by ICP-AES to quantify the amount of Gd and Al. Table 1 summarizes the amount of Gd and Al, and the relaxation rate in different Gd-Al@MSNs-NH2. It can be seen from Table S1 that the amount of Gd and Al is decreased with increasing APTES. The negative charge is produced when Al is incorporated into the MSNs, and Gd, as a counter-ion, is loaded into the MSNs by ion-exchange to balance the charge. ⁴² Simultaneously, the positive charge formed during APTES hydrolysis, which balances part of the negative charge generated by TEOS hydrolysis. Because APTES could lower the negative charge in the reaction, the amount of Gd and Al in the MSNs is decreased. Sample 4 in Table 1 shows the highest relaxation property, with 17.3 mM⁻¹ s⁻¹ of longitudinal relaxation rate, 4.1-fold higher than Gd-DTPA. ³³ The probe's r_2/r_1 is ca 1.1, which is suitable as a positive contrast agent. In general, r_2/r_1 less than 2 is common for T_1 contrast agent. ²⁵ Therefore, DMIPs can be established using near-infrared dye linked Sample 4 in Table S1.

The content of Gd and Al in Gd-Al@MSNs-Cy5 is 259.0 μ mol g⁻¹ and 263.2 μ mol g⁻¹, respectively, while the molar ratio of Al and Gd is 1.02, with r1 of 17.7 mM⁻¹s⁻¹ and 1.1 of r2/r1 ratio. Compared with Sample 4, little influence was observed when coupling of Cy5 on the surface of the pores and nanoparticles, indicating Cy5 cannot hinder the diffusion and exchange rate of water. The results in Fig. 2D and Fig. 2E illustrated that the as-prepared DMIPs is applicable in *in vivo* MR applications.

Stability of the DMIPs

The leakage of metal ions from 0.5 mg mL⁻¹ Gd-Al@MSNs-Cy5 in phosphate buffer saline (PBS, pH 7.4) is measured by ICP-AES to illustrate the stability of DMIPs. The DMIPs contained 2036 ppm Gd and 355 ppm Al (the limit of detection of Gd and Al is 0.0154 ppm and 0.0174 ppm, respectively). No Gd or Al in the supernatant after centrifugation was detected after one day, one week, and even one month. Any leakage of Gd and Al from the DMIPs is avoided.

 Gd^{3+} ions are toxic and often used in the form of complexes to reduce their toxicity. We tested the cell viability after being incubated with Gd-Al@MSNs-Cy5 probe and Gd ions with HepG2 cells as model. As shown in Figure S3, while the cell viability was almost the same around 100 % after incubated with Gd-Al@MSNs-Cy5 probe at different concentration, Gd^{3+} ions led to the gradually decreased cell viability with the increased concentration. Only 30 % of cell viability was observed at 20 mg L^{-1} of Gd^{3+} ions. The above results confirmed the high biocompatibility of MSNs and less leakage of Gd^{3+} ions from the probe.

The fluorescence of pure PBS and the supernatant after centrifugation of Gd-Al@MSNs-Cy5 in PBS are measured, after one day, one week, and one month. The ratio of the intensity is 1:1.03:1.03:1.02, so less Cy5 is leaked, which contribute to the covalently coupling on the nanoparticles. The stability of fluorescence intensity and relaxation rate was also examined. The Gd-Al@MSNs-Cy5 were kept in suspension and stored away from light at 4 °C during the test. As illustrated in Fig. S4 (supplementary information), the fluorescence intensity and relaxation rate remained the same after 10 days.

NIRF imaging using the DMIPs

In vivo NIRF and MR imaging of mice using Gd-Al@MSNs-Cy5 was tested to show its bio-effects and imaging application. The *BALB/c* mice were injected with 200 µL colloidal saline of DMIPs at a concentration of 10 mg ml⁻¹ through the tail vein. Cy5-labeling is better than fluorescein or rhodamine-labeling, because its emission could only be weakly absorbed by the liver tissue so as to penetrate much more deeply. ⁴³ As shown in Fig. 3, the NIRF image of the mice verifies the bright fluorescence could penetrate the body. We monitored the mice after injection in the period between 0.5 to 3 h (Fig. 3A). Strong emission was observed throughout the body after injection different to the low fluorescence efficiency of Ru(bpy)₃²⁺ used in our previous work. ³³ By systematic circulation, the DMIPs gradually accumulated in the mononuclear phagocyte system like liver and spleen. Finally, most of the DMIPs were excreted by the stomach and intestines. 3 h later, mice were sacrificed and dissected to confirm the

Analytical Methods

bio-distribution of the DMIPs. As shown in Fig. 3B, high intensity of fluorescence was observed from the stomach and the intestines, while no fluorescence were detected from the heart and the lung. The DMIPs could be cleared from the mice, since little were found in liver, spleen, and kidneys. The above results reveal Gd-Al@MSNs-Cy5 can be used in *in vivo* NIRF imaging. Large surface area of MSNs can load more Cy5 that emits strong fluorescence, and the NIRF from Cy5 shows deep tissue penetration capability.

MR imaging using the DMIPs

The results of MR imaging were in accordance with that of the NIRF imaging (Fig. 4). The 30 g female Kunming mice were injected with 300 µL colloidal saline of Gd-Al@MSNs-Cy5 (25.6 µmol kg⁻¹ of Gd), and the T1-weigh MR images at pre-injection through tail-vein (blank), post-injection at 0.5, 1, 2, and 3 h, were recorded. The MR signal was first enhanced at the liver as it was the main uptake organ of the DMIPs. During the next 3 h, evident contrast appeared at the intestines. Hence, it is speculated that after blood circulation, the DMIPs will accumulate in the liver, which are then excreted by the kidneys or enter the stomach then reach the intestines. Similarly, no signal enhancement was spotted in heart and lung. The above results reveal that Gd-Al@MSNs-Cy5 can be used in *in vivo* MR imaging. Our method of synthesizing the DMIPs allows sufficient Gd payload, and the inherent porous structure of Gd and Al co-doped MSNs further facilitate water diffusion into the inner of the DMIPs, both of which are beneficial for Gd-Al@MSNs-Cy5 in *in vivo* MR imaging.

Expansibility of the DMIPs

The DMIPs presented herein overcome several limitations in nanoparticle-based dual-modal imaging. They are simple and reliable in design and preparation. In addition, their functions can be further expanded. Some diseases like cancer abundantly express biomarkers, and antibodies ⁴⁴ along with nucleic acid aptamers recognized them have been identified. ⁴⁵ On another aspect, diverse therapeutic

methods, including photodynamic therapy, photothermal therapy, chemotherapy, radiotherapy, etc., are originated with corresponding molecules or nanoparticles. ⁴⁶ Smart theranostic agents can be synthesized based on our work herein, integrating the abilities of (1) actively and selectively multi-valency targeting of tumor by coupling various antibodies and/or aptamers on the large surface of Gd-Al@MSNs-Cy5; (2) cooperative treatment of cancer by linking and/or entrapping therapeutic-effective molecules or nanoparticles to Gd-Al@MSNs-Cy5.

Conclusions

In this paper, NIRF-MR DMIPs using Cy5-labeled, Gd-Al co-doped MSNs were constructed reliably and facilely. Detailed design and characterization of the excellent properties of NIRF and MR were demonstrated both *in vitro* and *in vivo*, suggesting Gd-Al@MSNs-Cy5 were an attractive candidate in clinical NIRF-MR imaging. Furthermore, it is possible to expand the functions of Gd-Al@MSNs-Cy5. Overcoming several issues common in dual-modal imaging based on functional nanoparticles, our work herein gives solutions to effectively enhance the fluorescence and MR signal intensities, and simplifies the design and preparation procedure simultaneously.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21375064 and 21435001), 973 projects (No. 2015CB932001), Tianjin Natural Science Foundation (No. 15ZCZDSF00060), and Research Fund for the Doctoral Program of Higher Education (No. 20130031110016).

References

Analytical Methods

1	
2	
3	
4	
с С	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21	
∠ 1 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 10	
40 ∕\0	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1. T. Florio and F. Barbieri, Drug Discov. Todav, 2012, 17, 1103-1110. 2. Z. Jia, D. Geng, T. Xie, J. Zhang and Y. Liu, J. Clin. Neurosci., 2012, 19, 820-823. 3. S. S. Kelkar and T. M. Reineke, *Bioconjugate Chem.*, 2011, 22, 1879-1903. 4. B. A. Smith and B. D. Smith, *Bioconjugate Chem.*, 2012, 23, 1989-2006. M. M. Huber, A. B. Staubli, K. Kustedjo, M. H. B. Gray, J. Shih, S. E. Fraser, R. E. Jacobs and T. 5. J. Meade, Bioconjugate Chem., 1998, 9, 242-249. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano, Chem. Rev., 2010, 110, 6. 2620-2640. 7. T. Furuta, M. Nakada, K. Misaki, Y. Sato, Y. Hayashi, Y. Nakanuma and J.-i. Hamada, Brain Tumor Pathol., 2014, 31, 32-39. A. D. Norden, G. S. Young, K. Setayesh, A. Muzikansky, R. Klufas, G. L. Ross, A. S. Ciampa, L. 8. G. Ebbeling, B. Levy, J. Drappatz, S. Kesari and P. Y. Wen, Neurology, 2008, 70, 779-787. 9. J. Zhou, N. Shirahata, H.-T. Sun, B. Ghosh, M. Ogawara, Y. Teng, S. Zhou, R. G. S. Chu, M. Fujii and J. Qiu, J. Phys. Chem. Lett., 2013, 4, 402-408. 10. D. Yu, W. C. Gustafson, C. Han, C. Lafaye, M. Noirclerc-Savoye, W.-P. Ge, D. A. Thayer, H. Huang, T. B. Kornberg, A. Royant, L. Y. Jan, Y. N. Jan, W. A. Weiss and X. Shu, Nat. Commun., 2014, 5, 3626. 11. C.-S. Yeh, C.-H. Su, W.-Y. Ho, C.-C. Huang, J.-C. Chang, Y.-H. Chien, S.-T. Hung, M.-C. Liau and H.-Y. Ho, Biomaterials, 2013, 34, 5677-5688. 12. H. Ke, H. Wang, W.-K. Wong, N.-K. Mak, D. W. J. Kwong, K.-L. Wong and H.-L. Tam, Chem. Commun., 2010, 46, 6678-6680. 13. H. Hu, P. Huang, O. J. Weiss, X. Yan, X. Yue, M. G. Zhang, Y. Tang, L. Nie, Y. Ma, G. Niu, K. Wu and X. Chen, Biomaterials, 2014, 35, 9868-9876. 14. C. Wang, L. Xu, X. Xu, H. Cheng, H. Sun, Q. Lin and C. Zhang, J. Colloid Interface Sci., 2014, 416, 274-279.

Analytical Methods Accepted Manuscript

 I. Hocaoglu, F. Demir, O. Birer, A. Kiraz, C. Sevrin, C. Grandfils and H. Y. Acar, *Nanoscale*, 2014, 6, 11921-11931.

16. X. He, J. Chen, K. Wang, D. Qin and W. Tan, Talanta, 2007, 72, 1519-1526.

L. Jiang, Q. Zhou, K. Mu, H. Xie, Y. Zhu, W. Zhu, Y. Zhao, H. Xu and X. Yang, *Biomaterials*, 2013, 34, 7418-7428.

M. A. Jarzabek, P. C. Huszthy, K. O. Skaftnesmo, E. McCormack, P. Dicker, J. H. M. Prehn, R. Bjerkvig and A. T. Byrne, *Mol. Imaging*, 2013, **12**, 161-172.

19. P. Reimer, P. M. Parizel, J. F. M. Meaney and F. A. Stichnoth, *Clinical MR Imaging: A Practical Approach*, 3rd edn., Springer, 2010.

20. J. Tang, Y. Sheng, H. Hu and Y. Shen, Prog. Polym. Sci., 2013, 38, 462-502.

21. M. Kueny-Stotz, A. Garofalo and D. Felder-Flesch, Eur. J. Inorg. Chem., 2012, 1987-2005.

22. N. Lee and T. Hyeon, Chem. Soc. Rev., 2012, 41, 2575-2589.

 23. A. J. L. Villaraza, A. Bumb and M. W. Brechbiel, Chem. Rev., 2010, 110, 2921-2959.

24. C. Shen and E. J. New, Curr. Opin. Chem. Biol., 2013, 17, 158-166.

25. P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev., 1999, 99, 2293-2352.

F. Chen, W. Bu, S. Zhang, J. Liu, W. Fan, L. Zhou, W. Peng and J. Shi, *Adv. Funct. Mater.*, 2013, 23, 298-307.

27. Y. Liu and N. Zhang, Biomaterials, 2012, 33, 5363-5375.

28. L. H. Tan, H. Xing and Y. Lu, Accounts Chem. Res., 2014, 47, 1881-1890.

29. Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov and A. Tsourkas, Science, 2012, 338, 903-910.

30. H. Maeda, J. Control. Release, 2012, 164, 138-144.

31. Z. Cheng, D. L. J. Thorek and A. Tsourkas, Angew. Chem.-Int. Edit., 2010, 49, 346-350.

32. A. J. Silversmith, N. T. T. Nguyen, B. W. Sullivan, D. M. Boye, C. Ortiz and K. R. Hoffman, *J. Lumines.*, 2008, **128**, 931-933.

33. D. Zhang, A. Gao, Y. Xu, X.-B. Yin, X.-W. He and Y.-K. Zhang, Analyst, 2014, 139, 4613-4619.

34. N. M. K. Tse, D. F. Kennedy, N. Kirby, B. A. Moffat, T. M. Hinton, B. W. Muir, R. A. Caruso and

C. J. Drummond, J. Mat. Chem. B, 2013, 1, 1219-1222.

35. L. Tang, X. Yang, L. W. Dobrucki, I. Chaudhury, Q. Yin, C. Yao, S. Lezmi, W. G. Helferich, T. M. Fan and J. Cheng, *Angew. Chem.-Int. Edit.*, 2012, **51**, 12721-12726.

D. W. Hwang, H. Y. Ko, J. H. Lee, H. Kang, S. H. Ryu, I. C. Song, D. S. Lee and S. Kim, *J. Nucl. Ned.*, 2010, **51**, 98-105.

37. J. Kobler, K. Moeller and T. Bein, ACS Nano, 2008, 2, 791-799.

38. Z.-A. Qiao, L. Zhang, M. Guo, Y. Liu and Q. Huo, Chem. Mat., 2009, 21, 3823-3829.

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
+0 ∕/7	
41 40	
4ð	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

60

39	W-Y Huang G-L	Davies and L. I.	Davis Chem	Commun 20	13 49 60-62
5).	w1. muang, OD	. Davies and J. J.	Davis, Chem.	<i>Commun.</i> , 20	15, -7, 00-02.

- 40. J. J. Davis, W.-Y. Huang and G.-L. Davies, J. Mater. Chem., 2012, 22, 22848-22850.
- 41. N. Portney and M. Ozkan, Anal. Bioanal. Chem., 2006, 384,620-630.
- 42. M. Norek, I. C. Neves and J. A. Peters, Inorg. Chem., 2007, 46, 6190-6196.
- 43. J.-L. Bridot, A.-C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J.-L.

Coll, L. Vander Elst, R. Muller, S. Roux, P. Perriat and O. Tillement, J. Am. Chem. Soc., 2007, 129, 5076-5084.

44. J. J. Day, B. V. Marquez, H. E. Beck, T. A. Aweda, P. D. Gawande and C. F. Meares, *Curr. Opin. Chem. Biol.*, 2010, **14**, 803-809.

45. G. Zhu, M. Ye, M. J. Donovan, E. Song, Z. Zhao and W. Tan, *Chem. Commun.*, 2012, **48**, 10472-10480.

Z. Ali, A. Z. Abbasi, F. Zhang, P. Arosio, A. Lascialfari, M. F. Casula, A. Wenk, W. Kreyling, R. Plapper, M. Seidel, R. Niessner, J. Knoell, A. Seubert and W. J. Parak, *Anal. Chem.*, 2011, 83, 2877-2882.

1	
2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
27	
20	
26	
27	
28	
29	
30	
21	
00	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
41	
42	
43	
ΔΛ	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	

60

Table 1 The amount of Gd and Al in various Gd-Al@MSNs-NH2 samples and the
respective relaxation data.

Sample	Gd	Al	Gd	Al	Al/Gd	\mathbf{r}_1	r_2/r_1
#	(wt%)	(wt%)	$(\text{mmol } g^{-1})$	$(\text{mmol } g^{-1})$	(m/m)	$(mM^{-1}s^{-1})$	
1	4.52	0.943	0.287	0.350	1.22	14.2	1.3
2	4.46	0.869	0.284	0.330	1.17	12.6	2.0
3	4.03	0.801	0.256	0.297	1.16	13.9	1.7
4*	4.27	0.806	0.272	0.299	1.10	17.3	1.1
5	3.78	0.664	0.240	0.246	1.02	16.5	1.2

* The optimal Gd-Al@MSNs-NH $_2$ and its respective relaxation data.

Fig. 1 TEM images of (A) Gd-Al@MSNs-NH₂ and (B) Gd-Al@MSNs-Cy5. Inset is the same sample at high resolution with 20 nm scale. (C) Illustration of NIRF-MR DMIPs of the mesoporous structure with the co-doped Gd and Al as well as the labeled Cy5.

Fig. 2 Gd-Al@MSNs-Cy5 at a concentration of 1 mg mL⁻¹ under (A) natural and (B) UV light. (C) The fluorescence spectrum of (1) Cy5 and (2) Gd-Al@MSNs-Cy5 at the excitation of 630 nm wavelength. (D) The r1 relaxation curve of Gd-Al@MSNs-Cy5. (E) T1-weighted phantom images of different concentrations of Gd-Al@MSNs-Cy5.

Fig. 3 (A) *In vivo* fluorescent images of mice with intravenous injection of Gd-Al@MSNs-Cy5. (B) *Ex vivo* images of resected organs at 3 h after injection.

Fig. 4 In vivo MR image of mice with intravenous injection of Gd-Al@MSNs-Cy5.

Table of Contents

We report a reliable and facile procedure to prepare near infrared fluorescence (NIRF)-magnetic resonance dual-modal imaging probes (DMIPs) using Cy5-labeled, Gd-A1 co-doped mesoporous silica nanoparticles. High intensity of NIRF and relaxation rate ($17.7 \text{ mM}^{-1}\text{s}^{-1}$) can be observed. Furthermore, the DMIPs in saline were injected into mice through tail vein for imaging and basic pharmacokinetics study.

Analytical Methods Accepted Manuscript

6

TABLE OF CONTENTS

NIRF-MR imaging is reported with Cy5-labeled, Gd-Al co-doped mesoporous silica nanoparticles.

We report a reliable and facile procedure to prepare near infrared fluorescence (NIRF)-magnetic resonance dual-modal imaging probes (DMIPs) using Cy5-labeled, Gd-Al co-doped mesoporous silica nanoparticles. High intensity of NIRF and relaxation rate ($17.7 \text{ mM}^{-1}\text{s}^{-1}$) can be observed. Furthermore, the DMIPs in saline were injected into mice through tail vein for imaging and basic pharmacokinetics study.

