Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Page 1 of 23

Analytical Methods

1	Application of SPE followed by large-volume injection GC/MS for analysis of Geosmin
2	and 2-Methylisoborneol in water
3	
4	Hyunook Kim ^{1*} , Youngmin Hong ¹ , Byung-In Sang ² , and Virender K. Sharma ³
5	
6 7 8	¹ University of Seoul, Dept. of Energy & Environmental System Engineering, 90 Jeonnong- dong, Dongdaemun-gu, Seoul 130-743, Korea, ² Hanyang University, Dept. of Biochemical Engineering, Wangsipri, Sungdong-gu, Seoul,
9 10 11	Korea ³ Environmental and Occupational Health, School of Public Health. Texas A&M University
12 13	*corresponding author: h_kim@uos.ac.kr
14	ABSTRACT
15	A new method comprising of solid phase extraction (SPE) and subsequent large volume
16	injection-gas chromatograph/mass spectrometer (LVI-GC/MS) was developed to analyze 2-
17	methylisoborneol (2-MIB) and geosmin in water. The method with the injection volume of 25
18	μ L showed a good linearity (i.e., R ² > 0.999) over the concentration range of 0.5-20 ng L ⁻¹
19	and good repeatability and recovery. The MDLs of the method for 2-MIB and geosmin were
20	determined 0.87 and 0.62 ng L ⁻¹ , respectively, which are lower than one tenth of the
21	compounds' published odor thresholds (i.e., 5-10 ng L ⁻¹). If the injection volume was further
22	increased, even lower MDLs could be obtained. In short, considering its ease of use, and high
23	accuracy and sensitivity, the proposed SPE-LVI-GC/MS method can be easily applied for
24	routine analysis of the target compounds in water.
25	
26	Keywords: 2-MIB, geosmin, SPE, large volume injection, SPME, GC/MS,
27	
28	

29 1. INTRODUCTION

 Taste and odor of drinking water have been a concern for both consumers and water supply authorities. As the national economy grows around the world, more public complaints on tastes and odors from drinking water are received. The public reluctance to directly consume tap water is mainly due to its musty or earthy odors and tastes. For example, most citizens in Korea do not drink water right from their taps; as of 2008, only 1.4% of the people consume tap water without further treatment^[1]. The earthy and musty odors from tap water are characteristics of 2-methylisoborneol (2-MIB) and geosmin produced by actinomycetes, cyanobacteria, and fungi in source water^[2-6]. They can cause odor sensation to the public even at an extremely low concentration; the odor threshold for 2-MIB or geosmin is 5-10 ng L^{-1} , which is $10^{-4}-10^{-3}$ times lower than that of methyl tertiary-butyl ether ^[7-9]. Due to low odor thresholds of 2-MIB and geosmin, it is critical that drinking water suppliers to have an easy analytical method to accurately determine concentrations of odorous compounds on a routine basis.

The quantitative analysis of 2-MIB and geosmin in water has been carried out with capillary gas chromatograph/mass spectrometer (GC/MS) methods because of their high separation power and sensitivity ^[10]. Since the target analytes usually exist at extremely low concentration (often at ng L^{-1} levels), however, the sensitivity of the GC-MS method remains challenging. In addition, an extensive sample preparation step is often required before injecting the sample into the GC/MS system. A few sample pretreatment techniques have been suggested and applied to analyze 2-MIB and geosmin in water ^[11-13]. Examples include closed loop stripping analysis (CLSA)^[14], purge and trap^[13, 15], open stripping analysis^[16], simultaneous distillation extraction (SDE)^[17], liquid- liquid extraction (LLE)^[5, 18], liquid-liquid microextraction (LLME)^[19], continuous liquid-liquid extraction (CLLE)^[19, 20], solid-phase extraction (SPE) [4, 18, 21], solid-phase microextraction (SPME) ^[13, 22, 23] and stir bar

59 60

Analytical Methods

2		
3 4 5	54	sorptive extraction (SBSE) ^[24-26] .
5 6 7	55	Although the specific procedure of each technique for sample pretreatment is different,
8 9	56	the principles are basically similar. Target analytes are first extracted from aqueous samples,
10 11	57	such as drinking water, surface water, ground water, and wastewater, and subsequently
12 13 14	58	trapped on or in a sorbent. Then, the target analytes are concentrated before injected into an
15 16	59	instrument for quantitation. In fact, some of them (e.g., SDE, LLE, CLLE) are very labor
17 18	60	intensive, and require large sample volume. In addition, LLE and CLLE require specially
19 20	61	designed apparatus and the use of potentially harmful solvents ^[26, 27] . Albeit, these methods
21 22 23	62	often suffer from deteriorated sensitivity and repeatability and result in to some extent large
23 24 25	63	errors; it is simply because the sample volume is required to be reduced to 1-2 μL before GC
26 27	64	analysis ^[28] .
28 29	65	Currently, the methods requiring less or no solvents, e.g., SPE, SPME, and SBSE, are
30 31	66	more prevalent nowadays. In practice, SPME coupled with GC/MS is more commonly
32 33 34	67	applied to quantitate 2-MIB and geosmin in water samples, since it allows extraction and pre-
35 36	68	concentration of the analytes to be carried out in one step. Although the method has been
37 38	69	successfully applied for extracting and pre-concentrating 2-MIB and geosmin, its use for
39 40	70	accurate quantitative analysis is still limited. Two different phase equilibriums (one between
41 42 43	71	liquid to headspace and the other between headspace and adsorbant of a fiber), extraction
43 44 45	72	(such as temperature), variations in sample matrixes, etc. result in large variations in results;
46 47	73	the reported relative standard deviations (RSDs) were as large as 40% for pond water ^[29] .
48 49	74	An easy way to overcome the above-mentioned limitation is injecting a sample of larger
50 51	75	volume than typical injection, e.g., 1 μ L. Recently, a programmable temperature vaporizing
52 53	76	(PTV) technique was developed to facilitate large-volume injection (LVI) ^[30-32] , resulting in
54 55 56	77	significantly improved sensitivity of GC analysis. For example, sub-ppt levels of 2-MIB and
57 58	78	geosmin in water could be determined using CLLE coupled with GC/MS equipped with a

Analytical Methods Accepted Manuscript

79 PTV device $^{[20]}$.

80	This paper aims to develop a new analytical method to quantify 2-MIB and geosmin in
81	raw and tap waters by coupling SPE with LVI-GC/MS technique. The developed method
82	utilized a GC/MS system with a specially designed LVI liner (so called Stomach Insert) and a
83	PTV to quantitate the target analytes that were pre-concentrated with SPE. Using this method,
84	improvement in the sensitivity of GC/MS measurements to determine 2-MIB and geosmin
85	could be achieved with the minimum use of environmentally-harmful solvents. The
86	developed method was validated and compared with the headspace SPME/GC/MS method.
87	Finally, the method of the present study was applied to analyze 2-MIB and geosmin in
88	samples of source waters.
89	
90	2. MATERIALS AND METHODS

91 2.1. Standards and reagents

Both 2-MIB and geosmin standards were purchased from Sigma-Aldrich (St. Louise, MO, USA). The stock solution of 1 μ g mL⁻¹ for method development was prepared by diluting 100 μ g mL⁻¹, when needed. However, the working solutions of 0.5, 1, 5, 10, and 20 ng mL⁻¹ were daily prepared by diluting the stock solution. The diluting water of 18.2 M Ω cm⁻¹ was produced using the AquariusTM purification system (Advantec, Kashiwa-shi, Japan). Acetone and hexane as extracting solvents of target analytes were purchased from TEDIA (Fairfield, OH, USA). Phenanthrene- d_{10} and polyethylene glycol 200 were acquired from Sigma-Aldrich (St. Louise, MO, USA).

2.2. Instrument

In this study, a GC/MS system (GCMS-QP2010Plus, Shimadzu, Kyoto, Japan),
equipped with a PTV for facilitating LVI developed by AiSTI (Fig. 1a; LVI-S200, AiSTI,

Page 5 of 23

Analytical Methods

Wakayama, Japan), was used to quantify 2-MIB and geosmin in water; particularly, a spiral-shaped liner, named Stomach Insert made by AiSTI (Fig. 1b; Wakayama, Japan), was used for LVI. By twisting a conventional liner, the liner could hold inside a large volume of a liquid sample. Once a sample was injected in the Stomach Insert, hot air was supplied into the PTV unit to increase inside temperature according to a pre-set temperature program. Then, solvent was vaporized and target analytes were introduced to a capillary column to achieve separation. [Figure 1 here] The PTV was connected to an auto-sampler (AOC-20i, Shimadzu, Kyoto, Japan) with a 50μ L syringe (SGE, Victoria, Australia). The operating condition of the PTV along with the temperature program is provided in Table 1. The procedure consisted of the following steps: injection, solvent vaporization, split transfer, and cleaning. During injection and vaporization of solvent, the split purge line was open. In these steps, the PTV temperature was raised from 70 to 210 °C for about 1.2 min and was still below the boiling point of 2-MIB or of geosmin; boiling points of 2-MIB and geosmin were 207 and 210 °C, respectively. Using this approach, the target analytes could be concentrated in the Stomach Insert liner while the solvent was removed through the split purge. After solvent was completely vaporized, the analytes remaining in the liner were transferred to the capillary column as the PTV temperature was rapidly raised to 270 °C, at which the temperature was held for 20 min to clean up the insider of the liner. For separation of 2-MIB and geosmin, a Shim-5 MS column (30 m \times 0.25 mm i.d., 0.25

Analytical Methods Accepted Manuscript

μm film thickness; Shimadzu, Kyoto, Japan) was used with helium as a carrier gas. The
 GC/MS analysis was performed in both SCAN and SIM modes. The detailed operating

129	condition for the GC/MS along with the oven temperature program is also provided in Table
130	1.
131	
132	[Table 1 here]
133	
134	For comparison, SPME followed by GC/MS analysis was also applied to the water
135	samples. The procedure to extract the target analytes from the headspace of water samples
136	using SPME fibers along with GC condition is provided as Supporting Information (Table
137	SM-1).
138	
139	2.3. Sample pretreatment procedure
140	The SPE method with a PBX cartridge (20 mg; AiSTI, Wakayama, Japan) was applied
141	to selectively extract 2-MIB and geosmin from a water sample of 100 mL (Fig. 2). The
142	extraction procedure is briefly described below.
143	
144	[Figure 2 here]
145	
146	Prior to extracting target chemicals, the SPE cartridge was washed twice with 2 mL pure
147	water, and dried for 5 min. Then, a sample of 100 mL underwent the loading process under
148	approximately 3 kPa in order to allow target analytes to be adsorbed on to the SPE cartridge.
149	The SPE cartridge was then mounted on a vacuum manifold, washed twice with 2 mL water,
150	and dried for 5 min. After drying, the SPE cartridge was eluted with a 1-mL mixture of
151	acetate and hexane (3:7). A 2- μ L acetone mixture containing 0.2% polyethylene glycol 200
152	as an analyte protectant and 10-ppm phenanthrene- d_{10} as an internal standard was added to
153	the eluted sample; in particular, the analyte protectant was added to prevent matrix-induced

Analytical Methods

154	chromatographic response enhancements caused by the undesirable interactions of matrix
155	compoenets with active sites in the PTV inlet and the GC column. The sample volume was
156	subsequently adjusted to 1 mL by adding a mixture of acetate and hexane (3:7). Finally, the
157	sample was injected into the LVI-GC/MS for quantitation of target compounds.
158	
159	2.4. Validation of proposed analytical method
160	The performance of the sample extraction and analytical method for quantitation of 2-
161	MIB and geosmin developed in this study was evaluated by determining linearity of
162	calibration curves, repeatability and recovery efficiencies, RSDs, instrumental limit of
163	quantifications (LOQs), and method detection limits (MDLs).
164	For developing the calibration curves for 2-MIB and geosmin, standards of each
165	compound at five different concentrations (0.5-20 ng L^{-1}) were prepared by diluting
166	appropriate amounts of the stock solution. All standards were prepared in duplicate. For the
167	repeatability test, 7 standard samples of 5 ng L^{-1} and 3 standard samples of 50 ng L^{-1} were
168	prepared by adding each of the two compounds to water, and were analyzed using the
169	proposed method. Recovery tests were performed with source water and produced drinking
170	water. Test samples were prepared by spiking 2-MIB and geosmin in raw or tap water at
171	three different levels (i.e., 5, 10, and 50 ng L^{-1}); five samples were prepared for each level.
172	For repeatability and recovery tests, raw water samples were collected from a water reservoir.
173	The instrumental LOQ was determined by calculating the signal-to-noise (S/N) ratio for
174	the standard solution of the lowest concentration in the calibration curve; 10 times of a signal
175	to noise (S/N) ratio was considered as the LOQ for each target compound. Since each
176	compound has different instrumental responses, determining the MDL of each compound was
177	separately carried out. For MDL determination, solutions containing the target compounds of
178	1 ng L ⁻¹ each were prepared in target compounds-free raw water samples (total organic

179	carbon of about $2 \pm 0.1 \text{ mg L}^{-1}$). The MDL with a 99% confidence level that the
180	concentration of a target analyte was considered greater than zero was calculated.
181	
182	3. RESULTS AND DISCUSSION
183	3.1. Chromatogram from analysis of 2-MIB and Geosmin
184	Figure 3 shows the chromatogram for 2-MIB and geosmin, obtained by 25 μL injection
185	(Table 1). Sharp peaks for both target compounds were observed; even at the concentration of
186	0.5 ng L^{-1} , discernable peaks could be observed for both target compounds.
187	
188	[Figure 3 here]
189	
190	In Fig. 4, target ions for 2-MIB and geosmin are shown; the concentration of each
191	analyte was 100 ng L ⁻¹ . For each of the target compounds, the most abundant fragment ion
192	was used as the quantifier and two additional mass ions were selected as qualifiers (Table 1).
193	Mass ions used for quantification, i.e., 112 and 95 m/z for 2-MIB and geosmin, respectively,
194	are clearly shown in Fig. 4. For the confirmation of target compounds, the tolerance intervals
195	for mass ion ratios between quantifier and qualifiers were set \pm 30%. Considering the
196	injection volume size used in this study (i.e., 25 μ L), the sensitivity of the proposed method
197	was promising; using the current PTV system, the injection volume could be increased up to
198	250 μL.
199	
200	[Figure 4 here]
201	
202	3.2. Validation of the proposed method
203	The linearity of the calibration curves, the repeatability, the recovery, LOQ, and the

Analytical Methods

204	MDL for each target compound were evaluated to validate the suitability of the developed
20	method. Calibration standards were prepared at five different concentrations (0.5-20 ng L^{-1})
200	to cover the respective dynamic range for both analytes. The linearities of the calibration
207	curves developed for 2-MIB and geosmin were excellent; R ² s of both calibration curves were
208	all > 0.999 (See Fig. SM-1).
209	The repeatability test was carried out with standard solutions of two different
210	concentrations, i.e., 5, and 50 ng L^{-1} (Table 2). The proposed method showed good
213	repeatability for both target compounds. In the case of 2-MIB, RSD values were 6.9% and
212	6.2% for 5 and 50 ng L ⁻¹ , respectively, while those for geosmin were 4.5% and 3.7%. The
213	repeatability of the proposed method was also tested with raw water samples spiked with the
214	target analytes. Larger RSDs, especially at lower level were observed possibly due to
21	5 presence of other constituents of the water samples. Noticeably, RSDs were still within 15%
21	(Table 2). At the level of 5 ng L^{-1} , the error value calculated from the repeatability test with
21	7 raw water was more than two times larger than that with pure water.
218	3
219	[Table 2 here]
220)
222	The recovery test was performed with both raw water and tap water samples, which
222	2 were prepared by spiking 2-MIB and geosmin. Before the water samples were used, their 2-
223	MIB and geosmin concentrations were analyzed. 2-MIB and geosmin concentrations of the
224	raw water were 44.6 ± 0.3 (n = 5) and 2.6 ± 0.2 (n = 5) ng L ⁻¹ , respectively. However, the two
22	target analytes were not detected from the tap water. After background concentrations of the
22	target compounds in the water samples were determined, each water sample was spiked with

2-MIB and geosmin. The expected concentration increases of the samples were 5, 10, and 50

ng L⁻¹. In general, the method showed to some degree better recovery ratio for geosmin than

Analytical Methods Accepted Manuscript

229	that for 2-MIB (Table 3). In the test performed with raw water, the proposed method showed
230	72-104% recovery ratio for 2-MIB, and 93-105% for geosmin. On the other hand, it showed
231	61-67% for 2-MIB and 74-85% for geosmin, when tests were performed with tap water. The
232	relatively lower recovery for tap water samples was attributed to the interaction between
233	target compounds or adsorption sites on SPE material and residual chlorine. Lin et al. also
234	reported that residual chlorine causes enlarged errors in 2-MIB and geosmin analysis ^[33] . If
235	residual chlorine was removed from water samples, much better recovery efficiency could be
236	obtained.
237	
238	[Table 3 here]
239	
240	The instrumental LOQs were determined by considering the peak area corresponding 10
241	times the S/N ratios for 2-MIB and geosmin. The calculated LOQs for 2-MIB and geosmin
242	were 7.7 and 6.7 ng L ⁻¹ , respectively. Similar levels of LOQs were also reported with a
243	method based on headspace-SPME coupled to GC/MS ^[22] .
244	For the determination of MDLs of the developed method for 2-MIB and geosmin, a total
245	of 7 raw water samples were prepared. The obtained MDLs for 2-MIB and geosmin were
246	0.87, and 0.62 ng L^{-1} , and were compared well with those reported by others. Especially, for
247	the SPME followed by GC/MS analysis, which is the most commonly applied approach, the
248	reported MDLs for 2-MIB and geosmin are 0.5-5 ng L^{-1} and 0.5-3.3 ng L^{-1} , respectively
249	(Table 4). In this study, the method using SPME-GC/MS was also applied, and its MDLs for
250	2-MIB and geosmin were calculated as 1.5 and 0.6 ng L^{-1} , respectively, which are comparable
251	with those reported by others. However, the main disadvantage of SPME is reduced limited
252	concentration capability due to the small amount of polymer coating on the fiber. In addition,
253	the SPME fiber coating is easily breakable and hence has limited lifetime.

Analytical Methods

254	
255	[Table 4 here]
256	
257	Among a variety of analytical methods for 2-MIB and geosmin presented in Table 4,
258	SBSE-GC/MS method is mentionable. SBSE is one-step extraction process utilizing a
259	magnetic stirring rod, which is incorporated into a glass jacket coated with a 0.5-mm layer of
260	polydimethylsiloxane (PDMS). In fact, SBSE-GC/MS method has been considered as an
261	alternative choice to conventional extraction methods. Although the principle of SBSE is
262	similar to that of SPME which uses PDMS sorbent, the amount of sorbent used in SBSE is
263	much higher than that of SPME, resulting in higher enrichment factors and sensitivity and
264	low MDLs ^{[36, 37].} Nonetheless, it also suffers from the same issues with those of SPME, e.g.,
265	easy breakableness and limited lifetime of adsorbent.
266	Considering that its MDLs for 2-MIB and geosmin were determined with raw water
267	samples and the sample volume was only 25 μ L, the analytical method based on SPE-LVI-
268	GC/MS proposed in this study can be readily employed in a routine monitoring program for
269	the odorants in source water. If the injection volume is increased, the sensitivity of the
270	method could be increased; the injection volume can be increased up to 250 μ L. From a
271	practical point of view, however, the proposed method can be applied without increase of
272	injection volume for better sensitivity because the current guidelines for 2-MIB and geosmin
273	are about 10 times higher than its MDLs.
274	
275	3.3. Application of proposed method for analysis of 2-MIB and geosmin in real water.
276	The proposed method was applied to quantify the target compounds in raw water

277 samples collected from upstream sites of Han River; it is located approximately 30 km away

from the eastern boundary of the Seoul Metropolitan. The sample temperature was about 23

Analytical Methods Accepted Manuscript

^oC and dissolved oxygen and total organic carbon concentrations were 8.6 ± 0.2 mg L⁻¹ and $2.1 \pm 0.2 \text{ mg L}^{-1}$, respectively. The concentrations of 2-MIB and geosmin determined using the developed method were 59.3-65.6 and 8.9-9.4 μ g L⁻¹, respectively. This result is comparable with those reported by a study previously conducted for Han River^[39]. As stated in Section 3.1, the tolerance interval for the ion ratios between quantifier and each of two qualifiers was set at 30% for both 2-MIB and geosmin in raw water samples. The ion ratios calculated for 2-MIB were within the rages of 19-27% and 10-14% whereas those for geosmin were 15.0-25.7% and 13.4-21.7%, indicating the preset tolerances of absolute ion abundances ratios set for both odorants satisfied.

289 4. CONCLUSION

A new method consisting of SPE and subsequent LVI-GC/MS was developed to analyze 2-MIB and geosmin in water. The proposed method showed a good linearity over the wide calibration range for 2-MIB and geosmin, and good repeatability and recovery. Large volume injection practiced in the proposed method resulted in a good sensitivity for the target analytes. The MDLs of the method for 2-MIB and geosmin are lower than one tenth of the compounds' published odor thresholds, and are comparable with or lower than those obtained using SPME-GC/MS. However, the proposed method is free from the concern about breaking of adsorbent on a fiber frequently witnessed in the practice with SPME. Overall, due to its relative ease of practice and high accuracy and sensitivity, the proposed method can be easily applied to a water quality monitoring program for the odorants.

301 ACKNOWLEDGEMENT

This work was supported by the R&D program of MOTIE/KEIT (R&D program number:
 10037331, Development of Core Water Treatment Technologies based on Intelligent BT-NT-

1		
2		
3		
4	304	IT Fusion Platform).
5		
6		
1	305	
8		
9	306	REFERENCES
10		
12	307	
13		
14	308	[1] Korean Ministry of Environment, <i>Elimination of Mistrust on Tap Water and Improvement</i>
15	309	of Tap Water Consumption Ratio, 2013.
16	310	[2] N. Gerber, H. Lechevalier, Appl. Microbiol. 1965, 13, 935.
17	311	[3] N.N. Gerber, A volatile metabolite of actinomycetes, 2-methylisoborneol, J. Antibiot.
18	312	1969. 22. 508.
19	313	[4] Y Ikai S Honda N Yamada J Mass Spectrom Soc. Jpn 2003 51, 174
20	314	[5] R. Srinivasan G.A. Sorial J. Environ Sci. 2011 23 1
21	315	[6] 7 Bai A Pilote P K Sarker G Vandenberg and I Pawliszyn Anal Chem 2013 85
22	216	[0] Z. Dai, A. I note, T. K. Barker, G. Vandenberg, and J. Fawnszyn, <i>That. Chem.</i> , 2015, 05, 7378
23	217	[7] I. Mallavialla and I. H. Suffat Identification and Treatment of Tasta and Odors in
24	317 310	[7] J. Wallevialle, and I. II. Suitel, Identification and Treatment of Taste and Odors in Drinking Water 1097
25	210	Drinking Waler, 1967. [9] I. Ha D. Haafal F. Daale C. D. Saint and C. Nawaamba Chamaanhana 2007 66 2210
20 27	319	[8] L. HO, D. HOEIEI, F. BOCK, C.P. Saill, and G. Newconnoe, <i>Chemosphere</i> . 2007, 60 , 2210.
21 28	320	[9] W. F. Young, H. Hortn, K. Crane, T. Ogden, M. Arnott, <i>Water Res.</i> 1996, 30 , 351.
20	321	[10] Q. Guo, X. Li, J. Yu, H. Zhang, Y. Zhang, M. Yang, N. Lu, and D. Zhang, Anal.
30	322	Methods, 2015.
31	323	[11] E. D. Ruan, J. L. Aalhus, S. T. Summerfelt, J. Davidson, B. Swift, and M. Juarez, J.
32	324	<i>Chrom. A.</i> , 2013, 1321 , 133.
33	325	[12] B. Yuan, F. Li, D. Xu, ML. Fu, Anal. Methods, 2013, 5, 1739.
34	326	[13] S. Yu, Q. Xiao, B. Zhu, X. Zhong, Y. Xu, G. Su, and M. Chen, J. Chrom. A., 2014,
35	327	1329 , 45.
36	328	[14] J. Romero, and F. Ventura, Int. J. of Environ. Anal. Chem. 2000, 77, 243.
37	329	[15] P. B. Johnsen, and S. W. Lloyd, Can. J. Fish. Aquat. Sci. 1992, 49, 2406.
38	330	[16] A. Bruchet, and C. Hochereau, Analusis. 1997, 25, M32.
39	331	[17] D. Khiari, I. Suffet, S. E. Barrett, Water Sci. Ttechnol. 1995, 31, 105.
40	332	[18] X. Ma, N. Gao, B. Chen, O. Li, O. Zhang, and G. Gu, Front. Environ. Sci. Eng. Chin.
41	333	2007. 1, 286.
42	334	[19] A. Viswakumar. Development of a Gas Chromatography-Tandem Mass Spectrometry
43	335	Method for the Simultaneous Analysis of 19 Taste and Odor Compounds 2010
44 45	336	[20] L. Zhang R. Hu and Z. Yang <i>Water Res</i> 2006 40 699
46	337	[21] F. D. Conte, S. C. Conway, D. W. Miller, and P. W. Perschbacher, <i>Water Res</i> , 1996, 30
40	228	21] D. D. Conte, S. C. Conway, D. W. Winer, and T. W. Ferschödener, <i>Water Res.</i> 1996, 5 6, 2125
48	220	[22] K. Saita, K. Okamura and H. Kataaka, I. Chromatogr. A 2008 1186 A3A
49	240	[22] K. Sallo, K. Okalifula, and H. Kataoka, J. Chromatogr. A, 2006, 1160, 454. [22] S. D. Watson, D. Drownlee, T. Satahwill, and E. E. Harzashaimar, Watsu Bas, 2000, 24
50	340 241	[25] S. D. Walson, D. Diowinee, T. Salchwin, and E. E. Hargesheimer, <i>Water Res.</i> 2000, 34 ,
51	541 242	2010. [24] D. Dononou, E. Acobog, M.D. de Deubin, E. Deuvid, and D. Gendre, Angel. Discus. J. Cl.
52	342	[24] D. Benanou, F. Acobas, M.K. de Koubin, F. David, and P. Sandra, Anal. Bioanal. Chem.
53	343	
54	344	[25] I. Bauld, P. Teasdale, H. Stratton, and H. Uwins, <i>Water Sci. Technol.</i> 2007, 55, 59.
55	345	[26] M. Pintado-Herrera, E. González-Mazo, and P. Lara-Martín, Anal. Bioanal. Chem. 2013,
56	346	405, 401.
57	347	[27] S. W. Lloyd, J. M. Lea, P. V. Zimba, and C. C. Grimm, <i>Water Res.</i> 1998, 32 , 2140.
58		
59 60		
1117		

- 348 [28] P. B. Johnsen, and J. -C. W. Kuan, J. Chromatogr. A, 1987, 409, 337.
- 349 [29] B. Hurlburt, S. W. Lloyd, and C. C. Grimm, J. Chromatogr. Sci. 2009, 47, 670.
 - 350 [30] W. Engewald, J. Teske, and J. Efer, J. Chromatogr. A, 1999, 842, 143.
 - 351 [31] K. Grob Jr, G. Karrer, and M. L. Riekkola, J. Chromatogr. A, 1985, **334**, 129.
- 352 [32] L. Zhang, R. Hu, and Z. Yang, *Water Sci. Technol.* 2006, **54**, 335.
 - 353 [33] T. -F. Lin, C. -L. Liu, F. -C. Yang, and H. -W. Hung, Water Res., 2003, 37, 21.
 - 354 [34] M. -L. Bao, K. Barbieri, D. Burrini, O. Griffini, and F. Pantani, Water Res., 1997, 31,
 355 1719.
 - 356 [35] J. Ma, W. Lu, J. Li, Z. Song, D. Liu, and L. Chen, *Analy. Lett.* 2011, 44, 1544.

- 358 [36] S. Nakamura, N. Nakamura, S. Ito, J. Sep. Sci. 2001, 24, 674.
 - [37] N. Ochiai, K. Sasamoto, M. Takino, S. Yamashita, S. Daishima, A. Heiden, and A. Hoffman, *Analyst*, 2001, 126, 1652.
- 361 [38] C. Cortada, L. Vidal, and A. Canals, J. Chromatogr. A, 2011, 1218, 17.
- 362 [39] G. C. Lee, Y. S. Kim, M. . Kim, S. A. Oh, I. Choi, J. Choi, J.G. Park, C. K. Chong, Y. Y.
- 363 Kim, K. Lee, and C. H. Lee, *Water Sci. Technol.* 2011, **63**, 2745.

 $\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ \end{array}$

Operating Parameters for PTV					
Injector Temp. Program	70 to 240 °C 120 °C min ⁻¹ , to 270 °C 50 °C min ⁻¹ , an held for 20 min 7 25				
Injector Solvent Purge Time, sec					
Injection Volume, µL					
Operating Parameters for GC/MS					
Oven Temp. Program	held at 50 °C for 3 min, to 180 °C at 10 °C min ⁻¹ , and 310 °C at 25 °C min ⁻¹ , and held for 5 min				
Column Flow, mL min ⁻¹	1				
Carrier Gas Saver at Split Ratio of 20, min	4				
Split Ratio	150				
Ion Source Temp., °C	280				
Interface Temp., °C	290				
Scan Range, <i>m/z</i>	50-250				
SIM, <i>m/z</i>	97, 112 (quantifier), 125 for geosmin				
	95 (quantifier), 108, 135 for 2-MIB				

	2-MIB			Geosmin				
	Pure	water	Raw	water	Pure	water	Raw	water
Level,	SD ^a ,	RSD ^b ,	SD,	RSD,	SD,	RSD,	SD,	RSD,
ng L ⁻¹	ng L ⁻¹	%	ng L ⁻¹	%	ng L ⁻¹	%	ng L ⁻¹	%
			SPE	·LVI-GC/M	S			
5	0.29	6.9	0.7	14.6	0.2	4.5	0.67	14.2
50	3.2	6.2	3.2	6.5	1.9	3.7	3.8	8.0
			SPI	ME-GC/MS				
5	0.48	9.7			0.14	3.0		
50	1.9	3.8			4.0	8.0		

370 a: standard deviation

b: relative standard deviation

Analytical Methods Accepted Manuscript

374	Table 3. Results of recovery test for 2-MIB and gesmin			(n = 5)			
		2-MIB		Geosmin			
	Levels, ng L^{-1}	5	10	50	5	10	50
	Raw water, %	104.4	72.1	72.9	104.7	93.0	95.3
	Tap water, %	61.3	66.5	62.2	85.3	74.1	79.8

2	
2	
5	
4	
5	
5	
6	
7	
2	
8	
9	
10)
11	
12	
13	2
14	ŀ
15	5
10	
10)
17	
10	,
10	,
19)
20	`
20	1
21	
22)
22	-
23	3
2/	L
24	
25)
26	
20	<u> </u>
27	
28	2
20	,
29)
30	١
50	'
31	
32)
02	
33	5
34	L
07	
35)
36	5
~	
37	r
38	3
00	Ś
36	,
40)
4.4	
41	
42	2
10	,
43)
44	ŀ
40)
46	ì
17	,
47	
48	3
10	2
48	1
50)
51	
51	
52	2
53	ł
54	ŀ
55	
50	,
56	j
57	_
~ '	r
5/	
57 58	3

59 60 Table 4. Method detection limit values for 2-MIB and geosmin reported in literature and
 obtained in this study

2-MIB, ng L ⁻¹	Geosmin, ng L ⁻¹	Method	Matrix	Reference
1.0 5.0		LLE-GC/MS	Pure water	[18]
1.0	1.0	LLE-GC/ITMS	Pure water	[34]
5.0	5.0	CLSA-GC/MS	Pure water	[14]
1.0	1.1	Headspace LLME-GC/MS	Raw water	[35]
0.5	0.5	SPME-GC/MS	Raw water	[36]
0.9	0.6	Headspace SPME-GC/MS	Pure water	[22]
9.7	0.94	SPME-GC/MS	Pure water	[36]
1.52	0.6	SPME-GC/MS	Raw water	This study
9	2	USADLLME-GC/MS*	Pure water	[38]
0.25	0.1	SBSE-GC/MS	Pure water	[24]
0.25	0.1 0.09	SBSE-GC/MS SBSE-GC/MS	Pure water Pure Water	[24] [36]

0.3	0.05	CLLE-LVI-GC/MS	Pure water	[20]
0.91	0.63	SPE-LVI-GC/MS	Raw water	This study

379 * USADLLME-GC/MS; ultrasound-assisted dispersive liquid–liquid microextraction coupled to GC/MS.

Figure legend

- Fig. 1. Schematic diagram for PTV unit (a) and picture of Stomach Insert (b) used in this study
- Fig. 2. Extraction procedure for 2-MIB and geosmin in water
- Fig. 3. Chromatogram of 2-MIB and geosmin analyzed by GC/MS
- Fig. 4. Target mass ions for 2-MIB and geosmin analyzed by GC/MS

Fig. 1. Schematic diagram for PTV unit (a) and picture of Stomach Insert (b) used in this study

Fig. 2. Extraction procedure for 2-MIB and geosmin in water

Analytical Methods Accepted Manuscript

Fig. 3. Chromatogram of 2-MIB and geosmin analyzed by GC/MS

Fig. 4. Target mass ions for 2-MIB and geosmin analyzed by GC/MS