Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

1	A Sensitive LC-ESI-MS/MS method for the determination of
2	clotrimazole in human plasma
3	
4	Rui Zhou ^{1,#} , Fang Tang ^{1,#} , Sanwang Li ¹ , Xiang Xie ¹ , Jie Peng ¹ , Feifan Xie ¹ , Lingli Mu ^{2,*} ,
5	Peng Yu ^{1,*}
6	(¹ School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
7	² Medical College, Hunan Normal University, Changsha 410006, China)
8	# These authors contributed equally.
9	* Corresponding author: Tel./fax: +86 731 82650446. E-mail: peng.yu@csu.edu.cn (Peng Yu);
10	Tel./fax: +86 731 88912400. E-mail: mulingli@sina.com (Lingli Mu).
11	
12	Abstract
13	A rapid, sensitive and specific liquid chromatography-electrospray
14	ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination
15	of clotrimazole in human plasma was developed and validated. The plasma samples
16	were extracted with mixed solvent of methyltert butyl ether-dichloromethane (4:1,
17	v/v), and estazolam was selected as the internal standard. Then the separation was
18	carried out on a Phenomenex Luna CN column (2.0×150 mm, 5 μ m), using a mobile
19	phase of methanol-0.1% aqueous formic acid solution (85:15, v/v). A triple
20	quadrupole mass spectrometer with the positive ionization mode was used for the
20 21	quadrupole mass spectrometer with the positive ionization mode was used for the determination of target analytes. The monitoredion transitions were m/z 276.9 \rightarrow 165.1

Analytical Methods Accepted Manuscript

curve of clotrimazole was established over the range of $0.01563 \sim 1.000 \text{ ng} \cdot \text{mL}^{-1}$ (r²=0.9935). The intra- and inter-day precisions were less than 10% and all the biases were not more than 9%. The mean extraction recovery of clotrimazole was greater than 68.4% and no significant matrix effect was detected. The LLOQ of 0.01563 ng·mL⁻¹ is sensitive enough to perform pharmacokinetic studies after clotrimazole administration.

Keywords: Clotrimazole; LC-ESI-MS/MS; Human plasma; Clinical monitoring;
Pharmacokinetic study

1 Introduction

Clotrimazole (CTZ; 1-[(2-chlorophenyl)diphenylmethyl]-1H-imidazole) is an antimycotic imidazole derivative which is commonly used for the treatment of human pathogenic non-invasive fungi infections such as candidiasis, dermatophytoses, tinea vesicolor and erythrasma¹. It was first described in 1969, and has been in clinical use for more than 20 years. As a member of antimycotic imidazoles, clotrimazole can bind to phospholipids in the cell membrane and then inhibits the biosynthesis of sterols, such as ergosterol, which are required for cell membrane production. Thereafter the permeability of cell membrane is changed, which leading to the fungi cell death². Besides the antimycotic activity, clotrimazole is also used to inhibit proliferation of human tumor cells and vascular endothelial cells, and the growth of chloroquine-resistant strains of the malaria parasite³⁻⁸.

According to ClinicalTrials.gov registered information, several clinical trials of

topical administration of clotrimazole (e.g. vaginal formulations) in healthy volunteers or patients are in progress, showing that there is a still great interest in this very old drug. Also, as an antifungal agent, clotrimazole exhibit marked variability in bloodstream concentrations that are difficult to predict on the basis of dosing alone, it has recommended therapeutic drug monitoring (TDM) for this drug in select patient populations⁹. Thus, development of reliable analytical methodologies for determination of clotrimazole in biological matrix is an essential step in optimizing and monitoring its therapy. However, most of analytical studies were focused on the quantification of clotrimazole in different pharmaceutical preparations and environmental water samples¹⁰⁻¹³, and only few analytical methods for the determination of clotrimazole in biological matrix were reported¹⁴⁻¹⁶. To our knowledge, a previous study¹⁵ employed capillary electrophoretic method to determine the concentrations of clotrimazole in mice plasma. Another study¹⁴ used HPLC-UV assay for the quantification of clotrimazole in whole blood and plasma. The lower limit of quantification (LLOQ) for these two methods were 0.5 μ g·mL⁻¹ and 0.17 μ g·mL⁻¹ respectively. However, these LLOQ are still a little high for clotrimazole pharmacokinetics and clinical monitoring studies, since the low concentration $(ng \cdot mL^{-1})$ of clotrimazole in human plasma via both oral and topical administration were reported¹⁷. A method combining HPLC and mass spectrometry (MS) for the simultaneous quantification of 10 antifungal drugs in the liver and muscles of chickens has also been described¹⁶. However, this method was done in chicken matrices other than human plasma, and run over 8.1 min for each sample.

rapid,

а

sensitive

and

specific

liquid

In the present study, chromatography-electrospray ionization- tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for determining clotrimazole in human plasma using estazolam as internal standard (IS). The advantages of this method over the reported method include a shorter run time and a much greater sensitivity. To our knowledge, this is the first report of the systematic validation of a HPLC-MS/MS assay for quantifying clotrimazole in human plasma. 2 Materials and methods 2.1 Chemicals and reagents Clotrimazole and the internal standard (IS) estazolam (chemical structures are shown in Fig. 1) were purchased from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China). Methanol (HPLC grade) was obtained from Merck (Merck, Germany). Sodium hydroxide, methyl tert-butyl ether and dichloromethane (analytical grade) were purchased from Sinopharm Chemcial Reagent Co., Ltd. (Shanghai, China). Formic acid (analytical grade) was purchased from Tianjin Kemiou Chemcial Reagent Co., Ltd. (Tianjin, China). Deionized water was purified in a Purelab classic system ELGA Labwater (Shanghai, China). Blank human plasma was obtained from the healthy volunteers. All other chemicals and reagents were of analytical grade from commercial sources. 2.2 Instrumentation and conditions Analysis was performed on an Agilent 6460 triple quadrupole LC/MS system (Agilent, Germany) equipped with an electrospray ionization source (ESI). Data

Analytical Methods

89 acquisition was performed with Agilent Mass Hunter Workstation Software.

Separation was achieved by an Agilent 1200 HPLC system using a Phenomenex Luna CN column (2.0×150 mm, 5 μ m, Phenomenex, Torrance, USA), and a Gemini C₁₈ column (4×3.0 mm, 5 μ m, Phenomenex, Torrance, USA) was employed as guard column. The mobile phase consisted of methanol-0.1% aqueous formic acid solution (85:15, ν/ν) at a flow rate of 0.2 mL·min⁻¹. The injection volume was 10 μ L and the column temperature was maintained at 30 \Box .

The mass spectrometer was operated in positive ionization mode, and quantification was performed using multiple-reaction-monitoring (MRM) mode. The monitored ion transitions were m/z 276.9 \rightarrow 165.1 for clotrimazole and m/z294.9 \rightarrow 266.9 for estazolam. The other optimized MS/MS parameters were as follows: fragmentor voltage 140 V for clotrimazole and 135 V for estazolam, collision energy (CE) 22 eV for both clotrimazole and estazolam, source temperature 300 \Box , drying gas (N₂) flow 11 L·min⁻¹, nebulizer pressure 15 psi, and capillary voltage 4 kV. **Analytical Methods Accepted Manuscript**

2.3 Subjects

Four healthy Chinese volunteers were included in this study. Prior to study, the protocol of this study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South University (Changsha, China) and written informed consent was obtained from all participants after explanation of the potential risks and benefits, as well as the investigational nature of the study. No other prescribed or OTC drugs were taken from three months before this trial to the end of the study. Four female healthy volunteers, aged 18 to 40 years with a body mass index of 18.5 to 24.9 kg·m⁻²,

Analytical Methods Accepted Manuscript

received a single dose of 0.150 g clotrimazole suppository via vaginal administration. The blood samples (approximately 5 mL) were collected at 0 (pre-dose), 1, 2, 3, 4, 6, 8, 10, 12, 24, 48 and 72 h in labeled Na-heparin vacuettes (5mL). Plasma was separated by centrifugation ($3000 \times g$, 4 °C, 10 min) and stored at -20 °C until analysis. During the trial, volunteers have standard diet while water intake was unmonitored.

2.4 Preparation of stock and standard solutions

The stock solution of clotrimazole $(1 \text{ mg} \cdot \text{mL}^{-1})$ was prepared in methanol and stored in 4 \Box . The stock solution of IS estazolam $(1 \text{ mg} \cdot \text{mL}^{-1})$ was freshly prepared in 50% aqueous methanol solution and stored in 4 \Box . The IS working solution was prepared by diluting the IS stock solution to a concentration of 50 ng $\cdot \text{mL}^{-1}$ with 50% aqueous methanol solution before use.

A series of standard solutions of 0.1563, 0.3125, 0.6250, 1.250, 2.500, 5.000, 10.00 ng·mL⁻¹ for clotrimazole was prepared by serially diluting the stock solution with 50% aqueous methanol solution. A 50 µL of standard working solution was transferred into 450 uL of blank plasma to yield the final plasma concentrations of 1.000, 0.5000, 0.2500, 0.1250, 0.06250, 0.03125, and 0.01563 ng·mL⁻¹. Quality control (QC) samples were prepared independently in the same way at three concentration levels (0.03125, 0.1250 and 0.8000 ng·mL⁻¹). All calibration standard samples and QC samples were freshly prepared daily.

2.5 Sample preparation

standard work
100 μ L of sod
tert-butyl ether
After the san
was transferred
f nitrogen at 4
solution and 10
rug Administra
specificity of
, four were nor
By comparing
sources with
e chromatograr
azole suppositor
The linearity of
standard soluti
ves were genera
(1/X ²) least-squ
alculated stand

Analytical Methods Accepted Manuscript

To a 500 µL standard plasma sample, 50 µL of internal king solution (50 $ng \cdot mL^{-1}$) was added andvortex-mixed for 30s, then lium hydroxide solution $(1 \text{ mol} \cdot L^{-1})$ and 4 mL mixed solvent of methyl and dichloromethane (4:1, v/v) were added and vortexed for 3 min. nple centrifugated at 2500 rpm for 10 min, 3 mL of the organic phase w to a clean tube and evaporated to dryness under a gentle stream of 0□. Residue was reconstituted with 200 µL 50% aqueous methanol se μL was injected into the LC-MS/MS system.

2.6 Method validation

Validation of the method was based on the Food and Dru tion Guidance for Industry: Bioanalytical Method Validation¹⁸. The the method was assessed in six different sources of plasma, of which, mal plasma and one each of lipemic and heamolyzed plasma. B the chromatograms of extracted blank plasma from six different the corresponding plasma samples spiked with IS and clotrimazole. The n of typical plasma samples from different subjects after using clotrima ry 3 hours was also analyzed to check for the endogenous interference. f the calibration curve for clotrimazole was assessed by analyzing seven ons in the range of 0.01563~1.000 ng·mL⁻¹ in plasma. Calibration curv ated using the analyte to internal standard peak area ratios by weighted (ares linear regression. The acceptance criterion for each back-ca dard concentration above the LLOQ was \pm 15% deviation from the nominal value, except

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
39
40
+ i ∕10
4Z
43
44
45
46
47
48
49
50
51
52
52
55
04 5-
55
56
57
58
59
60

155	at LLOQ. The LLOQ was defined as the concentration of the sample that could be
156	quantified with less than 20% variation in precision $(n = 5)$ and provided a
157	signal-to-noise ratio \geq 10. Precision and accuracy of the method were evaluated by
158	analyzing QC samples at four concentration levels (0.01563, 0.03125, 0.1250 and
159	0.8000 $ng \cdot mL^{-1}$) on five replicates of each level in three validation days. Precision
160	was expressed using the relative standard deviation (RSD %). Accuracy was defined
161	as the relative deviation in the determined concentration of a standard from that of its
162	nominal concentration expressed as a percentage. Extraction recoveries of
163	clotrimazole were determined at three QC concentrations (0.03125, 0.1250 and
164	0.8000 ng·mL ⁻¹) by comparing the peak areas that were extracted from plasma
165	samples with standard solutions without extraction procedure at the same nominal
166	concentrations. To evaluate the matrix effect, blank human plasma samples were
167	processed according to the sample preparation procedure described above and then
168	spiked with clotrimazole and IS at the final concentration after extraction. The matrix
169	effect of the plasma were expressed as the ratio of the mean peak area of analyte
170	spiked post-extraction to that of the neat standard solution with 50% aqueous
171	methanol solution at corresponding concentrations. Stability tests were performed for
172	analyte-spiked plasma samples under various conditions: post-preparative stability (at
173	4 \square for 24 h), short-term storage stability (at ambient temperature for 4 h), through 3
174	freeze/thaw cycles (from -40 \square to room temperature) and long-term storage stability
175	(at -40 \square for 3 month) by analyzing three replicates at low, medium and high QC
176	concentrations. Dilution integrity experiment was performed with an aim to validate

the dilution test to be carried out on higher analyte concentration (above upper limit of quantification), which may encountered during real subject samples analysis. Dilution integrity experiments were carried out by a 10-fold dilution of the plasma samples with blank plasma for five replicates. The acceptable precision and accuracy were required to be within $\pm 15\%$.

2.7 Incurred sample reanalysis

An incurred sample reanalysis (ISR) was performed by selecting four subjects (2 samples from each subject) near C_{max} and the elimination phase in the pharmacokinetic profile of the drug. The ISR values were compared with the earlier value for the same sample using the same procedure. The percent change in the value should not be more than $\pm 20\%$.

Change % = (repeat value – initial value)/(mean of repeat and initial values) $\times 100$

3. Results

3.1 Specificity

The typical chromatogram profiles of blank plasma, blank plasma spiked with clotrimazole and IS, and plasma obtained after using clotrimazole suppository 3 hours are shown in Fig.2. The retention time of clotrimazole and IS were approximately 4.4 min and 2.9 min, respectively. No obvious interferences from endogenous substances were observed. These results showed that the method exhibited good specificity and selectivity.

3.2 Linearity and LLOQ

An excellent linear relationship was observed between peak area ratios of

Analytical Methods Accepted Manuscript

2
3
4
4
5
6
7
, 0
8
9
10
11
10
12
13
14
15
10
16
17
18
10
10
20
21
22
22
23
24
25
26
27
21
28
29
30
00
31
32
33
3/
07
35
36
37
20
30
39
40
41
12
+2
43
44
45
16
40
47
48
49
50
50
51
52
53
50
54
55
56
57
50
Эð
59

60

1

199	clotrimazole and IS versus plasma concentrations over a range of 0.01563 \sim 1.000
200	ng·mL ⁻¹ . Both the regression models $(1/x \text{ and } 1/x^2)$ were compared and the best fit for
201	the concentration response relationship was obtained with a weighting factor of $1/x^2$.
202	The mean regression equation of the calibration curve for clotrimazole was
203	Y=0.5353X+0.0139 (r ² =0.9935). The back calculated concentrations at all point on
204	the plasma calibration curves were within the $\pm 15\%$ of the nominal concentration
205	(Table 1). The LLOQ for clotrimazole in plasma was shown to be 0.01563 $ng \cdot mL^{-1}$ on
206	the basis that the accuracy of LLOQ was 98.8% and precision (RSD %) was 1.1%.
207	3.3 Precision and accuracy

The intra- and inter-day precision and accuracy values are presented in Table 2. As shown, all the intra- and inter-day precisions were less than 10% and all the biases were not more than 8%. The data demonstrated that the precision and accuracy of this assay were within the acceptable range and the method was satisfied.

212

3.4 Extraction recovery and matrix effects

213 Then liquid-liquid extraction technique was chosen as extracting method, and 214 the extracting effects tert-butyl ether-dichloromethane (4:1,of v/v), 215 cyclohexane–methylene dichloride (2:1, v/v) and ethylether solvents were assessed. It was found that tert-butyl ether-dichloromethane (4:1, v/v) gave the highest recovery 216 217 (about 70%) and no significant interference was observed. Mean recoveries of 218 clotrimazole from human plasma were $68.7 \pm 1.2\%$, $68.4 \pm 3.2\%$ and $72.3 \pm 4.5\%$ at concentrations of 0.03125, 0.1250 and 0.8000 ng·mL⁻¹, respectively, and the mean 219 220 recovery of IS was $87.6 \pm 1.9\%$. Matrix effects (%) of clotrimazole at 0.03125, 0.1250

Analytical Methods

221	and 0.8000 ng·mL ⁻¹ were found to be 100.6 \pm 6.5%, 98.9 \pm 3.3%, and 100.3 \pm 3.0%
222	of the nominal concentrations, respectively, and this value was $99.1 \pm 2.7\%$ in terms
223	of IS. This indicates that matrix effects are not an issue using the current method.
224	3.5 Stability
225	In terms of stability, the results are shown in Table 3 indicated that CTZ and IS
226	were stable in human plasma and in processed samples under the conditions described
227	above.
228	3.6 Dilution integrity
229	Dilution integrity experiments were carried out in five replicates by a 10-fold
230	dilution of the plasma samples with blank plasma, and assay precision and accuracy
231	were tested using the same sample pretreatment method. The precision (RSD %) for
232	dilution integrity of 1/10 dilution was found to be 11.2%, while the accuracy results
233	were found to be 97.9%. The results suggested that samples whose concentrations
234	exceeded the upper limit of the calibration curve could be reanalyzed by an
235	appropriate dilution.
236	3.7 Incurred samples reanalysis
237	The reproducibility of the present method was established by reanalysis of
238	incurred samples. Two plasma samples from each subject were selected and
239	re-assayed in a single bioanalytical run. The changes in concentrations between ISR

and the initial values for the samples were less than 20% (Table 4), indicating good

- 241 reproducibility of the present method.
- **4. Discussion**

Analytical Methods Accepted Manuscript

243	Over the past decade or so, modern liquid chromatography coupled to tandem
244	mass spectrometry (LC-MS/MS) has greatly multiplied the sample analysis
245	throughput. Moreover, technological advances in column technology and mass
246	spectrometers have also driven ever lower the limit of quantitation of bioanalysis
247	required to fully understand the pharmacokinetics of the low dose/high potency drug
248	candidates and have made LC-MS/MS the choice for the antifungal agents. In this
249	work, we obtained excellent sensitivity for the quantifiation of clotrimazole in human
250	plasma by LC-MS/MS and the LLOQ up to 0.01563 ng·mL ⁻¹ , which was much
251	greater sensitive than the reported method while using only 500 μ L human plasma.
252	Due to the complexity of the sample matrices and the low concentration of
253	clotrimazole in biological samples, a sample preparation step was necessary to reduce
254	the endogenous interferences before LC-MS/MS analysis. In the present study, in
255	order to simultaneously obtain suitable recoveries and minimum interference for the
256	determination of clotrimazole, different sample preparation procedures were
257	investigated. Initially, the extraction method was performed by protein precipitation
258	(PPT) using methanol and acetonitrile respectively, the PPT method is simplest, but
259	the sensitivity was relatively low. Solid phase extraction (SPE) has high recovery but
260	is much time and money consuming, which may restrict its application in
261	determination of analytes in human plasma. Then liquid-liquid extraction technique
262	was chosen as extracting method, and the extracting effects of tert-butyl
263	ether-dichloromethane (4:1, v/v), cyclohexane-methylene dichloride (2:1, v/v) and
264	ethylether solvents were assessed. It was found that tert-butyl ether-dichloromethane

(4:1, v/v) gave the highest recovery (about 70%) and no significant interference was observed. Clotrimazole, the chemical structure of which shown in Fig.1.A, is a kind of alkaline compound with the imidazole ring. The alkaline medium was helpful to release more clotrimazole in a free state. So, the addition of 100 μ L of sodium hydroxide solution (1 mol \cdot L⁻¹) in sample preparation could increase the liquid–liquid extraction rate and decrease the interference. The recovery results of the sample preparation with and without the addition of sodium hydroxide solution were also compared. The recovery was higher with the addition of sodium hydroxide solution. The choice of the internal standard (IS) is of crucial importance since it affects precision and accuracy of the analytical method. Physicochemical properties may vary to some degree and cause high variability during sample pretreatment; therefore, differences in detector response would usually appear. Estazolam was used as internal standard here for its similar structure and polarity to clotrimazole, which made its retention time close to that of clotrimazole. Estazolam is relatively stable with few fragments, which could reduce the possibility of interference in the quantification of clotrimazole. Further results showed that the internal standard also had similar

Analytical Methods Accepted Manuscript

recovery and suitable retention time to the target analyte.

The bioanalytical methodology for clotrimazole described above is rapid, sensitive and specific for analysis of routine samples in pharmacokinetic studies and therapeutic drug monitoring, and it was successfully applied to a pharmacokinetic study of clotrimazole suppository enrolling four Chinese healthy volunteers (the results are not shown). This is the first report of the systematic validation of a

Analytical Methods Accepted Manuscript

287 LC-MS/MS assay for quantifying clotrimazole in human plasma.

5. Conclusion

A rapid, sensitive and specific LC-ESI-MS/MS method was established and fully validated for the quantification of CTZ in human plasma, which was the first time according to previous reports about CTZ. A simple LLE method was employed for sample preparation which provided stable recoveries with no significant endogenous interference. The optimized HPLC-MS/MS performance demonstrated a much greater sensitivity and a shorter run time than previous methods. The LLOQ of 0.01563 ng·mL⁻¹ is sensitive enough to perform pharmacokinetic studies of clotrimazole.

299 Acknowledgements

This work was supported by the Hunan Science and Technology Project (No.
2011SK3261) and the Fundamental Research Funds for the Central Universities of
Central South University (No. 2015zzts286).

References:

- 305 1. N. R. Parfitt, M. F. Skinner, C. Bon and I. Kanfer, *J Pharm Pharm Sci*, 2011, 14, 347-357.
- P. Zancan, A. O. Rosas, M. C. Marcondes, M. M. Marinho-Carvalho and M. Sola-Penna,
 Biochem Pharmacol, 2007, 73, 1520-1527.
- 308 3. R. G. Coelho, I. C. Calaca, D. M. Celestrini, A. H. Correia, M. A. Costa and M.

Analytical Methods

2			
3	309		Sola-Penna Mol Genet Metab 2011 103 394-398
4 5	507		50m Temm, <i>Mot Ochet Memo</i> , 2011, 105, 571 570.
6	210	4	C. M. Furteda, M. C. Marcandag, M. Cala Danna, M. L. da Saura and D. Zanaan, D. S.
7	510	4.	C. M. Fultado, M. C. Marcondes, M. Sola-Penna, M. L. de Souza and F. Zancan, <i>PLos</i>
8			
9	311		<i>One</i> , 2012, 7, e30462.
10			
11	312	5.	N. T. Huy, K. Kamei, T. Yamamoto, Y. Kondo, K. Kanaori, R. Takano, K. Tajima and S.
12			
13	313		Hara J.Biol Chem 2002 277 4152-4158
14	010		
16	214	(LI L'as also I M Chabada also D I Valles a sud E I Ada Ilalhana - Ch. D. I
17	314	6.	I. L. LISOVSKAYA, I. M. Shcherbachenko, R. I. Volkova and F. I. Atauliakhanov, Chem Biol
18			
19	315		Interact, 2009, 180, 433-439.
20			
21	316	7.	M. C. Marcondes, M. Sola-Penna and P. Zancan, Arch Biochem Biophys, 2010, 497,
22			
23	317		62.67
24 25	517		02-07.
20		-	
27	318	8.	D. D. Meira, M. M. Marinho-Carvalho, C. A. Teixeira, V. F. Veiga, P. A. Da, C. Holandino,
28			
29	319		M. S. de Freitas and M. Sola-Penna, Mol Genet Metab, 2005, 84, 354-362.
30			
31	320	9.	A. Lat and G. R. Thompson, Infect Drug Resist, 2011, 4, 43-53.
32			
33	221	10	P. I. Eliort and I. Krzak, Acta Pol Pharm 2000, 66, 10, 24
34 25	321	10.	K. J. EKIEIT and J. KIZEK, Acta Fot Fnurm, 2009, 00, 19-24.
36			
37	322	11.	Q. Huang, Y. Yu, C. Tang and X. Peng, <i>J Chromatogr A</i> , 2010, 1217, 3481-3488.
38			
39	323	12.	P. Parmar and A. Mehta, Indian J Pharm Sci, 2009, 71, 451-454.
40			
41	324	13.	A. Zgola-Grzeskowiak and T. Grzeskowiak, J Sep Sci. 2013, 36, 2514-2521.
42			
43 44	375	14	N Rifai M Sakamoto T Law O Platt M Mikati C C Armshy and C Prygnam Clin
 45	545	14.	14. INITAL, 141. SAKAIHOLO, 1. LAW, O. I IAU, 141. MIIKAU, C. C. ATHISUY AND C. DIUGHALA, CIM
46	225		
47	326		Chem, 1995, 41, 387-391.
48			
49	327	15.	F. Wienen, S. Laug, K. Baumann, A. Schwab, S. Just and U. Holzgrabe, J Pharm Biomed
50			
51	328		Anal, 2003, 30, 1879-1887.
52			
53 54	320	16	V Vu I Thang B Shao V Wu H Duan and H Lin I AOAC Int 2011 04 1650 1659
55	549	10.	1. 14, 9. Zhang, D. Shao, 1. 194, 11. Duan and 11. Dia, 9 AOAC III, 2011, 74, 1030-1038.
56	220	1.5	
57	330	17.	Sawyer PK, Brogden RN, Pinder RM, Speight TM, Avery (1975) Drugs 9:424-447
58			
50			

331 18.	C. FDA, Food and Drug Administration, Center for Drug Evaluation and R
332	(CDER), Center for Veterinary Medicine (CV), 2001.
333	

Analytical Methods

Figure captions

Fig.1. Chemical structure of clotrimazole (A) and IS estazolam (B).

В

Fig.2. Typical chromatograms of clotrimazole in human plasma: (A) blank human plasma from healthy volunteers; (B) blank plasma spiked clotrimazole ($0.01563 \text{ ng} \cdot \text{mL}^{-1}$) and IS; (C) Plasma sample from a healthy volunteer 3 h after a single-dose administration of 150 mg clotrimazole suppository. The sample concentration was determined to be $0.8990 \text{ ng} \cdot \text{mL}^{-1}$.

LC-MS/MS assay								
Nominal conc. Conc. found Precision Accuracy								
$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	(RSD %)	(%)					
0.01563	0.01546	1.6	98.9					
0.03125	0.02976	6.0	95.2					
0.06250	0.06985	8.5	111.8					
0.1250	0.1295	5.5	103.6					
0.2500	0.2434	3.9	97.3					
0.5000	0.5045	1.5	100.9					
1.000	1.034	5.9	103.4					

Table 1 Intra-day reproducibility of the standard plasma calibration curve of clotrimazole obtained by

Table 2 Inter- and intra-day accuracy and precision of clotrimazole in human plasma.

	Concentration	Intra	-day (n=5)		Inter-day (n=15)		
added		Concentration	Accuracy	Precision	Concentration	Accuracy	Precision
QC ID	$(ng \cdot mL^{-1})$	found $(ng \cdot mL^{-1})$	(%)	(RSD %)	found $(ng \cdot mL^{-1})$	(%)	(RSD %)
LLOQ QC	0.01563	0.01544	98.8	1.1	0.01521	97.3	2.4
LQC	0.03125	0.03012	96.4	9.0	0.03045	97.4	7.5
MQC	0.1250	0.1289	103.1	8.6	0.1296	103.7	7.2
HQC	0.8000	0.7433	92.9	4.0	0.7592	94.9	5.7

		•		-				, i i i i i i i i i i i i i i i i i i i	
	0.03125ng·mL ⁻¹			0.1250 ng·mL ⁻¹			0.8000 ng·mL ⁻¹		
Condition	Mean	Accuracy	RSD	Mean	Accuracy	RSD	Mean	Accuracy	RSD
	$(ng \cdot mL^{-1})$	(%)	(%)	$(ng \cdot mL^{-1})$	(%)	(%)	$(ng \cdot mL^{-1})$	(%)	(%)
Post-preparative stability	0.0299	95.5	5.5	0.1168	94.5	3.3	0.7608	95.1	3.0
Short-term stability	0.0300	95.8	4.7	0.1154	92.3	4.0	0.7801	97.5	4.7
Freeze-thaw stability	0.0307	98.1	6.1	0.1171	93.7	8.6	0.7496	93.7	3.9
Long-term stability	0.0308	98.4	3.9	0.1303	104.2	2.9	0.8079	101.0	6.7

Table 3 Stability of clotrimazole in human plasma under various conditions (n=3).

Table 4 Incurred samples re-analysis data of clotrimazole

Sample	Initial conc.	Re-assay conc.	Change	
	$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	(%)	
1	2.154	2.302	6.6	
2	0.6431	0.6191	-3.8	
3	1.325	1.452	9.1	
4	0.4131	0.4601	10.7	
5	2.000	1.899	-5.1	
6	0.6361	0.6142	-3.5	
7	1.329	1.503	12.3	
8	0.4343	0.4632	6.4	