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Abstract  15 

This work shows how the best scenario, resulting to apply two chemometric classifiers on 16 

different analytical data set from the same sample set, could be chosen according to the 17 

classification results. On this way, several classification quality features such as sensitivity 18 

(or recall), specificity, positive (or precision) and negative predictive values, Youden index, 19 

positive and negative likelihood ratios, F- measure (or F- score), discriminant power, 20 

efficiency (or accuracy), AUC (area under the receiver operating curve), Matthews correlation 21 

coefficient, Kappa coefficient, overall agreement probability, overall agreement probability 22 

from chance and overall Kappa coefficient are described and discussed. As application 23 

example, two sterolic chromatographic fingerprints obtained from two different normal-phase 24 

HPLC systems are used to discern the geographical origin (South-East Asia, West Africa and 25 

South America) of edible palm oil. In each case, two conventional and well-known 26 

chemometric classification methods are applied: soft independent modelling by class analogy 27 

(SIMCA) and partial least squares-discriminant analysis (PLS-DA).  28 

 29 

Keywords  30 

Classification scenario comparison; liquid chromatography sterolic fingerprints; food 31 

authenticity; palm oil.  32 

 33 
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1.  INTRODUCTION  36 

 37 

Palm oil is one of the most consumed edible oils in the world for its price and its properties. It 38 

is obtained from the fruit of the palm (Elaeis guineensis). The plant is native from Western 39 

Africa, later extended to South America in the XVI century, and more recently, in the XIX 40 

century, it was introduced in Eastern Asia from America. Crude palm oil is a semi-solid fat at 41 

room temperature which has a high stability compared with other vegetable oils1,2,3. Knowing 42 

the geographical origin of the palm oil and the traceability of palm oil supply chain 4  is 43 

interesting from an environmental point of view, because the palm oil exploitation is cause of 44 

deforestation and loss of biodiversity in some tropical countries5. Furthermore, an indication 45 

of the geographical origin of food products is an increasingly important consumer demand on 46 

food labelling because consumers consider it to be an added-value to the product. Other 47 

possible reasons of this growing interest are: specific culinary, organoleptic qualities, or 48 

purported health benefits associated with regional products6. 49 

For the characterization and verification of the geographical origin of palm oils, as well as 50 

other food products, it is necessary to find specific qualities derived from its place of 51 

production (markers) and which are subject to specific local factors such as climate and 52 

terrain 7 . An example of this approach is the use of molecular markers as the DNA 53 

fingerprinting. Alternatively chemical markers could be also used. In literature sterol profiles 54 

and total sterol contents have been used as tools to value the oil authenticity8,9,10,11 because 55 

each vegetal species has a characteristic compositional profile of sterols12,13. This suggests 56 

that sterol profiles might be suitable candidates to develop an analytical tool to verify the 57 

geographical origin of palm oil. 58 

Phytosterols are a group of bioactive compounds, with a derived cyclopentane-perhydro-59 

phenanthrene four-ring molecular structure. These compounds are present in plants and they 60 

are differentiated by the number of carbon atoms of the side chain, and by the nature of the 61 

same. There are three classes of sterols: 4-des, 4-mono and 4,4'-dimethylsterols that could 62 

be found in free form or esterified with fatty acids and other conjugates14,15. Crude palm oil 63 

contains about 0.7-0.8 g/kg of total sterols, however it must be taken into mind that the 64 

refining processes affect the concentration and the compositional profile of sterols because 65 

occur hydrolysis and oxidation processes that destroy sterols.  66 

There are different methods and techniques (chromatographic and non-chromatographic) for 67 

the analysis of sterols in vegetable oil. Chromatographic methods are the most commonly 68 

used against the non-chromatographic ones because much more information is obtained 69 

about the sterols composition present in the sample15,16,17,18,19.  70 

Depending on the information that is wanted, different sample preparation steps could be 71 

applied. Generally, phytosterol analysis includes: an extraction of the lipid fraction, acid 72 
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hydrolysis or basic hydrolysis (saponification) to release phytosterols, an extraction of the 73 

unsaponifiable fraction, the separation or partial purification of sterols and finally a 74 

chromatographic analysis. However, in some specific cases, in addition to the above steps, 75 

the formation of derivatives of phytosterols is previously required to chromatographic 76 

analysis. The routine methods employ a saponification reaction although it could be replaced 77 

by a transesterification reaction with similar results20.  78 

Analytical liquid chromatography has not been much applied for determining the sterol 79 

composition of vegetable oils but it is usually performed in reverse phase16. Normal-phase 80 

HPLC methods can also be used for the absolute quantification of the total amount of 81 

phytosterols but these methods show a poor chromatographic resolution and do not provide 82 

precise information on the sterol composition16. In addition, several conventional detection 83 

methods, such as ultraviolet absorption, refractive index, and evaporative light-scattering 84 

have been applied. In 2004 the Corona Charged Aerosol detector (CAD) was developed as 85 

an alternative, which has ability to accurately measure a wide range of analytes 21 . 86 

Nonetheless, only a method has been just reported using CAD for the determination of 87 

sterols in vegetable oils22.  88 

If the chromatographic conditions are properly optimized and a suitable detector is coupled, 89 

the yielded chromatogram contains specific and relevant information about the considered 90 

product, which could be used for authentication purposes. When the chromatogram is well 91 

resolved, the information for each chemical component could be extracted from each peak. 92 

Instead, if the chromatogram is shaped on a broad and comprehensive band, the intrinsic 93 

information is not evident and the chromatographic fingerprinting methodology should be 94 

then applied23,24. By reaching that point, the application of multivariate chemometric tools is 95 

required to extract the useful information from the chromatographic raw data25,26,27. Some 96 

examples of the use of chromatographic fingerprints merging with classical chemometric 97 

methods have been recently reported by our research group with satisfactory results in the 98 

authentication of vegetable edible oils28,29,30,31. In addition, data mining classification methods 99 

have also been used for edible vegetable oils authenticity applications32.  100 

In the last few years, some papers have been published using classic supervised pattern 101 

recognition methods for vegetable oil classification and authentication based on their sterol 102 

composition. In most of them, the data matrices are made up from the sterol contents 103 

(concentrations or compositional data)8,10,33 and only a work set the data matrix from the 104 

sterolic chromatographic fingerprint11. In the same way, there is not enough background 105 

about the authentication of palm oil by using this methodology and, as far as we know, only 106 

two  studies have been published, but they use fingerprintings from volatile compounds34 and 107 

triacylglycerols35.  108 
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In this study, two sterolic chromatographic fingerprints obtained from two different normal-109 

phase HPLC systems are used to discern the geographical origin (South-East Asia, West 110 

Africa and South America) of edible palm oil. The aim of this paper is to show how the 111 

obtained results from different classification scenarios would be compared in order to select, 112 

if possible, the best combination of classification chemometric methods and/or measured 113 

analytical data set. The comparison is based on different quality classification metrics which 114 

are defined in this work, such as sensitivity (or recall), specificity, positive (or precision) and 115 

negative predictive values, Youden index, positive and negative likelihood ratios, F-measure 116 

(or F-score), discriminant power, efficiency (or accuracy), AUC (area under the receiver 117 

operating curve), Matthews correlation coefficient, Kappa coefficient, overall agreement 118 

probability, overall agreement probability from chance and overall Kappa coefficient.  119 

 120 

 121 

2.  MATERIALS AND METHODS  122 

 123 

2.1. Instrumentation  124 

The analyses were performed using two different HPLC systems. The first one was a Konik 125 

Model 560 (Konik-Tech, Sant Cugat del Valle, Barcelona, Spain) with a quaternary pump, a 126 

column oven, an autosampler with a 20 µL loop, and an UV-Vis detector. 127 

The second one was an Agilent 1100 Series (Agilent Technologies, Santa Clara, CA, USA) 128 

with a quaternary pump, degasser, autosampler and thermostatted HPLC column 129 

compartment Eppendorf CH-30 (Eppendorf, Hamburg, Germany). Detection was carried out 130 

with a Corona CAD (ESA Bioscenses Inc., Chemlsford, MA, USA).  131 

 132 

2.2. Chemicals  133 

Solid standards of stigmasterol, campesterol and cholestanol (internal standard, IS) were 134 

provided from Sigma-Aldrich (Steinheim, Germany) and β-amyrin was from 135 

EXTRASYNTHESE (Genay, France).  136 

Sodium methoxide, citric acid monohydrate and anhydre sodium sulphate were provided 137 

from Alfa-Aesar (Karlsruhe, Germany), Sigma-Aldrich (Steinheim, Germany), and Panreac 138 

Quimica (Barcelona, Spain) respectively. The solvents employed (n-hexane, 2-propanol, 139 

methanol and methyl tert-butyl ether (MTBE), BDH Prolabo, HPLC grade), were purchased 140 

from VWR International (Madrid, Spain).  All the aqueous solutions were prepared with Milli-141 

Q deionized water (Millipore, Bedford, MA).  142 

The nitrogen (99.9999%) used for CAD detector was provided from Air Liquid (Madrid, 143 

Spain).  144 

 145 
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2.3. Samples  146 

A total of 102 crude palm oil samples were supplied from RIKILT-Institute of Food Safety 147 

Wageningen University, (Wageningen, The Netherland). The samples coming from the main 148 

continents of palm oil production: South-East Asia (56 samples from Malaysia, Indonesia, 149 

Papua New Guinea and Salomon Islands), West Africa (30 samples, from Ghana, Guinea, 150 

Cote d’Ivoire, Nigeria and Cameroon) and South America (16 samples from Brazil). Table 1 151 

shows in detail the origin of the different samples tested.  152 

 153 

TABLE 1  

 154 

2.4. Sample preparation  155 

Prior to chromatographic analysis, a methylation reaction was applied on the palm oil 156 

samples. This reaction replaces the usual saponification and isolation processes, and it has 157 

the advantage of being less time-consuming and requiring less sample amount. The applied 158 

procedure is similar to the one previously described by Biederman20 and Kamm 36.  159 

The transesterified sample solutions were frozen (-20 ºC) and kept in the dark until analysis. 160 

Just before the chromatographic analysis, 500 µL of this solution was added in a 2 mL HPLC 161 

vial, and then 120 µL of 0.05% (w/w) cholestanol solution in n-hexane was added as control 162 

internal standard. Finally the mixture was diluted with 1000 µL of n-hexane. The vial was 163 

sealed and vortexed for 20 s. This solution was prepared just for analysis.  164 

 165 

2.5. LC Conditions  166 

HPLC analysis is carried out on a (250 x 4 mm i.d., 5 μm) column Lichrospher® 100 CN 167 

maintained at 25 °C. The composition of the eluent was n-hexane/2-propanol (99:1, v/v) at a 168 

flow rate of 1.2 mL/min and a run time of 20 min. No gradient was applied. UV detection 169 

(Konik equipment) was performed at 202 nm. For CAD monitoring (Agilent equipment), a 100 170 

pA output range was used and nitrogen gas pressure was adjusted to 35 psi.  171 

Chromatographic data handling were performed by a Konikrom Plus software (version 3.0.5) 172 

for HPLC Konik, and ChemStation software (version A.10.02) for HPLC Agilent.  173 

 174 

2.6. Chemometrics  175 

The raw data files for each chromatogram were exported in a CSV file (comma-separated 176 

values) from the instrument software to the MATLAB environment (version 7.8, R2009a, The 177 

Mathworks Inc. MA, USA). Initially, each chromatographic fingerprinting is coded in a two-178 

data vectors (time/intensity) with 4500 (UV-Vis Konik) and 2400 (CAD ESA) elements 179 

(variables), depending of the data acquisition rate of each HPLC detector.  180 
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All the intensity data vectors, one for each oil sample, from the same chromatographic 181 

detector are merged in a single data matrix (X- block matrix) composed of 102 rows (palm oil 182 

samples) and a certain number of columns (variables) that varies depending on the 183 

measuring time and the rate of acquisition of data of each HPLC detector, as it has been 184 

described in the previous paragraph. The elements of X-matrix are the intensities values of 185 

the chromatographic signals. In addition, a new column is added to each data matrix 186 

specifying the class (geographical continent) of each sample, titled by an alphanumeric code, 187 

for example "AF", AM" and "AS" for Africa, America and Africa. This column set up the Y-188 

block of the data matrix.  189 

Next, a preprocessing of each X-matrix was carried out using a home-made MATLAB 190 

function, named "MEDINA" (version 07). This function makes use of some of the functions 191 

contained in MATLAB Bioinformatics ToolboxTM software to improve the quality of raw 192 

chromatographic data, and also the "icoshift" algorithm (version 1.2) for solving signal 193 

alignment problems in chromatographic data 37 . Basically, the chromatographic data 194 

processing consists of the following stages (see Supplementary Information for details): (1) 195 

selection of the interval of interest from chromatograms; (2) decimation of the raw 196 

chromatographic data. It makes possible to resample the signal into a more manageable 197 

chromatographic data vector, preserving the information contained in the chromatogram (in 198 

this case, a decimation factor of 2 was used); (3) de-noising and smoothing of the 199 

chromatographic signal using a least-squares digital polynomial filter (i.e., a Savitzky-Golay 200 

filter); (4) baseline correction using the "msbackadj" function (available in the above 201 

mentioned MATLAB toolbox); (5) alignment of the chromatographic profiles with the "icoshift" 202 

algorithm. Finally, a mean centring of the chromatographic data matrix was applied (i.e., the 203 

subtraction of the mean from each data vector) prior to the statistical analysis. Once the 204 

chromatographic data preprocessing was carried out, it was then possible to use 205 

classification and statistical learning tools to create classifiers.  206 

For multivariate chemometric pattern recognition PLS_Toolbox (version 7.5.2, Eigenvector 207 

Research, Wenatchee, WA) was used. The performance features of each classifier, 208 

described in the next section, were calculated on the validation test from a home-designed 209 

MS ExcelTM spreadsheet (version 14.0, 2010).  210 

 211 

Exploratory analysis and classification methods  212 

Principal components analysis (PCA) is a type of exploratory data non-supervised analysis 213 

which can be applied to any X-matrix38,39,40. The main aim of PCA is the dimension reduction 214 

when the variables are correlated. A few new variables are defined, named principal 215 

components (PCs), as linear combination of the original variables in order to explain as much 216 

variability as possible with the smallest number of PCs.  217 
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Two habitually classification methods were then applied. A venetian blinds object out cross-218 

validation procedure was adopted to optimize all the built models.  219 

Soft independent modelling by class analogy (SIMCA) is a well-known class-modeling 220 

classification method based on principal component analysis27, 41 . Each class is 221 

independently modelled by a PCA so that each model defines the boundary regions for each 222 

class. The number of principal components of each category was determined using the rule 223 

of thumb based on the cross-validation, which gives the model optimal prediction properties.  224 

The unknown samples are applied to the model of prediction; they are compared to the 225 

defined classes and assigned to a class according to their similarity (analogy). In this study, 226 

the recognition is made based on the distance di,C of each i-sample from each C-class. This 227 

is calculated by applying the following equation:  228 

          
    

        
 

 

  
    
 

        
  

 

   

where Qi,C and T2
i,C are the computed statistics Q-residuals and the T2-Hotelling respectively, 229 

calculated from the corresponding C-class PCA model, and QC(0.95) and T2
C(0.95) are the 230 

values for a 95% confidence level. The chosen classification threshold42 was di,C =   . For 231 

the class assignment of a sample, the calculated distance to such class have to be lesser 232 

than or equal to   . On the contrary, if the distance is always larger, the sample is 233 

unclassified (class no assigned). If a sample is simultaneously assigned to more of two 234 

classes (because the distance to both ones was lesser than or equal to    ), the sample will 235 

be definitively assigned to the class whose distance value is lesser.  236 

Partial least squares-discriminant analysis (PLS-DA) is a linear discrimination method based 237 

upon the classical PLS regression method43 for building predictive models. The goal of PLS 238 

regression is to provide dimensionality reduction in an application where the response 239 

variable (Y-block) is related to the predictor variables (X-block). The used software is only 240 

able to perform binary classifications. So, for n-class classification is necessary build n two-241 

class (binary) models44.  242 

PLS-DA is applied to develop a model that predicts the representative class value (between 243 

0 and 1) for each sample in each classification. To make a class assignment, the 244 

discrimination thresholds and the probability of a sample belonging to a specific class were 245 

calculated based on a Bayesian approach. The unknown samples will be correctly classified 246 

always than the assigned class value is equal or greater than the threshold value; otherwise 247 

the sample will be unclassified. A sample could be classified into two classes if it has a 248 

predicted value greater than the threshold value in both classifications. In this case, the 249 

sample will be assigned to the class whose predicted value is closer to 1.  250 

 251 
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External validation of classifiers  252 

In order to apply a proper external validation of the classification/prediction models, the 253 

original data set was divided into two data sets: (1) a training set, used to establish the 254 

chemometric models; and (2) a validation (or testing) set, in order to test the validity of the 255 

models. Approximately 30% of the samples from each class were randomly chosen to 256 

constitute the validation set. Table 2 shows, more specifically, the composition of the 257 

samples that were used in in both sets of calibration and test.   258 

 259 

TABLE 2  

 260 

 261 

3.  BACKGROUND: QUALITY PERFORMANCE OF CLASSIFICATION SCENARIOS  262 

The empirical evaluation of classification scenarios is a matter of on-going debate between 263 

researchers where classification scenario is referred to the combination of classifier and 264 

analytical data in a particular case. The assessment of the quality classification performance 265 

without focusing on a class is the most general way of comparing the quality of the 266 

classification results. In order to quantify this quality, several performance features have 267 

been proposed as metrics45,46,47. The estimation of such metrics is based on measuring the 268 

classifier's ability to distinguish classes and, consequently, to avoid failure in classification. 269 

Although most performance features in use today focus on a classifier’s ability to identify 270 

classes correctly, in certain cases, other properties such as failure avoidance or class 271 

discrimination may also be useful48.  272 

Quality features for classification are built from a contingency table which records correctly 273 

and incorrectly assigned examples for each class. The corresponding ternary contingency 274 

table is shown in Table 3.  275 

 276 

TABLE 3  

 277 

The quality performance features of the different classifiers are calculated by reducing the 278 

ternary contingency table to three binary contingency tables 49  because the quality 279 

parameters are described to binary classification. A binary contingency table is a square of 280 

2×2 where the rows represent the number of classifier predictions and the columns are the 281 

actual value of class. Table 4 presents a standard contingency table for binary classification.  282 

 283 

TABLE 4  

 284 
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The final value is obtained from the average of the corresponding features obtained for 285 

binary classifiers, weighting with respect to the number of samples in each class.  286 

The different quality metrics used in this paper for evaluating the classification results are 287 

shown below:  288 

 289 

Sensibility (SENS) (or recall). It indicates the probability of classifying a sample as positive 290 

really, i.e., the confidence in a positive result for a sample of the label class is obtained. The 291 

range of values for this feature is 0 to 1.  292 

       
  

       
     

  

    
 

 293 

Specificity (SPEC). It indicates the probability of classifying a sample as negative really, i.e., 294 

the confidence that a negative result for a sample of non-label class is obtained. It is also 295 

ranged between 0 and 1.  296 

       
  

       
     

  

     
 

Sensitivity and specificity assess the effectiveness of the classifier on a single class, positive 297 

and negative respectively.  298 

 299 

Positive predictive value (PPV) (or precision). It estimates the predictive power of the 300 

classifier; this metric quantifies the precision of the classifier to identify examples of a given 301 

class. PPV measures the proportion of correctly assigned positive examples and its value 302 

varies between 0 and 1.  303 

       
  

       
    

  

    
  

 304 

Negative predictive value (NPV). The complement of PPV in this context appears in the 305 

form of the negative predictive value (NPV), which measures the proportion of correctly 306 

assigned negative examples. The range of values is also between 0 and 1.  307 

      
  

       
     

  

    
 

 308 

Youden's index (YOU). It evaluates the classifier’s ability to avoid failure; it is derived from 309 

sensitivity and specificity.  This parameter varies between 0 and 1.  310 

                    

 311 

Page 9 of 23 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



10 / 23 

The likelihood ratios (LR). It is possible to distinguish between positive likelihood ratio, 312 

LR(+), and negative likelihood ratio, LR(–). The positive likelihood ratio represents the ratio 313 

between the probability to predict an example as positive when it is truly positive, and the 314 

probability to predict an example as positive when actually it is not positive: 315 

        
    

        
  

 316 

while the negative likelihood ratio is the ratio between the probabilities to predict an example 317 

as negative when it is actually positive, and the probability to predict an example as negative 318 

when it is truly negative: 319 

        
   S NS 

S  C
  

Higher positive likelihood ratio and a lower negative likelihood ratio mean better performance 320 

on positive and negative classes respectively.  321 

 322 

F-measure (F).  It is defined as the harmonic mean of precision and sensibility. It is a 323 

composite feature which benefits classifiers with higher sensitivity and challenges classifiers 324 

with higher specificity. This metric ranges between 0 and 1.  325 

      
          

          
  

 326 

Discriminant power (DP). It does exactly what its name implies: i.e., it assesses how well a 327 

classifier distinguishes between positive and negative examples.  328 

     
  

 
      

    

        
     

    

        
  

 329 

Efficiency (EFFIC) (or accuracy). The most common metric for classifier evaluation, it 330 

assesses the overall effectiveness of the classifier by estimating the probability of the true 331 

value of the class label. The EFFIC values are included between 0 and 1.  332 

        
     

             
   

     

 
  

 333 

Area under the ROC curve (AUC) (or correct classification rate). The area under the 334 

ROC (Receiver Operating Characteristic) curve is a summary indicator of ROC curve quality 335 

that can summarize the performance of a classifier into a single metric. Graphically, ROC is 336 

plotted as a curve that gives the true positive rate as a function of false positive rate for the 337 

same group. AUC is a measure of the ability of the classifier to avoid errors during 338 
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classification. The AUC varies between 0 and 1 although, in practice, its values should be 339 

larger than 0.5.  340 

      
           

 
  

 341 

Matthews correlation coefficient (MCC). It measures the overall quality of a method 342 

classification since it considers mutually accuracies and error rates, and involve all values of 343 

the contingency table.  344 

      
           

                                  
  

MCC ranges from 1 for a perfect prediction to -1 for the worst possible prediction. MCC close 345 

to 0 indicates a model that performs randomly.  346 

 347 

Kappa coefficient (K). It indicates the proportion of agreement after the chance agreement 348 

is removed from consideration50. It calculated from a probability rate where the numerator is 349 

the percent of units in which beyond-chance agreement occurred, and the denominator is the 350 

percent of subjects for which one would not expect any agreement by chance.  351 

    
       

    
  

In this equation, Pa is the probability term from agreement and Pc is the probability term from 352 

chance.  353 

     
     

  
                              

              

  
  

The values of Κ are ranged between   (the classifiers are in complete agreement) and 0 354 

(there is no agreement among the classifiers other than what would be expected by chance, 355 

as defined by Pc).  356 

 357 

An overall value for any of the parameters, which have been previously defined, could also 358 

be directly calculated as it is explained below.  359 

 360 

Overall agreement probability (overall Pa).  361 

             
     

 
  

        

 
   

 362 

Overall chance agreement probability (overall Pc).  363 
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 364 

Overall kappa coefficient (overall K).  365 

           
                       

            
 

 366 

 367 

4.  RESULTS AND DISCUSSION   368 

An example of the chromatograms obtained from the same palm oil sample from Africa by 369 

both HPLC systems, is shown in Fig. 1. As it can be observed, the chromatograms are split 370 

in four regions. In order to identify the regions corresponding to the sterolic fraction, three 371 

aliquots of this palm oil sample were fortified each one with a representative sterol standard: 372 

β-amyrin (a dimethylsterol), stigmasterol and campesterol (two desmethylsterols). Next they 373 

were analysed by applying the two analytical chromatographic methods. By inspecting where 374 

the height is increased, and in accordance with the assignment carried out by Biedermann20, 375 

it could be concluded that the sterols are divided in regions II and III: the region II is 376 

associated to the dimethylsterols while the region III contains the methylsterols and 377 

desmethysterols and, possibly, other compounds as the fatty alcohols. The region I was not 378 

assigned although the large peak should be probably due to the fatty acids methyl esters, 379 

whereas region IV would be due to the terpenic alcohols.  380 

 381 

FIGURE 1  

 382 

As previous exploratory analysis, PCA was performed on the X-matrix in order to perceive 383 

similar, dissimilar, typical, or outlier samples. Two PCs were enough to explain 88.8% and 384 

90.6% of the cumulative variance from the HPLC-UV and HPLC-CAD fingerprint data, 385 

respectively. Both PC1-PC2 scores and PC1 loading plots for each X-matrix are shown in 386 

Figure 2.  387 

 388 

FIGURE 2  

 389 

Both scores plots allow to distinguish two groups separated on the first principal component 390 

which are correlated with the AMERICA (left) and ASIA samples (right). On the other hand, 391 

the AFRICA samples are not grouped and they do not show any trend but they are dispersed 392 

on the plotted space. This fact shows that the sterolic chromatographic profiles from AFRICA 393 
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samples have not a specific pattern and some of them are similar to the ones from samples 394 

from AMERICA or ASIA. This fact could be explained by the African common origin of all 395 

palm oils. The PC2 does not provide information about the geographical origin.  396 

The PC1 loadings plot shows a profile that coincides with chromatographic region 397 

corresponding to region III of the chromatogram, associated to the Δ5- and  398 

Δ7-desmethysterols (see Figure 1). Therefore, this region contains the significant information 399 

about the geographical origin of the palm oils and it will be selected for building the 400 

classification models.  401 

In order to apply a SIMCA classification, three PC models were built, from the corresponding 402 

training set samples, for each class (AFRICA, AMERICA and ASIA). The number of chosen 403 

PCs for each model was respectively 3, 5 and 5 from HPLC-UV fingerprint data, and 3, 4 and 404 

4 from HPLC-CAD fingerprint data. In all cases, the percentage of explained variance was 405 

higher than 96%.  406 

In a similar way, the three-class PLS-DA model was trained. The number of latent variables 407 

(LVs) chosen for each model was respectively 5 from HPLC-UV fingerprint data, and 3 from 408 

HPLC-CAD fingerprint data, with percentages of explained variance for the X-block and 409 

Y-block of the data matrix of 94% and 49% for the first model, and 94% and 43% for the 410 

second one, respectively.  411 

Once the classification models are defined, the more probable class is assigned to each 412 

sample of the validation set. The contingency tables showing the results of the assignment 413 

from each classifier are shown in Table 5.  414 

 415 

TABLE 5  

 416 

In general, the samples from AFRICA and ASIA are better classified than the samples from 417 

AMERICA. By comparing the results from the two HPLC fingerprinting, it seems that SIMCA 418 

classifies better than PLS-DA. However, only by having a look, it would be difficult to decide 419 

the best classifier. In order to have a set of appropriate metrics for making this decision, 420 

Table 6 collects the pooled performance features the four classification scenarios; each 421 

value has been calculated from the three reduced binary contingency tables by weighing the 422 

number of actual samples from each class. The empty cells are the consequence of the zero 423 

value obtained for some classification rates in the contingency tables. In addition Table 6 424 

collects the overall values of quality performance features (above mentioned). 425 

 426 

TABLE 6  

 427 
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The classifiers can now be arranged in decreasing order of performance as:  428 

SIMCA(HPLC-UV) > SIMCA(HPLC-CAD) = PLS-DA(HPLC-CAD) > PLS-DA(HPLC-UV) 429 

This ranking is easily established dealing the main features related to the overall 430 

classification reliability: efficiency, AUC and Kappa coefficient. These performance features 431 

are the best indicators of the classification ability, although practically the same ranking could 432 

be obtained starting from anyone of the tabulated features.  433 

However, in strictly technical terms, none of the tested classifiers show an enough assurance 434 

as to be applied in order to discern the geographical origin of any sample of palm oil since, in 435 

the best case, one of each six-seven samples (15%) would be erroneously classified.  436 

 437 

 438 

5.  CONCLUSIONS  439 

The chemometric classification methods are widely used for food authentication purposes. 440 

As input experimental data set, any unspecific chromatographic signal (formally named 441 

chromatographic fingerprint) could be used. To make the most of classification performance, 442 

different chemical fractions characteristic of the studied material, different chromatographic 443 

conditions and different classification methods could be tried. Later, the best classification 444 

scenario has to be select in order to be applied in a real framework. In this work, several 445 

classification performance quality features have been presented and discussed. 446 

As application example, two classification methods are applied on two sterolic 447 

chromatographic fingerprints obtained from two different normal-phase HPLC systems in 448 

order to discern the geographical origin of edible palm oil. For each one of the four 449 

classification scenarios, the corresponding quality features have been calculated and used to 450 

select the best one. For HPLC-UV fingerprint data, the best classifier is SIMCA classification, 451 

whereas for the HPLC-CAD one both classification methods behave on a similar way. 452 

Finally, it is remarkable that all above mentioned parameters are applied jointly to different 453 

chromatographic fingerprints for the first time.  454 

 455 
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 460 

SUPPLEMENTARY INFORMATION  461 

Descriptions of the "MEDINA" function for preprocessing of chromatographic data. Details of 462 

various processing options, as well as illustrated examples of the effect of different 463 

processing steps on a set of chromatographic data are provided. 464 
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Table 1.  Geographical origin of the 102 palm oil samples.  

 

 

Asia Africa America 

Country Samples Country Samples Country Samples 

India 5 Cameroon 2 Brazil 16 

Indonesia 24 Ghana 20   

Malaysia 19 Guinea 3   

Papua N. Guinea 7 West Africa 5   

Salomon 1     

 

 

 

 

 

 

 

 

 

Table 2.  Continent distribution of the two set of samples. 

 

 

Set Continent Nº samples 

Training set 

72 samples (70.6 %) 

Africa  20 

America  10 

Asia 42 

Validation set 

30 samples (29.4 %) 

Africa  10 

America  6 

Asia 14 
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Table 3.  Multiclass contingency table for ternary classification.  

 

 Actual CLASS 1 Actual CLASS 2 Actual CLASS 3 TOTAL 

Assigned CLASS 1 a1 e2,1 e3,1 AC1 

Assigned CLASS 2 e1,2 a2 e3,2 AC2 

Assigned CLASS 3 e1,3 e2,3 a3 AC3 

Assigned NO-123 e1,NO e2,NO e3,NO AC4 

TOTAL TC1 TC2 TC3 T 

 
ai = the number of assignation agreement of the class "i";  ei = the number of assignation error; TCi 

= the total of actual samples from the class "i"; ACi = the total of assigned samples to the class "i"; 

T = the total  number of samples. "NO-123" represents a fictitious class where the samples that do 

not assign to any classes, are allocated. 

 

 

 

 

 

 

 

Table 4.  Standard contingency table for binary classification.  

 

 
LABEL (L)  

Actual POSITIVE  

no-LABEL (nL)  

Actual NEGATIVE 
TOTAL 

Assigned POSITIVE TP FP AP = TP+FP 

Assigned NEGATIVE FN TN AN = FN+TN 

TOTAL  (TL) = TP+FN  (TnL) = FP+TN T  

 
TP = true positive, the number of positive samples that are correctly identified as positive; FN = 

false negative, the number of positive samples that are misclassified as negative samples; FP = 

false positive, the number of negative samples that are incorrectly identified as positive samples; 

TN = true negative, the number of negative samples that are correctly identified as negative 

samples; AP and AN = the total of assigned positive and negative samples, respectively; TL and 

TnL = the number of labelled (actual) samples as positive and negative, respectively; T = the total  

number of samples.  

Calculation example for obtaining the contingency table of the binary classification (class 1 / class 

n1) from the contingency table shown in Table 3: 

TP = a1; FP = e2,1 + e3,1; FN = e1,2 + e1,3 + e1,NO; TN = a2 + a3 + e2,3 + e2,NO + e3,2 + e3,NO  
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Table 5.  Contingency tables obtained from both HPLC-UV and HPLC-CAD data for the two 

classification methods (SIMCA and PLS-DA) when the geographical origin is classified by 

considering three continents: Africa, America and Asia (a three-class classification). In this 

table, the sample numbers assigned to each class for the validation set (rows) are shown. 

Between parentheses, the corresponding rates, in %, in relation to the sample total number 

of each class (columns). 

 

Fingerprint  
Assigned 
class 

SIMCA PLS-DA 

Actual class Actual class 

Africa America Asia Africa America Asia 

HPLC-UV Africa 8 

(80.0) 

2 

(33.3) 

3 

(21.4) 

6 

(60.0) 

0 

(0) 

2 

(14.3) 

America 0 

(0) 

2 

(33.3) 

0 

(0) 

2 

(20.0) 

2 

(33.3) 

0 

(0) 

Asia 0 

(0) 

0 

(0) 

11 

(78.6) 

2 

(20.0) 

3 

(50.0) 

11 

(78.6) 

No assigned 2 

(20.0) 

2 

(33.3) 

0 

(0) 

0 

(0) 

1 

(16.7) 

1 

(7.1) 

HPLC-CAD Africa 10 

(100) 

2 

(33.3) 

3 

(21.4) 

7 

(70.0) 

1 

(16.7) 

2 

(14.3) 

America 0 

(0) 

0 

(0) 

0 

(0) 

1 

(10.0) 

3 

(50.0) 

1 

(7.1) 

Asia 0 

(0) 

2 

(33.3) 

8 

(57.1) 

2 

(20.0) 

1 

(16.7) 

11 

(78.6) 

No assigned 0 

(0) 

2 

(33.3) 

3 

(21.4) 

0 

(0) 

1 

(16.7) 

0 

(0) 
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Table 6.  Values of quality performance features from two classification methods (SIMCA 

and PLS-DA) by two fingerprint data (HPLC-UV and HPLC-CAD) for the geographical origin 

between three continents: Africa, America and Asia (a three-class classification). (i): Pooled 

performance features of the four 3-class classifiers. (ii): overall values of quality performance 

features. 

 

 

 

 

HPLC-UV HPLC-CAD 

SIMCA PLS-DA SIMCA PLS-DA 

(i)  Pooled performance features     

Sensibility (or Recall)  0.70 0.63 0.67 0.70 

Specificity  0.92 0.80 0.92 0.85 

Positive predictive value (or Precision) 0.87 0.67 0.89 0.72 

Negative predictive value  0.86 0.81 0.84 0.84 

Youden index  0.62 0.44 0.58 0.55 

Positive likelihood rate  – 3.97 – 4.71 

Negative likelihood rate  0.32 0.44 0.33 0.35 

F-measure  0.76 0.69 0.71 0.76 

Discriminant power – 0.52 – 0.63 

Efficiency (or Accuracy)  0.85 0.77 0.82 0.81 

AUC (or Correctly classified rate)  0.81 0.72 0.79 0.77 

Matthews correlation coefficient  0.66 0.46 0.64 0.55 

Agreement probability 0.85 0.77 0.82 0.81 

Chance agreement probability 0.56 0.57 0.56 0.56 

Kappa coefficient  0.63 0.45 0.59 0.55 

(ii)  Overall performance features     

Overall agreement probability 0.70 0.63 0.60 0.70 

Overall chance agreement probability 0.33 0.36 0.32 0.36 

Overall KAPPA coefficient  0.55 0.42 0.41 0.53 
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FIGURE CAPTIONS 

 

 

 

Figure 1.   Chromatograms of the same sample of palm oil from Africa showing the three 

characteristic regions, obtained from the data of the sterolic fraction by: (a) 

HPLC-UV, and (b) HPLC-CAD. IS denotes the internal standard. See text for 

further descriptions.  

 

Figure 2.   PC1/PC2 scores and PC1 loadings plots obtained from the data of the sterolic 

chromatographic data from the palm oil samples of three different continents: 

America (green squares); Africa (red rhombus); and Asia (blue triangles), by: (a) 

and (b) HPLC-UV; (c) and (d) HPLC-CAD.  
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Figure 1   
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Figure 2  
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