Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

Journal Name

Cite this: DOI: 10.1039/xxxxxxxxx

Received Date

Accepted Date

DOI: 10.1039/xxxxxxxxx

www.rsc.org/journalname

Monitoring polydispersity by NMR diffusometry with tailored norm regularisation and moving-frame processing

Mateusz Urbańczyk, a,d Diana Bernin, Alan Czuroń, and Krzysztof Kazimierczuk *d

Nuclear magnetic resonance (NMR) is currently one of the main analytical techniques applied to numerous branches 27 of chemistry. Furthermore, NMR has been proven useful to 28 follow in-situ reactions occurring on a time scale of hours 29 and days. For complicated mixtures, NMR experiments pro- 30 viding diffusion coefficients are particularly advantageous. ³¹ However, the inverse Laplace transform (ILT) used to extract ³² the distribution of diffusion coefficients from an NMR signal 33 is known to be unstable and vulnerable to noise. Numer- 34 ous regularisation techniques have been proposed to cir- 35 cumvent this problem. In our recent study, we proposed a 36 method based on sparsity-enforcing ℓ_1 -norm minimisation. 37 This approach, which is referred to as ITAMeD, has been 38 successful but limited to samples with a 'discrete' distribu-tion of diffusion coefficients. In this paper, we propose a generalisation of ITAMeD using a tailored ℓ_p -norm ($1 \le p \le 2$) to process in particular signals arising from 'polydisperse' samples. The performance of our method was tested on simulations and experimental datasets of polyethylene ox-ides with varying polydispersity index. Finally, we have ap-plied our new method to monitor diffusion coefficient and polydispersity changes of heparin undergoing enzymatic degradation in real-time.

²⁴ 1 Introduction

Nuclear magnetic resonance spectroscopy (NMR) has found nu merous applications in chemistry. In particular, following reac-

tions in-situ has recently attracted much attention.¹ Changes of various spectral parameters, e.g. peak intensities, chemical shifts or diffusion coefficients, can be monitored. The latter ones, although less frequently used,^{2,3} can be very valuable for studying degradation processes, when large molecules are fractionated into smaller fragments.

Commonly, the diffusion coefficient is estimated using the pulsed-field gradient (PGSE) technique, which is based on the signal attenuation during the time lapse between the encoding and decoding magnetic field gradient pulses. The attenuation correlates with the diffusion coefficient D of each compound in the sample as follows⁴

$$S(g) = S(0)e^{-Dg^2\gamma^2\delta^2\Delta'},$$
(1)

where S(g) is the signal intensity for a given magnetic field gradient amplitude g, γ is the gyromagnetic ratio, δ is the duration of the magnetic field gradient pulse and Δ' is the effective diffusion time. For a continuous distribution of diffusion coefficients A(D), one can modify Equation (1) as follows

$$\Psi = \frac{S(g)}{S(0)} = \int_{D_{min}}^{D_{max}} A(D) e^{-Dg^2 \gamma^2 \delta^2 \Delta'} dD.$$
⁽²⁾

Equation (2) describes the Laplace transform of the distribution of diffusion coefficients, A(D), showing that the inverse Laplace transform (ILT) can be applied to obtain A(D) from an experimental dataset Ψ . Unfortunately, this procedure is numerically unstable and highly prone to noise. Various methods have been proposed to circumvent this problem^{5–14}.

These methods can be divided into two groups based on the assumption regarding A(D). The first group contains methods, which attempt to find only the diffusion coefficient of each compound and neglect the shape of A(D). Applying a method of this group to polydisperse samples will bias the obtained diffusion coefficient as recently reported by Zhou et. al.¹⁵. However, they perform very well in case of monodisperse samples. Algorithms of

^a Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101, 02-089 Warszawa, Poland

^b Swedish NMR Centre, University of Gothenburg, BOX 465, 40530 Göteborg, Sweden ⁵¹ ^c Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8, 00-656 ₅₂ Warszawa, Poland

 ^d Centre of New Technologies University of Warsaw ul. Banacha 2C, 02-097 Warsaw,
 Poland, E-mail:k.kazimierczuk@cent.uw.edu.pl

 [†] Electronic Supplementary Information (ESI) available: [details of any supplemen-⁵⁵ tary information available should be included here]. See DOI: 10.1039/b000000x/₅₆

the first group are e.g. Direct Exponential Curve Resolution (DE-100 57 CRA)⁸, Speedy Component Resolution (SCORE)⁹, Multivariate₁₀₁ 58 Curve Resolution MCR¹⁶, Blind Source Separation¹⁴ and mono-,102 59 and multi-exponential fitting¹⁷. 60 The second group contains methods that can, to some extent,104 61 62 reconstruct the shape of A(D). This can be utilitized by fitting pa-105 rameters of a strictly defined distribution (e.g. log-normal¹⁸ and¹⁰⁶ 63 gamma distribution¹⁹), or by fitting a distribution of diffusion 64 coefficients with additional constraints (Trust Region Algorithm¹⁰⁷ 65 for Inversion (TRAIn)¹⁰, CONTIN¹², Maximum Entropy (Max-66 Ent)¹¹, and Iterative Thresholding Algorithm (ITAMeD)¹³).

The last three methods can be discussed on the basis of regu-68 larisation

$$\min_{A>0} \|\Phi A - \Psi\|_{\ell_2}^2 + \tau \Theta(A), \tag{3}$$

where Φ is the Laplace transform matrix, A is the vector of the distribution of diffusion coefficients, Θ is the regularisation term, and τ controls the ratio between first and second term. For Max-72 Ent, Θ is defined as 73

> $\Theta(A) = -\sum_{i} \frac{A_i}{\sum_{j} A_j} \log \frac{A_i}{\sum_{j} A_j},$ (4)

while CONTIN uses

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

49

50

51

56

57

58

59

60

$$\Theta(A) = \|\mathbf{L}A\|_{\ell_2},\tag{5}$$

where L is a matrix that contains prior assumptions about the data²⁰. ITAMeD utilises the following regularisation term

$$\Theta(A) = \|A\|_{\ell_1}.$$
 (6)

All aforementioned regularisations $\Theta(A)$ are equivalents of cer-77 78 tain assumptions about the shape of A(D). For example, ITAMeD 79 assumes that the resulting vector is sparse, CONTIN makes the 80 assumption that the distribution is smooth, while MaxEnt prefers A(D) with the highest entropy.

In fact, none of the regularisation terms is generally valid. ITA-82 MeD will not give the correct reconstruction for polydisperse samples with broad diffusion coefficient distributions, while CONTIN¹⁰⁸ and MaxEnt may provide an over-smoothed result for samples¹⁰⁹ 85 with very sparse $A(D)^{13}$. 86

To circumvent these limitations we propose a new method us-44 87 ing a tailored regularisation term, which is automatically tuned.₁₁₀ 45 88 This regularisation term exploits the ℓ_p -norm with $1 \le p \le 2$, that₁₁₁ 46 89 47 allows balancing between sparsity and smoothness of the result-90 48 ing distribution. The order p norm is defined as follows 91

$$|\mathbf{A}||_{\ell_p} = (|A|_1^p + |A|_2^p + \ldots + |A|_n^p)^{\frac{1}{p}}.$$
(7)113

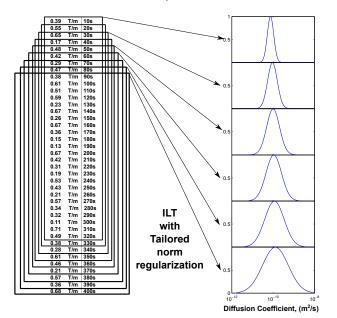
The proposed concept was tested on polymer samples with₁₁₅ 52 92 varying polydispersity and finally applied to monitor the degra-116 53 93 54 dation of heparin using PGSE NMR. 94 117

55 95 In contrary to previous NMR diffusometry studies of this reac-118 96 tion², we monitored not only the change of diffusion coefficient₁₁₉ but also polydispersity. 97 120

Additionally, we introduced the "moving-frame" processing,121 which is known in the field of non-uniform sampling²¹. The₁₂₂ method is implemented by performing a series of PGSE experiments with randomly permuted gradient values (known as p-DOSY³) and combining them into one large dataset. The dataset is then divided into overlapping subsets processed separately with regularised ILT (see Figure 1). The method provides detailed information, as it allows to obtain in principle a continuous timeprofile of the process 22 .

2 Methods

Fig. 1 The idea of the "moving-frame" processing is applied to time-resolved PGSE data. FID signals with different amplitudes of the diffusion-encoding gradient are acquired, while certain processes are occurring in the sample that change the distribution of diffusion coefficients. Overlapping data subsets are then processed using inverse Laplace transform with tailored ℓ_p -norm regularisation.



2.1 ℓ_p -norm regularization

112

The proposed method is using the regularisation term defined as

$$\Theta(A) = \|A\|_{\ell_p},\tag{8}$$

where $1 \le p \le 2$ and thus the algorithm seeks for the following minimum

$$\min_{A>0} ||\Phi A - \Psi||_{\ell_2}^2 + \tau ||A||_{\ell_p}.$$
(9)

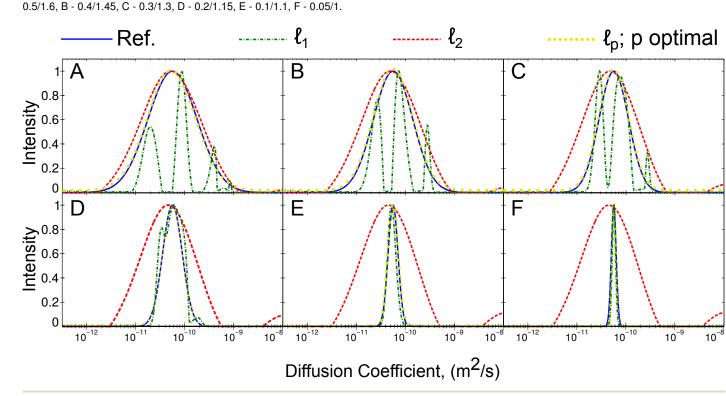
For p > 1 the solution is "smoothened", i.e. the differences between the values of elements of a solution vector A are suppressed. In other words, the distributions of diffusion coefficients without significant "jumps" are preferred. The greater p is, the more pronounced is the smoothing effect. The minimized function presented in Equation (9) is composed of two terms: $||\Phi A - \Psi||_{\ell_p}^2$ and $\tau ||A||_{\ell_p}$. The former term is ℓ_p -norm independent, while the latter changes with *p*. In case of p > 1 for any two vectors with the same mean value the smoother one (having smaller deviation from the mean value) has a smaller $||A||_{\ell_p}$. This general feature can be shown on the example of a two-element vector

Page 3 of 7

Analyst

Fig. 2 Comparison between the results of the optimal norm (dashed yellow line), ℓ_1 -norm (dashed green line) and ℓ_2 -norm (dashed red line) used in

the processing of the simulated data set of various A(D). The widths of the diffusion profiles and the corresponding optimal norms (σ/p) are: A -



and ℓ_2 -norm. Let $v_1 = [M, M]$ and $v_2 = [M - X, M + X]$, where *M* is the mean value of those vectors and *X* is a non-zero real number. Then it can be shown:

$$||v_2||_{\ell_2} = \sqrt{(M-X)^2 + (M+X)^2} =$$

$$= \sqrt{M^2 + X^2} > \sqrt{M^2} = ||v_1||_{\ell_2}.$$
(10)

Therefore p = 2 (and actually every p > 1) promotes the smoothened result. It can be shown in a similar way that for p = 1 the smoothing effect is not observed.

A more detailed explanation can be found in the Supplementary Information.

We have chosen the iteratively re-weighted least squares (IRLS) algorithm $^{23-25}$ as a method to implement the ILT regularised by ℓ_p -norm with arbitrary p. The description of the algorithm together with the Matlab code can be found in Supplementary Information.

136 2.2 Simulations

The method was tested on six different Gaussian distributions149 of diffusion coefficients (see Figure 2). Each distribution was150 generated using a logarithmically sampled diffusion coefficient151 grid with the centre of the peak at $\log_{10}(D) = -10.25$ for vari-152 ous widths σ . The distributions were converted to an exponential₁₅₃ decay, composed of 64 logarithmically sampled points and 0.1%154 white noise (as in the following references^{10,11,13}). Then, each₁₅₅ simulated decay was processed using the IRLS method (1024156 points, total computational time ~ 12 s) and the ℓ_p -norm set to¹⁵⁷

Noise level (%)	σ	$\log_{10}(D) (\frac{m^2}{s})$	
Ref	0.2	-10.25	
0.001%	$0.1999{\pm}0.03\%$	$-10.250 {\pm} 0.0006\%$	
0.005%	$0.1998{\pm}0.16\%$	$-10.249 {\pm} 0.0014\%$	
0.01%	$0.1998{\pm}0.45\%$	$\text{-}10.2498 {\pm} \ 0.0049 {\%}$	
0.05%	$0.2020 {\pm} 3.54\%$	-10.250 \pm 0.0300 %	
0.1%	$0.2072{\pm}8.60\%$	$-10.249 {\pm} 0.0884\%$	
0.2%	$0.2128{\pm}11.46\%$	$-10.248 \pm 0.1009\%$	
0.3%	$0.2124{\pm}10.28\%$	$-10.247 \pm 0.1463\%$	
0.5%	$0.2122{\pm}18.86\%$	$-10.2466 \pm 0.1834\%$	
1%	$0.2117 \pm 22.72\%$	$-10.2363 \pm 0.3309\%$	

 Table 1 Results of the reconstruction of the diffusion coefficient

 distribution from Figure 2.D for varying levels of random white noise.

 The mean and standard deviation of the results from 100

 reconstructions for each noise level are shown.

p = 1, p = 2 and p = 1, 1.05, 1.1...2 (20 values). The optimum p value was the one that provides A with minimal residuum of the fit

$$\|\Phi A - \Psi\|_{\ell_2}.\tag{11}$$

Thus, the method does not require any prior knowledge about the width of the distribution of diffusion coefficients. The residuum values for various p and σ values are shown in Figure 3. For p = 1, the approach is equivalent to the ITAMeD method, while p = 2 corresponds to the CONTIN method with **L** set to the identity matrix.

The robustness to noise was tested by repeating the simulation from Figure 3D 100 times for each of the nine white noise levels varying from 0.001% to 1% of the first data point. For each Analyst Accepted Manuscr

186

187

188

189

190

191

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

218

219

220

simulation, the optimal p was estimated and the Gaussian curve₁₈₃ was fitted to calculate the corresponding diffusion coefficient $D_{_{184}}$ Interestingly, variable p values compensate for wrong₁₈₅ and σ .

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 162 37 163

38

39 165

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

4 |

160

161

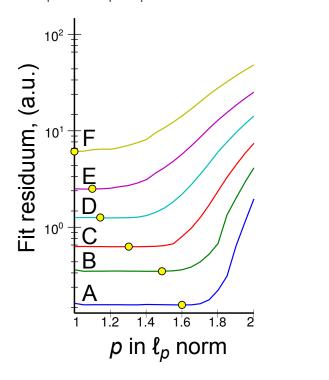
164

166

158 2

159

Fig. 3 The residuum of the fit $\|\Phi A - \Psi\|_{\ell_2}$ as a function of *p* settings for the simulated data set shown in the Figure 2. The yellow dots correspond to the optimal p values.



guesses of the manually entered parameter τ .

Furthermore, as shown in the Supplementary Information (Fig-²¹⁵ ure SI.1), the value of τ can be changed by several orders of magnitude without a significant difference in the result of reconstruc-216 tion. 217

2.3 Test experiments on PEO polymers

Twelve polyethylene oxide polymers (PEOX21K, PEOX600K,221 167 PEOX900K, PEOX30K, PEOX150K, PEOX250K, PEOX50K,222 168 PEOX85K, PEOX90K, PEOX500K, PEOX120K and PEOX200K)223 169 with various polydispersity indexes (PDI) were supplied by Amer-224 170 ican Polymer Standards Corporation. An appropriate amount225 171 of the polymer was dissolved in D₂O achieving a concentration226 172 of 0.1% w/w. The polymer solutions were run at 298 K on227 173 Bruker 600 MHz (Bruker, Germany) spectrometer equipped with228 174 175 a Diff30 diffusion probe and GREAT40 gradient amplifiers. The229 176 signal attenuation of the PEO peak at 3.6 ppm was obtained230 177 using a stimulated echo pulse sequence and 32 linearly spaced₂₃₁ 178 gradient amplitudes g, $\Delta = 100$ ms, and $\delta = 2$ ms. Each dataset was²³² 179 processed using (i) the IRLS method (1024 points of diffusion233 180 coefficient grid, $\tau = 10^{-6}$, total computational time ~ 12 s) and₂₃₄ 181 the ℓ_p -norm set to p = 1, p = 2 and p = 1, 1.05, 1.1...2 (20 values)₂₃₅ and (ii) the log-normal fitting described in¹⁹. 182 236

1 - 7

2.4 Monitoring the fractioning of heparin

12.3 mg of heparin sodium salt from porcine intestinal mucosa (Sigma-Aldrich) was dissolved in 1 ml of 90% D₂O, 7.0 pH phosphate buffer. Next, 0.3 mg of heparinase I and III Blend from Flavobacterium heparinum (Sigma Aldrich) was added. The reaction mixture was then transfered into an NMR tube, which was put into a 700 MHz Agilent spectrometer equipped with HCN probe temperature controlled at 25°C.

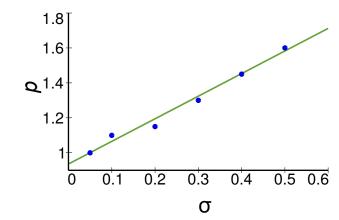
Each spectrum was obtained using a Bipolar Pulse Pair STE with Watergate and the signal was accumulated 64 times, g, 192 $\Delta = 200$ ms, and $\delta = 3$ ms. The experiment was acquired using randomly shuffled sampling of the diffusion decay as in the p-DOSY experiment.³ We used the list of 800 gradient values, which was constructed using 25 repetitions of a permuted 32 gradient array (The sampling schedule can be generated using the online interface at: http://itamed.spektrino.com). The experiments lasted in total for 59 hours.

The obtained heparin dataset was Fourier transformed and processed using nmrPipe²⁶ and imported into Matlab (MathWorks Inc.). The region of 3.20-3.66 ppm, which arises from protons of the sugar rings was integrated. Integration values were used as an input for the ILT with tailored norm regularisation. The data was processed using the "moving frame" method (see section 2.5). The size of the "frame" was set to 32, 64 and 128 points and diffusion coefficient grid to 256 points. Alse, we repeated the processing, using "standard" p-DOSY approach with series of 32point subsets. Other processing parameters were the same as for the PEO samples. Each obtained diffusion profile was fitted to a Gaussian, whose centre corresponded to the mean diffusion coefficient and the width reflects the polydispersity. Both parameters were plotted as a function of time (Figure 6). Additionally, we analysed the peak intensity at \sim 5.9 ppm, which corresponds to digested heparin fragments².

"Moving-frame" p-DOSY 2.5

Randomly shuffled sampling of the gradient domain, referred to as p-DOSY, has been recently reported as a good solution to study dynamically changing samples with PGSE NMR³. The use of p-DOSY allows to avoid bias in diffusion coefficient that could be caused by coherent variations of signal intensity due to reasons other than diffusion. We propose a slight modification of p-DOSY approach, conceptually similar to time-resolved non-uniform sampling, that has recently found numerous applications^{21,22,27}. The series of experiments with differently permuted p-DOSY sampling schedules are performed and combined into one large dataset. Then, as shown in Figure 1, the dataset is divided into overlapping subsets, which are processed separately with ILT. The resulting stack of spectra forms temporal pseudodimension in which A(D) changes. The size of the single subset is post-acquisition parameter, that has to compromise between signal-to-noise problems (small frames) and averaging of studied effects within the frame (large frames). If artifacts associated with particular schedule are observed, which can be the case of ILT or NUS reconstructions, then moving-frame processing has an advantage over standard "serial" p-DOSY. It provides time-profiles with more points and thus imperfections can average out e.g. dur ing curve fitting. We exploit this feature in the analysis of kinetic parameters of heparin depolymerization.

Fig. 4 Optimal norm *p* as a function of the width of the diffusion coefficient distribution σ obtained for the simulated data set. The line fit with a coefficient of determination $R^2 = 0.982$ shows that the correlation is linear.



3 Results and Discussion

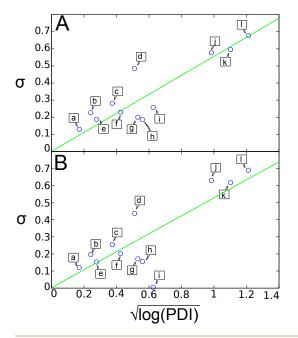
The simulation (see Figure 2) showed that the optimal ℓ_p -norm reconstructs the signal with a clearly better fidelity compared to the over-sparsifing ℓ_1 -norm or the over-smoothing ℓ_2 -norm. The over-sparsifing behaviour manifests itself in approximation of a broad Gaussian peak made of a set of false narrow peaks. On the₂₇₄ other hand, over-smoothing leads to an artificial broadening of₂₇₅ the peak. 276

The optimal norm is found by repeating the simulation for dif- $_{277}$ ferent values of *p* and checking the residuals of the fit in the signal $_{278}$ domain (Ψ). Figure 3 shows that there is a wide range of similarly $_{279}$ behaving norms, especially for broad distributions of diffusion co- $_{280}$ efficients. In fact, the global minimum can be found (marked in $_{281}$ Figure 3), which provides the optimal *p* for all examples used in $_{282}$ this study.

It may happen, that for noisy signals the residual vs. p function is not as smooth and there are many local minima. For this case, one should choose p corresponding to right side of the "valley" (Figure 3) as smoothed regularisations are less prone to instabilities caused by noise.

Interestingly, the plots shown in Figure 3 and the way the ${\rm op}^{^{288}}$ timal p is found resemble the L-curve approach used before for the automatic setting of regularisation parameter.²⁸ Even very²⁹⁰ recently, Scotti et. all.²⁹ demonstrated method for determining² polydispersity in light scattering based on CONTIN with this L-292 curve criterion for finding au. We have observed that both ℓ_p -norm²⁹³ selection for constant τ and τ selection for constant ℓ_2 -norm behave similarly for highly polydispersed samples. However, the²⁹⁵ L-curve with constant $\ell_2\text{-norm}$ does not give a proper result for $^{^{296}}$ samples with low polydispersity (See Supplementary Information²⁹⁷ Fig.SI.2), in contrast to the tailored ℓ_p -norm. This is due to the smoothing behaviour of ℓ_2 -norm, which is explained in Section 4 of Supplementary Information. All the examples presented here follow the model of an unimodal (although polydisperse) decay.298

Fig. 5 Correlation between σ and $\sqrt{\log(PDI)}$ for the PEOs. A - the reconstructions with the optimal ℓ_p -norm B - with log-normal fitting. The small case letters correspond to different polymer samples described in Table 2. The line fit $\sigma = \alpha \sqrt{\log(PDI)}$ gave the slope $\alpha = 0.56$ (A) and $\alpha = 0.53$ (B) with coefficients of determination: $R^2 = 0.948$ (A), $R^2 = 0.886$ (B).



It is worth emphasising that the optimal norm can be found only for signals where the diffusion peaks do not differ in polydispersity. This is usually not the case for polymodal signals. However, as shown in SI, the performance of the tailored norm is very similar to methods dedicated to deal with such problems, or performs even better for noisy data.

The linear correlation between the optimal *p* and the actual width of the Gaussian distribution of diffusion coefficients σ is significant ($R^2 = 0.982$) and the dependence is shown in Figure 4.

Furthermore, Table 1 shows that the method is stable and not very vulnerable to noise. In particular, the line widths are well preserved even for quite high noise levels.

The results of extensive simulations allowed to test the effectiveness of our method on a set of polydisperse samples. To experimentally verify the accuracy of the reconstruction with the proposed tailored norm, we used polymer samples with varying polydispersity. The polydispersity index (PDI) of the polymer can be defined as PDI = $\frac{M_w}{M_n}$, where M_w is the weight-average, and M_n is the number-average. ³⁰ PDI values used for comparison were taken from the certificate provided by the supplier of the polymers and obtained using Gel Permeation Chromatography (GPC). It can be compared with the σ value of the reconstructed distribution. The value was obtained by fitting the log-normal curve to the result of reconstruction

$$A(D,\mu,\sigma) = \frac{1}{D\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\left(\log\left(D\right) - \mu\right)^2}{2\sigma^2}\right).$$
 (12)

As reported previously, ¹⁹ one correlates the PDI of a polymer with

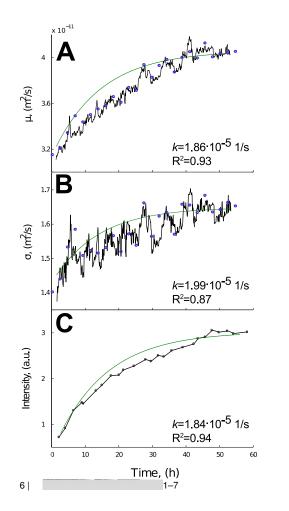
Sample	Polymer	PDI	<i>D</i> from optimal $p\left(\frac{m^2}{s}\right)$	D log-normal $\left(\frac{m^2}{s}\right)$
а	PEOX21K	1.029	4.6E-11	4.57E-11
b	PEOX600K	1.060	5.53E-12	5.55E-12
с	PEOX900K	1.150	4.47E-12	4.51E-12
d	PEOX30K	1.299	5.26E-11	5.11E-11
e	PEOX150K	1.080	1.44E-11	1.43E-11
f	PEOX250K	1.198	1.03E-11	1.04E-11
g	PEOX50K	1.326	3.36E-11	3.37E-11
h	PEOX85K	1.369	2.40E-11	2.38E-11
i	PEOX90K	1.479	2.21E-11	2.24E-11
j	PEOX500K	2.632	1.15E-11	1.13E-11
k	PEOX120K	3.362	2.80E-11	2.79E-11
1	PEOX200K	4.340	2.21E-11	2.28E-11

Table 2 Description for Figure 5. D corresponds to the diffusion coefficient at the centre of the peak obtained from both methods.

 σ as follows

$$PDI = \exp\left(\frac{\sigma^2}{\alpha^2}\right), \qquad (13)^{301}_{302}$$

Fig. 6 Increase of the diffusion coefficient (A - μ) and the polydispersity (B- σ) following the enzymatic degradation reaction of bovine heparin by heparinase. Additionally, for comparison the intensity of the peak at 5.9 ppm is shown (C). Intensity was calculated as integration value of the peak at the lowest gradient strength (0.11 T/m.) The green lines are the 305 fit of the first order reaction with reaction rate constant (*k*) and goodness 306 of fit (R²) written for each parameter. The line was fitted to "moving-frame" curve. Frame size of 64 points was used for A and B. Blue points show the result obtained from ILT processing based on p-DOSY processing.



where α is a scaling factor (typically between 0.5 and 0.6 for a good solvent).³¹ Therefore, one would expect a linear correlation between σ and $\sqrt{\log(\text{PDI})}$

$$\sigma = \alpha \sqrt{\log (\text{PDI})} \tag{14}$$

and the results, which are presented in Figure 5 confirm the linear correlation. The value obtained by a linear fit ($\alpha = 0.56$) is within the theoretical boundaries. The result of the well established method to evaluate the polydispersity of polymers, the log-normal distribution fitting^{18,19} was compared with the tailored regularisation. As shown in Figure 5 the dependence of σ as a function of $\sqrt{\log PDI}$ deviates less for the optimal ℓ_p -norm compared to the log-normal fitting ($\mathbb{R}^2 = 0.948$ for tailored vs. $\mathbb{R}^2 = 0.886$ for log-normal).

Having established the robustness of the tailored norm regular-isation for samples of different polydispersity, we were able to ap-ply this technique to investigate the process of enzymatic degra-dation of heparin. Heparin, which is a long-chain polysaccha-ride with a inherently heterogeneous chain length, was fraction-ated with time by heparinase to form oligosacharides of different molecular weight i.e. chain length. As shown in Figure 6 both the diffusion coefficient and the width of the diffusion distribution are increasing during the enzymatic degradation as expected. Degra-dation products diffuse faster compared to heparin because of the lower molecular weight, which increases the observed mean diffusion coefficient. In addition, the average chain length of hep-arin is shortened and populations with different chain lengths are formed, which increases the polydispersity. The progress of the reaction can be independently monitored using the peak at 5.9 ppm corresponding to oligosaccharide fragments of digested hep-arin.

The heparin concentration is certainly below the K_D of hep-arinase, which is high in the absence of calcium.³² Thus, we can assume a first order kinetic behaviour and regress the fol-lowing equation $A(1 - exp(-k(t - t_0)))$ on the experimental data (where k is kinetic constant). The result is shown in Figure 6. A was assumed to be an average of the last 32 data points, while t_0 was back-extrapolated from the first 40 points of the curve. The obtained reaction rate constants are gathered in Table 3. It can be observed that all three time-profiles reveal similar kinetic

Analyst

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404 405

406

407

408

409

48

49

50

51

54

55

56

58

59

60

373 57

constants for a processing time frame size of 64 points ("moving377 338 frame"), which gives also the largest R² values. For 32 points, the378 339 decreased signal-to-noise ratio played role, while for 128 points 340 an averaging of the dynamics within the frame was observed. In³⁷⁹ 341 general, similar results were obtained but most important, the380 342 frame size is a processing parameter and can be adjusted after 382 343 recording the experiment. It is noteworthy, that both goodness³⁸³ 344 of the fitting and obtained parameters for frame of 32 points, are 385_{385}^{304} 345 better than for standard ("serial") p-DOSY. 346 387

Table 3 Kinetic constants calculated for different frame sizes and spectral parameters.

Parameter	$k\left(\frac{1}{s}\right)$	R ²
Intensity of peak at 5.9 ppm	$1.84 \cdot 10^{-5}$	0.94
σ for frame size 32	$1.73 \cdot 10^{-5}$	0.87
σ for frame size 64	$1.99 \cdot 10^{-5}$	0.87
σ for frame size 128	$1.93 \cdot 10^{-5}$	0.80
σ from p-DOSY processing	$1.95 \cdot 10^{-5}$	0.7
μ for frame size 32	$2.03 \cdot 10^{-5}$	0.89
μ for frame size 64	$1.86 \cdot 10^{-5}$	0.93
μ for frame size 128	$2.21 \cdot 10^{-5}$	0.87
μ from p-DOSY processing	$2.06\cdot 10^{-5}$	0.87

4 Conclusions

We have discussed the choice of ℓ_p -norm ($1 \le p \le 2$) as a regu-⁴¹⁰ 348 larization for the inverse Laplace transform applied to diffusion412 349 NMR spectroscopy. The iteratively re-weighted least squares al-413 350 gorithm allowed us to implement ILT with an arbitrarily chosen $\tilde{415}$ 351 352 regularisation term. Both simulations and experiments showed416 that proper reconstructions are obtained, when p is balanced be- $\frac{417}{418}$ 353 tween the sparsifying (p = 1) and smoothing (p = 2) variant. The⁴¹⁹ 354 optimum can be found automatically by minimising the norm $of_{_{421}}^{_{420}}$ 355 356 the residual with respect to p. The proposed method is tailored₄₂₂ 357 to samples with various diffusion profiles and thus is an impor-423 358 tant extension of previously introduced approach based on a plain425 359 sparsity restraint. Additionally, we proved that ℓ_p -norm can be⁴²⁶ 360 used for monitoring reactions in situ where the change in poly-428 dispersity plays a crucial role for a mechanistic explanation. The429 361 moving-frame variant of p-DOSY method allowed to obtain time-362 resolved data of high accuracy. 363

Acknowledgement

We thank the Foundation for Polish Science for support within 365 the TEAM Programme and the Polish National Science Centre 366 for support (HARMONIA grant DEC-2013/08/M/ST4/00975 and 367 SONATA BIS 2 grant DEC-2012/07/E/ST4/01386). The Swedish 368 NMR Centre is acknowledged for spectrometer time. 369

We thank Dr. Magnus Röding for providing the code for the 52 370 53 371 log-normal fitting.

Supplementary Information 372

Algorithm description, Matlab Code of the IRLS algorithm, test 374 of the robustness to mis-setting of τ , behaviour of ℓ_2 -norm regularisation with different τ values, comparison with TRAIn method 375 for assymetric, bimodal distribution and heparin depolymeriza-376

tion, detailed explanation of smoothing features of ℓ_p -norm and ¹H spectra of heparin and PEO are shown.

References

- 1 F. Susanne, D. S. Smith and A. Codina, Organic Process Research & Development, 2012, 16, 61-64.
- J. F. K. Limtiaco, S. Beni, C. J. Jones, D. J. Langeslay and C. K. Larive, Anal. 2 Bioanal. Chem., 2011, 399, 593-603.
- 3 M. Oikonomou, J. Asencio-Hernández, A. H. Velders and M.-A. Delsuc, J. Magn. Reson., 2015, 258, 12-16.
- E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 1965, 42, 288. 4
- W. S. Price, NMR Studies of Translational Motion: Principles and Applications, 5 Cambridge University Press, Leiden, 2009.
- 6 P. T. Callaghan, Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR, Oxford University Press, 2011.
- 7 C. Johnson Jr, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 203-256.
- 8 Van Gorkom LCM and T. Hancewicz, J. Magn. Reson., 1998, 130, 125-30.
- 9 Nilsson, Mathias and Morris, Gareth A., Anal. Chem., 2008, 80, 3777-3782.
- 10 K. Xu and S. Zhang, Anal. Chem., 2014, 86, 592-599.
- 11 M. a. Delsuc and T. E. Malliavin, Anal. Chem., 1998, 70, 2146-2148.
- 12 S. Provencher, Comput. Phys. Commun., 1982, 27, 229-242.
- 13 M. Urbańczyk, D. Bernin, W. Koźmiński and K. Kazimierczuk, Anal. Chem., 2013, 85. 1828-1833.
- 14 I. Toumi, B. Torrésani and S. Caldarelli, Anal. Chem., 2013, 85, 11344-11351.
- X. Zhou, K. Xu and S. Zhang, J. Magn. Reson., 2015, 252, 114-119. 15
- 16 W. Windig, B. Antalek, L. Sorriero, S. Bijlsma, D. Louwerse and A. Smilde, Journal of Chemometrics, 1999, 13, 95-110.
- 17 Nilsson, Mathias and Connell, Mark A. and Davis, Adrian L. and Morris, Gareth A., Anal. Chem., 2006, 78, 3040-3045.
- 18 P. T. Callaghan and D. N. Pinder, Macromolecules, 1985, 18, 373-379.
- M. Röding, D. Bernin, J. Jonasson, A. Särkkä, D. Topgaard, M. Rudemo and 19 M. Nydén, J. Magn. Reson., 2012, 222, 105-11.
- 20 I. J. Day, J. Magn. Reson., 2011, 211, 178-85.
- 21 M. Mayzel, J. Rosenlöw, L. Isaksson and V. Y. Orekhov, J. Biomol. NMR, 2014, 58, 129–139.
- 22 R. Dass, W. Koźmiński and K. Kazimierczuk, Anal. Chem., 2015, 87, 1337-43.
- 23 E. J. Candes and M. B. Wakin, IEEE Signal Process. Mag., 2008, 25, 21-30.
- I. Daubechies, R. Devore, M. Fornasier and S. Güntürk, Commun. Pure Appl. 24 Math., 2010, LXIII, 1-38.
- 25 K. Kazimierczuk and V. Y. Orekhov, Angew Chem Int Ed Engl, 2011, 50, 5556-5559
- 26 F. Delaglio, S. Grzesiek, G. Vuister, G. Zhu, J. Pfeifer and A. Bax, Journal of Biomolecular NMR, 1995, 6, 277-293.
- 27 W. Bermel, R. Dass, K.-P. Neidig and K. Kazimierczuk, ChemPhysChem, 2014, 15. 2217-2220.
- 28 P. C. Hansen, SIAM Review, 1992, 34, 561-580.
- A. Scotti, W. Liu, J. S. Hyatt, E. S. Herman, H. S. Choi, J. W. Kim, L. A. Lyon, 29 U. Gasser and A. Fernandez-Nieves, J. Chem. Phys., 2015, 142, 234905.
- D. F. Evans and H. Wennerström, The colloidal domain: where physics, chemistry, biology, and technology meet, Wiley-Vch New York, 1999.
- 31 H. Walderhaug, O. Söderman and D. Topgaard, Prog. Nucl. Magn. Reson. Spectrosc., 2010, 56, 406-25.
- 32 R. Sasisekharan, G. Venkataraman, R. Godavarti, S. Ernst, C. L. Cooney and R. Langer, Journal of Biological Chemistry, 1996, 271, 3124–3131.

Wanusc

Analyst Accepted

1–7 | 7