This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cu$^{2+}$-mediated fluorescence switch of gold nanoclusters for the selective detection of clioquinol

Jian Wang, Yong Chang, Pu Zhang, Shao Qing Lie, Peng Fei Gao, Cheng Zhi Huang

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

It is of great significance to sense clioquinol (CQ) in a simple and fast way because of its potential application in the treatment of neurodegenerative diseases. In this contribution, we proposed a Cu$^{2+}$-mediated fluorescence switchable strategy to detect CQ by taking bovine serum albumin (BSA) protected gold nanoclusters (AuNCs) as probes. It was found that the strong red fluorescence of BSA-protected AuNCs at 610 nm could be effectively quenched by Cu$^{2+}$ (off state) and reversibly recovered by CQ (on state) owing to the specific coordination of CQ and Cu$^{2+}$. Under the optimal conditions, there was a good linear relationship between the off-on efficiency ($E_{\text{off-on}}$) and the amount of CQ in the range of 1-12 µM ($R^2=0.9902$), with a detection limit of 0.63 µM (3σ). The “turn-off-on” mode and the fast and unique complexation of CQ and Cu$^{2+}$ endow AuNCs with high specificity for CQ sensing. The proposed strategy is label-free, fast and selective, which is applicable to the analysis of CQ in cream with satisfactory results.

1. Introduction

New optical and reversible detection modes, most of which based on the off-on switches of fluorescence signals of the luminescent materials or the colorimetric transformations between aggregation and disaggregation of nanomaterials, have received much attention. This switchable strategies are capable of improving the selectivity of the “turn-off” detection mode. In a typical off-on strategy, it usually demands a mediator to induce the quenching or aggregation of probe, and then the mediator bind target to recover optical signals. Therefore, the mediator is crucial to the off-on switching process to enhance the off-on efficiency ($E_{\text{off-on}}$).

Clioquinol (5-Cl-7,8-hydroxyquinoline, as shown in Fig.S1), a halogenated 8-hydroxyquinoline derivative, is commonly used as antifungal, antibacterial or seborrhea medicine for prevention and treatment of intestinal amebiasis and skin infections. Recently, particular interest has been dedicated to CQ’s pharmacodynamics, since CQ is recognized as a potential pharmaceutical against human prostate cancer and neurodegenerative diseases, including Alzheimer, Parkinson and Huntington’s diseases. Up to now, assays for CQ detection, including thin-layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, have been developed. However, these methods usually require complex operation and time-consuming derivation process. Therefore, it is highly desirable to develop simple, fast and selective methods for CQ detection.

Moreover, it has been reported that by taking the pyridine nitrogen and the phenolate oxygen as metal donors, CQ and Cu$^{2+}$ are able to form 2:1 complex with the stability constant as high as 1.2×10^{10} M$^{-2}$. This unique and strong complexation of CQ and Cu$^{2+}$ contributes to the pharmacodynamics of CQ, which can inhibit the deposition of β-amyloid peptide (Aβ) aggregation induced by Cu$^{2+}$. It also paves the potential way to detect CQ with Cu$^{2+}$ as a mediator since Cu$^{2+}$ has been demonstrated with paramagnetic property and is able to sensitively quench fluorescence of luminescent materials. For instance, our group developed a off-on strategy for ppGpp sensing by employing Cu$^{2+}$ as a mediator and fluorescent noble metal nanoclusters as optical probes.

Fluorescent materials, such as carbon nanodots, graphene quantum dots and noble metal nanoclusters, have attracted much interest in the fields of biochemical sensing, imaging and cancer therapy owing to their unique fluorescence properties. Noble metal nanoclusters, consisting of only several to hundreds of metal atoms, have attracted great attention owing to their attractive features such as facile preparation, high fluorescence quantum yield, superior catalytic activity, favorable photostability and excellent biocompatibility. Controllable syntheses of gold nanoclusters (AuNCs) with a specific number of gold atoms and tunable optical properties are available. It has been reported that fluorescence emission of AuNCs could be readily adjusted from visible to NIR region by controlling the reaction conditions. For instance, the pH-dependent synthesis of pepsin-mediated AuNCs, including Au$_{16}$ (Au$_{6}$), Au$_{13}$ and Au$_{25}$, present blue-, green-, and red-fluorescence emission, respectively. These unique optical characteristics endow AuNCs with a wide range of applications, including chemical and biological sensing, cellular and animal imaging, as well as cancer therapy.

Herein, taking the BSA-templated AuNCs as optical probes and Cu$^{2+}$ as the mediator, an ‘off-on’ strategy was successfully developed for detecting CQ. Based on the strong quenching capability of Cu$^{2+}$ towards AuNCs and the specific and high-affinity chelation between CQ and Cu$^{2+}$, CQ can regulate the...
The fluorescence and absorption spectra were recorded with a JASCO JM810 to blend solutions. The circular dichroism (CD) spectra of BSA were developed according to our previous work. All glassware for preparing AuNCs were washed with aqua regia, and extensively rinsed with ultrapure water. BSAM-stabilized AuNCs were synthesized from a Millipore water purification system (18.2 MΩ·cm) was used throughout this work.

2.4 Procedure of clioquinol detection

The stock solution of clioquinol (1 mM) was prepared with ethanol, and then diluted to work concentration. In a typical test, 30 µL Tris-HCl buffer (50 mM, pH 7.4), 30 µL 1.92 mg/mL BSA-AuNCs solution, 30 µL 60 µM Cu²⁺, and different amount of CQ were successively added into a 1.5 mL vial, then diluted to 300 µL with water and mixed thoroughly. The mixture was incubated at room temperature for 10 min and then determined with an excitation wavelength at 370 nm.

2.5 The reusability of AuNCs for sensing CQ

The reusability of AuNCs for sensing CQ was carried out in a cuvette by continuous addition of AuNCs, Cu²⁺ and CQ, which was mixed with a pipette. After detection of fluorescence of AuNCs, Cu²⁺ was added and mixed to measure the fluorescence intensity. Following, CQ was dropped into the AuNCs-Cu²⁺ mixture to check the fluorescence recovery. This was the first cycle. Then, Cu²⁺ and CQ were introduced into the above mixture alternately, and fluorescence was detected after every addition of Cu²⁺ or CQ. Importantly, the concentration of Cu²⁺ was 6 µM and CQ was 10 µM for each cycle.

2.6 Detection of CQ in cream

This proposed assay is available to analyze the content of CQ in cream. The cream was diluted with ethanol, and then filtered with 0.22 µm filter membranes. The supernatant was diluted with ethanol and stored at 4 °C for further analysis. The process of CQ detection in cream was according to the procedure in 2.4.

3 Results and Discussion

3.1 The characterization of gold nanoclusters

The BSAM-stabilized AuNCs with relatively high fluorescence quantum yield were facilely synthesized by manipulating the reaction kinetics. The TEM image and statistics datum showed that AuNCs were well dispersed with the uniform sizes of 1.15-2.12 nm (Fig. 1A). This narrow distribution and small size endow AuNCs with unique optical property. Correspondingly, the as-prepared BSAM-AuNCs showed the typical absorbance of tryptophan at 275 nm. When excited at 370 nm, the AuNCs presented strong fluorescence at 610 nm. The obtained BSA-AuNCs were highly dispersed in aqueous solution and emitted the intensely red fluorescence under a 365 nm UV lamp (inset in Fig. 1B). Furthermore, the quantum yield of these red AuNCs was up to ~15%, suggesting the potential applications in a wide range.

3.2 The mechanism of the off-on fluorescent detection of CQ

Scheme 1 displays the mechanism of the ‘off-on’ fluorescence assay of CQ with the Cu²⁺-mediated BSA-AuNCs as optical probe. According to the previous investigation, Cu²⁺ is able to coordinate to the amino acid residues on BSA surface to induce the excited state of AuNCs to lose its energy by facilitating intersystem crossing (ISC) process, resulting in the quenching of BSA-AuNCs fluorescence. What’s different from the metal-metal interaction such as Au³⁻·Hg²⁺, this quenching mechanism is normally reversible.
To achieve the effective detection of CQ, many kinds of metal ions were taken to act as the mediator. Fig. 3A represents the off-on efficiency ($E_{\text{off-on}}$) with the different ions. Herein, $E_{\text{off-on}}$ is calculated by the equations below, F_0 and F_r are the fluorescence intensity of AuNCs at 610 nm in the absence and presence of Cu$^{2+}$, and F_q is the fluorescence of AuNCs when CQ is present, respectively. Metal ions, including Co$^{2+}$, Ni$^{2+}$, Cr$^{3+}$, especially Hg$^{2+}$, could effectively quench the fluorescence of BSA-AuNCs, while in the presence of these metal ions, CQ could not lead to the fluorescence recovery of AuNCs. Fortunately, Cu$^{2+}$-quenched AuNCs fluorescence would be recovered, indicating the specific binding between Cu$^{2+}$ and CQ.31,32

$$E_{\text{off-on}} = E_q \times E_r \quad \text{(Eq. 1)}$$

$$E_q = \frac{F_0 - F_d}{F_0} \quad \text{(Eq. 2)}$$

$$E_r = \frac{F_r - F_q}{F_0} \quad \text{(Eq. 3)}$$

Taking Cu$^{2+}$ as a mediator, it was able to quench the fluorescence of AuNCs, which was then gradually recovered with increasing concentrations of CQ. In details, 6 μM Cu$^{2+}$ could cause the quenching of AuNCs fluorescence to 47.5%, however, the subsequent addition of 10 μM CQ led to the intensity recovery to 89.6% (Fig. 3B). Thus, the “off-on” mode was available to construct for CQ detection with BSA-AuNCs as the optical probes and Cu$^{2+}$ as the mediator.

![Fig. 1](image1.png)
Fig. 1 (A) TEM image of BSA-AuNCs. (B) Optical absorption and fluorescence spectra of BSA-AuNCs. The inset shows the images of BSA-AuNCs under visible (left) and 365 nm UV light irradiation (right).

![Fig. 2](image2.png)
Fig. 2 The effect of CQ on the fluorescence of BSA-AuNCs. Conditions: BSA-AuNCs, 0.192 mg/mL; pH 7.0, Tris-HCl buffer. (B) The traditional detection strategy based on the fluorescent probes. a, the direct off strategy; b, the mediator regulated off-on strategy.

To achieve the simple analysis of CQ, AuNCs were directly mixed with CQ. However, the mixture could not result in any change of optical signals (Fig. 2A), which is possibly attributed to the prevention effect of BSA to CQ.34,35 Namely, the direct analysis strategy in Fig. 2B (a) for CQ seemed not work. Therefore, to analyze CQ with BSA-AuNCs as optical probe, it is necessary to consider a mediator to regulate the off-on or quenching-recovery strategy as presented in Fig. 2B (b).

![Fig. 3](image3.png)
Fig. 3 (A) The off-on efficiency in the presence of different metal ions. Conditions: BSA-AuNCs, 0.192 mg/mL; metal ions, 6 μM; CQ, 10 μM; pH 7.0, Tris-HCl buffer. (B) Fluorescence emission spectra of BSA-AuNCs. a, BSA-AuNCs; b, BSA-AuNCs+Cu$^{2+}$; c-e, BSA-AuNCs+Cu$^{2+}$+CQ. Conditions: BSA-AuNCs, 0.192 mg/mL; Cu$^{2+}$, 6 μM; CQ, 2 μM for c, 6 μM for d, 10 μM for e; pH 7.0, Tris-HCl buffer.
To further rule out the possible effect of ethanol on AuNCS fluorescence, ethanol was introduced into AuNCS and the AuNCS-Cu
2+ mixture as a control. The result suggested that ethanol presented negligible influence on AuNCS fluorescence, and could not recover Cu
2+ quenched fluorescence (Fig. S2, ESI†), suggesting that the restoration of AuNCS fluorescence was contributed to the binding of Cu
2+ and CQ.

It was found that when CQ was mixed with AuNCS and Cu
2+, the quenched fluorescence of AuNCS could be restored gradually, indicating that the chelation between CQ and Cu
2+ is stronger than that between Cu
2+ and BSA molecule, leading to the formation of unique and stable Cu(II)-CQ complex. In this case, the ISC process was hampered, resulting in the recovery of AuNCS emission. The reversible change of fluorescence suggested that the bound Cu
2+ was responsible for the quenching. The circular dichroism spectra of BSA-AuNCS were further confirmed that both Cu
2+ and CQ did not induce obvious structure change of BSA-AuNCS (Fig. S3, ESI†), suggesting that CQ bound Cu
2+ specifically and strongly to form complex to drive Cu
2+ far away from BSA-AuNCS.

3.3 Effect of Cu
2+ concentration

Fig. 4A displays the fluorescence spectra of BSA-AuNCS in the presence of Cu
2+ at different concentrations. The increasing concentrations of Cu
2+ led to the gradual reduce of AuNCS fluorescence intensity at 610 nm, which presented a quenching efficiency as high as 92.3% when in the presence of 30 µM Cu
2+. Visually, the introduction of Cu
2+ resulted in a gradual decrease of AuNCS fluorescence intensity under the UV lamp (the inset of Fig. 4A), further confirming the quenching of AuNCS fluorescence by Cu
2+.

The optimal concentration of Cu
2+ was evaluated by $E_{\text{off-on}}$, which should reach the high efficiency between ‘off’ state and ‘on’ state. For example, if the concentration of Cu
2+ ions was too low, it resulted in a poor ‘off’ efficiency. However, when the concentration of Cu
2+ ions was too high, there would be much free Cu
2+ ions in the solution to bind CQ directly, which could not lead to the effective fluorescence recovery. Namely, it supplied a low ‘on’ efficiency. As shown in Fig. 4, when Cu
2+ ions concentration was 6 µM, the $E_{\text{off-on}}$ achieve the optimal state.

3.4 Other optimum conditions

To choose the optimal conditions for CQ detection based on the Cu
2+-mediated BSA-AuNCS fluorescence, some key factors including pH, reaction temperature, reaction time and ion strength, should also be carefully considered.

This ‘off-on’ fluorescence process was pH-dependent due to the coordination of Cu
2+ with BSA and CQ, so the effect of various pH of Tris-HCl buffer on $E_{\text{off-on}}$ was first evaluated (Fig. S4A, ESI†). At pH 5.0, BSA-AuNCS were easy to aggregate, since the pH of buffer was close to the isoelectric point of BSA (pI=4.7), causing a significant enhancement of light scattering to interference fluorescence signal. What’s more, in an acid solution, it was more difficult for Cu
2+ to access the surface of BSA-AuNCS, owing to the electrostatic repulsion between Cu
2+ and the positively charged BSA-AuNCS or CQ. When the pH was higher than 8, the recovery became weaker than at pH 7, which was ascribed to the formation of Cu(OH)
2+ precipitate, resulting in a higher background. Thus, Tris-HCl buffer at pH 7 was optimal for detecting CQ. In contrast, the temperature had no obvious influence on the BSA-AuNCS fluorescence intensity (Fig. S4B, ESI†), since the synthesis of BSA-AuNCS was conducted at high temperature (100 °C) to endow AuNCS with the great thermal stability. Thus, the procedures were performed at room temperature.

To understand the response rate, the incubation time was also tested (Fig. S4C, ESI†). The fluorescence was immediately recorded after the addition of 10 µM CQ to the mixture of BSA-AuNCS and Cu
2+. This rapid response could remain stable in ten minutes later, which is highly desirable and will be a candidate for rapid CQ detection. To detect CQ in real samples such as cream, ionic strength effect was investigated. Here, NaCl was chosen to adjust the ionic strength, which had no influence on the detection of CQ (Fig. S4D, ESI†). Therefore, the proposed method allowed detecting CQ in samples with high ion strength.

3.5 Sensitivity for CQ detection

Under the optimal conditions, the sensitivity for CQ analysis was investigated with the Cu
2+-mediated BSA-AuNCS as optical probes. Fig. 5A displays the fluorescence spectra of BSA-AuNCS-Cu
2+ upon the addition of various concentrations of CQ, which increased gradually with the increasing concentration of CQ from 1 µM to 12 µM and almost kept constant when concentrations higher than 12 µM. Fig. 5B reveals the linear relationship between the concentration of CQ and $E_{\text{off-on}}$, which could be expressed as $E_{\text{off-on}}=-0.02358 + 0.02368C_{\text{CQ}}$ (µM), with the correlation coefficient $R^2=0.9902$. The concentrations of CQ
The reusability of AuNCs for sensing CQ.

3.7 Selectivity towards CQ detection

To evaluate the selectivity of the proposed assay, the responses of Cu
mediated BSA-AuNCs probe to other potential coexisting substances in cream were investigated under the optimal conditions. No distinct fluorescence restoration was observed for the potential coexisting substances, such as some saccharine, common metal ions and amino acids, which suggested that Cu
mediated BSA-AuNCs were specific to the target (Fig. S6, ESI†).

It is reported that Cu
could quench fluorescence emission of nanoclusters via electron or energy transfer. When in the presence of L-histidine (His), it results in a dramatic fluorescence enhancement of nanoclusters because of the chelation between Cu
and the imidazole group of His, leaving Cu
far away from nanoclusters to recover the fluorescence. However, His requires longer incubation time (more than 1 h) than CQ (within 10 min), thus the kinetic difference in the fluorescence recovery enables the proposed assay for CQ with high specificity.

Moreover, the responses of Cu
mediated BSA-AuNCs in the presence of the mixtures that containing these potential coexisting substances and CQ were investigated. The result showed the...
Table 1 Determination results of CQ in cream

<table>
<thead>
<tr>
<th>Batch No.</th>
<th>Sample</th>
<th>Labeled amount (g/10g)</th>
<th>Found average amount (g/10g)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13102201</td>
<td>cream</td>
<td>0.300</td>
<td>0.298</td>
<td>99.23</td>
</tr>
<tr>
<td>13102203</td>
<td>cream</td>
<td>0.300</td>
<td>0.310</td>
<td>103.3</td>
</tr>
<tr>
<td>13102206</td>
<td>cream</td>
<td>0.300</td>
<td>0.302</td>
<td>100.5</td>
</tr>
</tbody>
</table>

Conditions: BSA-AuNCs, 0.192mg/mL; Cu²⁺, 6 μM; pH 7.0; Tris-HCl buffer.

Conclusions

In summary, a label-free and simple fluorescence ‘off-on’ mode has been developed for rapid and selective detection of CQ, which utilizes highly fluorescent BSA-AuNCs as optical probes and Cu²⁺ as a mediator. CQ could effectively remove Cu²⁺ from the surface of BSA-AuNCs, leading to the fluorescence recovery of AuNCs that quenched by Cu²⁺ with facilitated ISC process. Both the unique coordination of CQ and Cu²⁺, as well as the ‘off-on’ fluorescence switch endow the strategy with excellent selectivity. This strategy is expected to be further generalized for other targets, which could bind the mediator specifically.

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21535006 and 21405123), as well as the Fundamental Research Funds for the Central Universities (XDJK2013C159).

Notes and references