Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

Analyst

Indicator displacement assay for cholesterol electrochemical sensing using calix[6]arene functionalized graphene-modified electrode

Long Yang^{a, 1}, Hui Zhao^{b, 1}, Yucong Li^a, Xin Ran^a, Guogang Deng^a, Yanqiong Zhang^a,

Hanzhang Ye^a, Genfu Zhao^a, Can-Peng Li^{a, *}

^a School of Chemical Science and Technology, Yunnan University, Kunming 650091,

PR China.

^b Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,

Kunming 650091, PR China.

¹These authors contributed equally to this work.

* Corresponding authors.

Fax or Tel: 86-871-65031119. E-mail: lcppp1974@sina.com (C.-P. Li)

Analyst Accepted Manuscript

Abstract: A novel electrochemical method has been developed towards cholesterol detection based on competitive host-guest interaction by selecting methylene blue (MB) and calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". Upon the presence of cholesterol to the performed CX6-Gra·MB complex, the MB molecules are displaced by cholesterol, leading to a "switch off" electrochemical response. A linear response range of 0.50 to 50.00 μ M for cholesterol with a low detection limit of 0.20 μ M (S/N=3) was obtained by using the proposed method. This method could be successfully utilized to detect cholesterol in serum samples, and may be expanded to analysis of other non-electroactive species. Besides, the host-guest interaction between cholesterol and CX6 was studied by molecular modeling calculations, which revealed that the complexation could reduce the energy of the system and the complex of 1:1 host–guest stoichiometry had the lowest binding free energy of -8.01 kcal/mol. In addition, the constructed electrochemical sensing platform is important as it does not use any enzyme or antibody for detection of cholesterol efficiently and selectively over the common interfering species.

Introduction

The concept of indicator displacement assay (IDA) has received considerable interest with the development of supramolecular chemistry, which exploit the potential of artificial receptors, particularly macrocyclic hosts, for its promising applications in molecular recognition and sensing. ^{1,2} The sensing principle of IDA relies on the competition between a test substance and an indicator for the same binding site on the

Analyst

host. ³ When an analyte is added to a solution containing host indicator complex, the analyte displaces the indicator from the binding site. Upon displacement of the indicator, a change in signal is observed. Although the IDA has been widely applied in the fluorescent sensing filed, ^{4–10} it is rarely investigated for electrochemical sensing applications except few researchers contributed to this area by using natural β -cyclodextrin as macrocyclic host. ^{11–13}

Calixarenes, recognised as the third class of macrocyclic host molecules after crown ethers and cyclodextrins, have become important receptors because they can form stable host-guest complexes with various organic, inorganic, and biological guest molecules, which show high supramolecular recognition and enrichment capability. ^{14,15} Water-soluble calixarenes, particularly, p-sulfonated derivatives, have been widely investigated to develop different electrochemical sensing platforms and separation matrices due to their benign biocompatibility and simplicity of synthesis. ^{10,16} Graphene is a material that holds great promise for potential applications in many technological fields because of its extraordinary thermal, mechanical, and electrical properties. ¹⁷ However, preparation of soluble graphene is challenging as graphene is known to have poor solubility.¹⁸ The advantage of water-soluble calixarenes as well as cyclodextrins functionalization is that it offers high water solubility to graphene and guest molecules incorporated into calixarenes are easily accessible to graphene.¹⁶ It has been reported that the composites of calixarenes and carbon materials (e.g. carbon nanotube, graphene) could be formed by $\pi - \pi$ interactions and hydrogen interactions. $^{16,19-21}$ If graphene is modified with water-soluble calixarenes, it is likely

Analyst Accepted Manuscript

to gain new materials simultaneously possessing the large surface area and good conductivity of graphene and high supramolecular recognition and enrichment capability of calixarenes. Therefore, the integration of graphene and water-soluble calixarenes can be potentially applied in the field of electrochemical sensing or biosensing, and thus arouse extensive research interest.

Cholesterol is a vital component in cells and tissues of humans, playing a functional role in construction of cell membranes or serving as a biosynthetic precursor of bile acids, vitamin D, steroid hormones etc.²² The normal level of total cholesterol in healthy human serum is $\sim 200 \text{ mg dL}^{-1}$. ²³ Excess cholesterol in blood serum forms plaques in the arteries of blood vessels which prevent the blood circulation and cause cardiovascular diseases.⁹ Thus the levels of total cholesterol in serum and food are major parameters for diagnostic treatment. Herein, a sensitive and selective electrochemical approach for cholesterol sensing based on a competitive host-guest recognition between CX6 and signal probe/target molecules using CX6-Gra modified electrode was developed for the first time. Methylene blue (MB) and cholesterol were selected as the probe and target molecules, respectively. Due to the host-guest interaction, MB molecules can enter into the hydrophobic inner cavity of CX6, and the CX6-Gra modified glassy carbon electrode displays a remarkable cathodic peak. In the presence of cholesterol, competitive interaction to CX6 occurs and the MB molecules are displaced by cholesterol. This results in a decreased reduction peak current of MB. As MB is a well-known redox probe and hence can be easily detected using differential pulse voltammetery (DPV) technique.

Materials and methods

Chemicals and materials

Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co., Ltd. (Nanjing, China). 4-Sulfocalix[6]arene hydrate (CX6) was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Corticosterone, estrone, β -estradiol, and β -sitosterol were obtained from Shanghai Adamas Reagent Co., Ltd (Shanghai, China). All other reagents were of analytical grade. Phosphate buffer (PBS, 0.1 M, pH 7.0) prepared by mixing stock solutions of 0.1 M KH₂PO₄ and K₂HPO₄ used as working solution. All aqueous solutions were prepared with deionized water (DW, 18 M Ω cm).

Apparatus

Differential pulse voltammetery (DPV) and electrochemical impedance spectroscopy (EIS) experiments were performed with a CHI 660E Electrochemical Workstation from Shanghai Chenhua Instrument (Shanghai, China) and conducted using a three-electrode system, with the modified GCE as working electrode, a platinum wire as the counter electrode, a saturated calomel electrode (SCE) as the reference electrode. The morphology of the prepared sample was characterized by a QUNT200 scanning electron microscopy (SEM, Hillsboro, Oregon, USA) and a JEM 2100 transmission electron microscopy (TEM, Tokyo, Japan). UV–visible spectra were analyzed in a U-2001 Hitachi (Tokyo, Japan) UV spectrophotometer. Raman spectra

Analyst Accepted Manuscript

were obtained on a 400F PERKINELMER Raman spectrometer (Shelton, USA) with 514.5 nm wavelength incident laser light. Fluorescence titration experiments were carried out using a Hitachi F–4500 fluorescence spectrophotometer (Tokyo, Japan) at room temperature. Fourier transform infrared (FTIR) study was performed over the wavenumber, range of 4000–400 cm⁻¹ by a Thermo Fisher SCIENTIFIC Nicolet IS10 (Massachusetts, USA) FTIR impact 410 spectrophotometer using KBr pellets. Thermogravimetric analysis (TGA) was carried out on a Q50 TGA (TA Instruments, New Castle, Delaware, USA), from 25 to 800 °C at a heating rate of 5 °C min⁻¹ in argon.

Absorbance and fluorescence titration experiments

A stock solution of MB (500 μ M) and a stock solution of CX6 (500 μ M) in 0.1 M PBS (pH 7.0) were prepared. As cholesterol has very low solubility in water, 500 μ M stock solution of cholesterol was prepared in ethanol. The dye stock solution was diluted with 0.1 M PBS (pH 7.0) to a final concentration of 10 μ M. CX6 was then gradually added into the MB solution and mixed by vortexing well for 5 min before the absorbance or fluorescence was recorded. For the competitive displacement of MB from the CX6 by cholesterol, the required amount of cholesterol was gradually added into the mixture of CX6 and MB and mixed by vortexing well for 5 min before the absorbance or fluorescence was recorded.

Molecular docking

Analyst

The crystal structures of 4-sulfocalix[6]arene hydrate (CX6) (ID: FEQYOQ) and cholesterol (ID: CHOEST21) were obtained from Cambridge Crystallographic Data Centre (CCDC) and optimized using molecular dynamics simulation with the Gaussian 03 program. Both the optimized structures were used as a starting structure in the docking study. AutoDock4.2 with Lamarckian Genetic Algorithm (LGA) was used for docking study. An initial population of 150 individuals with a maximum number of energy evaluations of 25,000,000 and a maximal number of generations of 27,000 were used as an end criterion. An elitism value of one was used and a probability of mutation and crossing-over of 0.02 and 0.8 was used, respectively. We have defined the conformational search space implementing an $60 \times 60 \times 60$ grid and 0.375 Å spacing between each point in such a way that it covered both the external surface and the internal cavity of the CX6. A total of 50 docking runs were carried out. At the end of each run, the solutions were separated into clusters according to their lowest RMSD and the best energy score value based on an empirical free energy function. Clustering was performed on the docked complexes with a cut-off of 2 Å. From the docking calculations, the lowest energy conformation was selected as the cholesterol/CX6 binding mode, and the binding free energy of the cholesterol/CX6 complex was calculated by using the semi-empirical method PM3.

Preparation of the CX6-Gra

The graphite oxide was exfoliated into graphene oxide (GO) sheets by ultrasonication at room temperature for 1 h. The as-obtained yellow-brown aqueous suspension of

Analyst Accepted Manuscript

GO was stored at room temperature and used for further experiment. Compared with the traditional procedure using highly toxic hydrazine as reductant, glucose was used as reducing agent to reduce GO in DW. In a typical experiment, 20.0 mL of 0.5 mg mL⁻¹ GO aqueous suspension was mixed with 20.0 mL of 1.0 mg mL⁻¹ CX6 aqueous solution and the mixture was allowed to stir at room temperature for 12 h. Then, 200.0 μ L of ammonia solution and 50.0 mg of glucose were added into the mixture. After being vigorously shaken or stirred for a few minutes, the mixture was stirred at 95 °C for 60 min. After cooling to room temperature, the resulting stable black dispersion was centrifuged at 16000 rpm and washed with DW for 3 times. Finally, the resulting CX6-Gra material was obtained by freeze-drying. Additionally, the Gra was prepared with the similar procedure in the absence of CX6.

Preparation of the modified electrodes

Glass carbon electrode (GCE, 3 mm in diameter) was polished with 0.3 and 0.05 μ m Al₂O₃ powder respectively and subsequently sonicated in ethanol and DW to remove the adsorbed substance and dried in air. The CX6-Gra was dissolved in DW at a concentration of 1.0 mg mL⁻¹ with the aid of ultrasonic agitation for 20 min, resulting in a homogeneous suspension. To prepare the CX6-Gra modified electrode, 5 μ L of the Gra suspension was dropped onto the electrode surface and dried at room temperature. The obtained electrode was noted as CX6-Gra/GC electrode.

Electrochemical measurements

Analyst

DPV was applied in 0.1 M PBS (pH 7.0) from 0.1 to -0.7 V with a pulse amplitude of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 10^{-1} to 10^5 Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN)₆]^{3-/4-} redox couple (1:1) with 0.1 M KCl as supporting electrolyte. All the measurements were carried out at room temperature. As cholesterol has very low solubility in water, 1.0 mM stock solution of cholesterol was prepared in ethanol and diluted to different concentrations by 0.1 M PBS (pH 7.0) for further use. Before electrochemical measurements, the CX6-Gra/GCE was incubated with 100 μ M MB solution (in 0.1 M PBS, pH 7.0) for 30 min, and rinsed gently with DW. Then, the electrode was further incubated with different concentrations of cholesterol solution for 30 min. After that, the electrode was rinsed gently with DW and the current response of the MB-bound CX6-Gra/GCE was investigated by DPV in 0.1 M PBS (pH 7.0).

Cholesterol detection in serum

Cholesterol detection in serum was performed using human serum. A stock solution of cholesterol (1.0 mM) was prepared in ethanol and diluted to different concentrations by 0.1 M PBS (pH 7.0) for further use. The serum sample was diluted 50 times with 0.1 M PBS (pH 7.0) and mixed with known amount of cholesterol. Next, this solution was used to detect cholesterol according to the procedure described above.

Analyst Accepted Manuscript

Results and Discussion

Absorbance and fluorescence spectra analysis

Analyst Accepted Manuscript

The absorption spectra of MB in the presence of various concentrations of CX6 were investigated. As shown in **Fig. 1A**, MB exists a monomer/dimer equilibrium in 0.1 M PBS at pH 7.0. The absorption spectrum of MB monomer is at 654 nm and dimer is at 605 nm. Upon successive addition of CX6 (up to 20 µM), the monomer absorption band showed a systematic decrease. The dimer band decreased to reach a plateau value at high CX6 concentration. This indicated that CX6 weakened the absorbance of the MB monomer by the formation of the inclusion complex and suppressed the dimer formation. Interestingly, the addition of cholesterol to the mixture of CX6 and MB led to a successive reversion of the monomer absorption band and a significant decrease of the dimer band (Fig. 1B). This may be attributed to the displacement of MB by cholesterol from the CX6 host. Fig. 1C shows the fluorescence titrations of MB (10 μ M, λ ex = 640 nm) upon successive addition of CX6 (up to 2.5 μ M) in 0.1 M PBS at pH 7.0. The addition of CX6 caused the quenching of the fluorescence intensities of MB solutions. In contrast, a typical displacement titration is depicted in Fig. 1D, where the addition of cholesterol, reverts the fluorescence changes originally caused by the addition of the CX6. The competitive fluorescence titrations confirmed the displacement of MB by cholesterol from the CX6 host.

The mechanism of the competitive host-guest interaction

A double reciprocal plot of $1/(F_0-F)$ versus 1/[CX6] for MB to CX6 was obtained (**Fig. S1**), indicating the existence of a 1:1 complex. ⁵ From the plots the binding constant (*K*) for the 1:1 MB/CX6 complex was calculated to be $3.05 \times 10^5 \text{ M}^{-1}$. It was

Analyst

difficult to obtain the K value of the cholesterol/CX6 complex using the same method due to the negligible change of fluorescence intensity because cholesterol itself has no fluorescence. In order to rationalize our experimental data and to infer the inclusion pattern, molecular docking was performed to study the CX6/cholesterol inclusion complex. Typically, the more negative the binding energy is, the stronger interaction is between the host and guest molecules. As listed in **Table S1**, the lowest binding free energy (ΔG) was -8.01 kcal/mol for the host-guest complex of cholesterol and CX6 with 1:1 stoichiometry calculated by PM3 method. The K value of the cholesterol/CX6 complex could be estimated to be $7.50 \times 10^{6} \text{ M}^{-1}$ from the following equation: $\Delta G = -RT \ln K$, R is the gas constant and T is the experimental temperature. The K value of cholesterol/CX6 complex was more than 20 times greater than that of MB/CX6, which demonstrated the stronger binding of cholesterol with CX6 than that with MB. The lowest energy docked conformation for 1:1 complex of cholesterol and CX6, shown in **Fig. 2A**, reveals that the partial inclusion of cholesterol molecule in the hydrophobic cavity of CX6. The cyclohexanol part and the alkyl chain of the cholesterol molecule inserted into the cavity of CX6 host molecule. Analysis of host-guest interaction as obtained from the docking studies reveals that hydrogen bonding, electrostatic interactions, and hydrophobic interactions are the predominant driving forces of the host-guest complex. Firstly, the hydroxyl on cyclohexanol of the cholesterol molecule formed hydrogen bonding with the $-SO_3^-$ of CX6 and the bond length is 2.0 Å. Secondly, as shown in Fig. 2B, strong electrostatic interactions formed between the positive part of cholesterol molecule and the negative $-SO_3^-$ of

Analyst Accepted Manuscript

CX6. Thirdly, as revealed in **Fig. 2C**, strong hydrophobic interactions also formed between the hydrophobic alkyl chain of cholesterol molecule and the CX6.

Characterization of the CX6-Gra composite

The CX6-Gra was prepared via a one-pot wet-chemical strategy based on glucose reduction of graphene oxide in the presence of CX6. The dispersibilities of Gra and CX6-Gra were investigated as shown in **Fig. S2**. Although the GO is highly water soluble when it is chemically converted into Gra via glucose reduction, it forms agglomerated Gra due to the strong π - π stacking interaction between Gra sheets and lowering of surface hydrophilic groups originally present in GO. However, when the GO reduction is performed in the presence of CX6, the Gra becomes highly water soluble even after removing the free CX6 via high-speed centrifugation (16000 rpm for 3 times) and no obvious precipitates are observed after being stored for more than 3 months.

The synthesized Gra and CX6-Gra materials were characterized by UV-vis spectroscopy. As shown in **Fig. S3**, the GO shows a strong absorption at 230 nm and a shoulder at 300 nm, which correspond to the π - π * transition of the aromatic C=C bond and the n- π * transition of the C=O bond, respectively. After reduction, the peak at 230 nm gradually redshifts to 260 nm, suggesting that the electronic conjugation within the Gra sheets is restored upon glucose reduction. ^{10,24,25}

Raman spectroscopy is one of the most widely used techniques to characterize the structural and electronic properties of Gra including disordered and defective

structures, defect density, and doping levels. **Fig. S4** shows the typical Raman spectra of GO, Gra and CX6-Gra. As expected, GO displays two prominent peaks at 1340 and 1584 cm⁻¹ corresponding to the D and G bands, respectively. The Gra shows two prominent peaks at 1347 and 1586 cm⁻¹, corresponding to the breathing mode of k-point phonons of A_{1g} symmetry (D band) and the E_{2g} phonons of C sp² atoms (G band) of Gra, respectively. The intensity ratio of the D band to the G band (I_D/I_G) is clearly higher when compared with that of GO (0.98 vs. 0.77), suggesting a decrease in sp² domains and a partially ordered crystal structure of Gra induced by glucose reduction. The Raman spectra of CX6-Gra was similar to Gra, indicating that the crystal structure of Gra is not severely affected by CX6.

The microstructure of the CX6-Gra was characterized by SEM (**Fig. S5**) and TEM (**Fig. S6**) observation. The SEM and TEM images reveal that the CX6-Gra material consists of randomly aggregated thin, wrinkled sheets closely associated with each other. Since it is difficult to distinguish the CX6 molecules on the SEM and TEM images, the Gra and CX6-Gra materials were further characterized by FTIR and TGA analysis.

Analyst Accepted Manuscript

The synthesized Gra and CX6-Gra materials were characterized by FTIR as shown in **Fig. S7**, by comparing FTIR spectra of CX6, CX6-Gra, and Gra, significant features can be observed: Firstly, the peaks for $-SO_3^-$ at 1160 and 1040 cm⁻¹, as seen in the spectra of pure CX6, also appeared in the spectra of CX6-Gra, indicating that CX6 was attached to the surface of Gra. ¹⁶ Secondly, the alteration of the peak value at 3391 cm⁻¹ of –OH in CX6 stretching vibrations shifting to 3360 cm⁻¹ in CX6-Gra

Analyst Accepted Manuscript

was identified as a result of hydrogen interactions between the remaining oxygen-containing groups of Gra and hydroxyl groups of CX6. ¹⁰ In addition, it has been reported that the composites of calixarenes and carbon materials (e.g. carbon nanotube, Gra) could be formed by π - π interactions and hydrogen interactions. ^{16,19-21} These results demonstrated that CX6 had successfully self-assembled to Gra and formed CX6-Gra nanocomposite.

The prepared CX6-Gra and the related materials were also characterized by TGA, as shown in **Fig. S8**. The GO curve shows a small mass loss (20%) at approximately 160 °C and a major mass loss (50%) at approximately 300 °C owing to the loss of adsorbed water and pyrolysis of the labile oxygen-containing functional groups, respectively. In contrast, the Gra is more thermally stable than GO. After reduction, the mass loss is 24% compared to the 62% mass loss at 600 °C for GO. For the pristine Gra, the minor loss in mass (24%) at a temperature of approximately 600 °C was due to the pyrolysis of a very small amount of the remaining oxygen-containing functional groups. The CX6-Gra material exhibited an abrupt mass loss when the temperature was approximately 450 °C because of the decomposition of CX6; the mass loss reached about 42 wt% when the temperature was 600 °C. The amount of CX6 molecules grafted to Gra was estimated to be 18.0 wt%. This results was in accordance with previous study. ¹⁶

Design strategy of the electrochemical sensor

The design strategy of the proposed electrochemical sensor based on the competitive

Analyst

host–guest interaction between CX6 and MB (signal probe)/cholesterol (target) was illustrated in **Scheme 1**. MB molecules can enter into the inner cavity of CX6 due to the host–guest interaction, and the MB-bound CX6-Gra/GCE displays a remarkable reduction peak due to MB. However, in the presence of cholesterol, competitive association to the CX6 occurs and the MB molecules are displaced by cholesterol molecule. This results in a decrease of the reduction peak current of the MB probe.

Feasibility of the electrochemical sensor

To demonstrate the assay feasibility of the proposed competitive electrochemical sensing platform, DPV response of the CX6-Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from **Fig. 4A**, no detectable signal (**curve a**) is observed for the CX6-Gra/GCE in 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in 100 μ M MB solution for 30 min, the MB-bound CX6-Gra/GCE was then tested in 0.1 M pH 7.0 PBS and an obvious reduction peak of MB (**curve b**) can be observed at about –0.3 V. When the CX6-Gra/GCE was first incubated in 100 μ M MB solution for 30 min and further incubated in 25 μ M cholesterol solution for 30 min, then tested in 0.1 M pH 7.0 PBS, a decreased reduction peak (**curve c**) was obtained due to competitive association of cholesterol/MB to the CX6 occurs. This is because cholesterol has higher binding affinity to CX6 cavity due to its hydrophobic nature. This suggests that the MB molecules present inside the CX6-Gra/GCE host can be replaced by cholesterol and the MB-bound CX6-Gra/GCE can be used to sensitively detect cholesterol by the competitive electrochemical sensing strategy

Analyst Accepted Manuscript

shown in Scheme 1.

Electrochemical characterization of the modified electrodes

EIS was performed at the potential of 0.1 V and the frequency ranges was from 10^{-1} to 10^5 Hz, using 2.0 mM [Fe(CN)₆]^{3-/4-} redox couple (1:1) with 0.1 M KCl as supporting electrolyte. The value of the charge transfer resistance (R_{ct}) of the modified electrode was estimated by the semicircle diameter. **Fig. S9** illustrates the EIS of the bare GCE, Gra/GCE, and CX6-Gra/GCE. Obviously, the bare GCE exhibited a semicircle portion and the value of $R_{\rm ct}$ was estimated to be approximately 800 Ω . While the $R_{\rm ct}$ decreased dramatically, nearly to zero at Gra/GCE, indicating that Gra/GCE formed high electron conduction pathways between the electrode and electrolyte, and had good conductivity and improved obviously the diffusion of ferricyanide toward the electrode interface. When the CX6-Gra modified on the bare GCE, the semicircle increased to 1500 Ω , this is because of CX6 layer hindered the electron transfer and made the interfacial charge transfer difficult, suggesting that CX6 molecules were successfully immobilized on the surface of Gra. This result is in accordance with that of TGA of mass loss. A modified Randle's equivalent circuit was provided in Fig. 3 (inset). The impedance data were fitted with commercial software Zview2. The fitting curves were obtained by the equivalent circuit depicted in Fig. 3. A good fit was obtained with the model used for all experimental data. The semicircle portion (R_{ct}) , observed at higher frequencies in Fig. 3, corresponding to the electron-transfer-limited process, whereas the linear part was the characteristics of the

lower frequencies range and represented the diffusion-limited electron transfer process. The simulated values of the equivalent circuit elements were summarized in **Table 1**, where it showed that the change of R_{ct} was rather significant. The changes in R_{ct} were much larger than those in other impedance elements from **Table1**, therefore, the R_{ct} was considered as a suitable signal for expressing the interfacial properties of the as prepared electrode. A constant phase element (CPE) was used instead of the classical capacitance to fit the impedance data. R_s was the ohmic resistance of the electrolyte solution. Z_w was the Warburg impedance, resulting from the diffusion of ions from the electrolyte to the electrode interface. ²⁶

Quantitative analysis of cholesterol

Under optimal conditions (the incubation time of the CX6-Gra/GCE in MB solution and the MB-bound CX6-Gra/GCE in cholesterol solution was studied, which was provided in Supporting Information), DPV was used to determine the concentrations of cholesterol because it is a highly sensitive and low-detection limit electrochemical method. **Fig. 4B** shows the DPV curves of electrochemical signal on the MB-bound CX6-Gra/GCE under different concentrations of cholesterol solution. The reduction peak currents of MB decreased with the increased cholesterol concentrations. Above 50 μ M, the signal reached its saturation. Here, the remaining signal should be that of the nonspecific adsorption of MB caused by the π - π interactions between MB and Gra. However, these will not make difference to the DPV results, as MB remains intact on the surface of Gra in the beginning as well as at the end of the experiment. A

Analyst Accepted Manuscript

control experiment was carried out to exclude the possibility of desorption of MB from the Gra surface during cholesterol detection (**Fig. S12**). **Fig. 4C** shows the corresponding calibration curve for cholesterol quantification. The peak currents changes were proportional to the cholesterol concentrations between 0.50 and 50.00 μ M with a detection limit of 0.20 μ M (*S/N*=3). The corresponding regression equation was calculated as ΔI (μ A) = 0.099*C* (μ M) + 0.469 with correlation coefficients of 0.996. The sensitivity was obtained from the slope of the calibration plot and was 0.099 μ A μ M⁻¹. Detection limit was less than 1.0 μ M which was quite low and satisfactory with respect to other recently reported articles. **Table 2** illustrates few of the recent literatures on cholesterol sensing platforms, through both enzymatic and non-enzymatic sensing routes. The detection limit and sensitivity of the present sensing strategy is comparatively better than the reported ones.

Selectivity

As we know, human blood serum contains many more biocomponents like salts, amino acids, carbohydrates, lipids etc., those can interfere with cholesterol detection and hamper the selectivity of the electrochemical sensor. Therefore, we have tested interference from common molecules present in human blood serum and found very negligible interference. As shown in **Fig. 4D**, some salts, carbohydrates, protein, anionic surfactant, etc. including glucose, sucrose, ascorbic acid (AA), bovine serum albumin (BSA), sodium dodecyl sulphate (SDS), Tween 20, NaCl, KCl, and, MgCl₂ showed negligible interference even at the concentration of 2.0 mM, compared to

Analyst

cholesterol detected for only 50 μ M concentration. In addition, several analogues of cholesterol including corticosterone, estrone, β -estradiol, and β -sitosterol were also used for the interference study. The results indicated that corticosterone and estrone exhibited weak interference while β -estradiol and β -sitosterol produced serious interference. This was ascribed to the similar structures of β -estradiol, β -sitosterol and cholesterol. The reproducibility and stability of the sensor were also studied and supplied in Supporting Information.

Real sample analysis

The proposed method was used to detect cholesterol in serum samples using standard addition methods to evaluate the feasibility of the MB-bound CX6-Gra/GCE for real sample analysis. The serum sample was diluted fifty times with 0.1 M pH 7.0 PBS. Results showed recoveries ranging from 99.0% to 104.4% and RSDs ranging from 2.45% to 4.32% (**Table 3**). The results demonstrated that this method can be extended for cholesterol detection in blood. Although the 2.0 mM of β -estradiol and β -sitosterol seriously interfere with the detection of cholesterol (50 µM), the cholesterol detection in human serum was also very successful. This may be due to the very low concentration of β -estradiol in human plasma. ³⁴ Serum β -estradiol levels vary over a range from 41 to 272 pg mL⁻¹ during the menstrual cycle in premenopausal women, and the β -estradiol levels decrease to about 4–14 pg mL⁻¹ after menopause. ³⁵ In the case of β -sitosterol, it mainly exists in plants. The proposed sensing platform may also be expanded to wide and potential applications in biological samples. It is worthy to

Analyst Accepted Manuscript

note that the CX6 is more stable than cholesterol selective enzymes (mostly oxidase) under complex conditions. Thus, the present sensing platform seems to be more suitable for analysis of practical cholesterol samples than traditional enzyme-based biosensor.

Conclusions

In summary, a sensitive and selective electrochemical approach for cholesterol sensing based on a competitive host-guest interaction between CX6 and signal probe/target molecules using CX6-Gra-modified electrode was developed. Due to the good electron transfer property of the Gra and the excellent host–guest recognition of CX6, the developed CX6-Gra/GCE displays excellent analytical performance for the electrochemical detection of cholesterol: the linear response range is $0.50-50.00 \mu$ M and the LOD is 0.20μ M (*S/N=3*). In addition, the developed electrochemical sensing platform is important as it does not use any enzyme or antibody for detection of cholesterol efficiently and selectively over the common interfering species. Molecular modeling calculations revealed that the complexation of cholesterol and CX6 could reduce the energy of the system and the complex of 1:1 host–guest stoichiometry had the lowest ΔG value of –8.01 kcal/mol. The molecular docking studies suggested that hydrogen bonding, electrostatic interactions, and hydrophobic interactions should be the predominant driving forces for the formation of the inclusion complex.

Acknowledgements

1		
3		
4		
5		
7		
8		
9		
10		
12		
13		
14 15		
16		
17		
18		
20		
21		
22		
23 24		
25		
26		
27		
20 29		
30		
31 32		
33		
34		
35 26		
30 37		
38		
39 40		
40 41		
42		
43		
44 45		
46		
47		
40 49		
50		
51		
ວ∠ 53		
54		
55		
56 57		
58		
59		
60		

This work was financially supported by the National Natural Science Foundation of China (21565029, 31160334) and the Natural Science Foundation of Yunnan Province (2014RA022, 2012FB112), People's Republic of China.

Notes and references

- F. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, A. D. Simone, J.
 Am. Chem. Soc., 2012, **134**, 15318–15323.
- F. Biedermann, M. Vendruscolo, O. A. Scherman, A. D. Simone, W. M. Nau, J.
 Am. Chem. Soc., 2013, 135, 14879–14888.
- 3 G. Ghale, W. M. Nau, Acc. Chem. Res., 2014, 47, 2150-2159.
- 4 F. Biedermann, W. M. Nau, Angew. Chem. Int. Ed., 2014, 53, 5694–5699.
- 5 C. F. Li, J. X. Feng, H. X. Ju, *Analyst*, 2015, 140, 230–235.
- 6 A. Praetorius, D. M. Bailey, T. Schwarzlose, W. M. Nau, *Org. Lett.*, 2008, 10, 4089–4092.

Analyst Accepted Manuscript

- 7 G. Ghale, V. Ramalingam, A. R. Urbach, W. M. Nau, J. Am. Chem. Soc., 2011,
 133, 7528–7535.
- 8 J. M. Chinai, A. B. Taylor, L. M. Ryno, N. D. Hargreaves, C. A. Morris, P. John Hart, A. R. Urbach, J. Am. Chem. Soc., 2011, 133, 8810–8813.
- 9 A. Mondal, N. R. Jana, Chem. Commun., 2012, 48, 7316–7318.
- 10 X. Mao, D. Tian, H. Li, Chem. Commun., 2012, 48, 4851-4853.
- G. B. Zhu, L. Wu, X. Zhang, W. Liu, X. H. Zhang, J. H. Chen, *Chem. Eur. J.*, 2013, **19**, 6368–6373.

12 N. Agnihotri, A. D. Chowdhury, A. De, *Biosens. Bioelectron.*, 2015, **63**, 212–217.

- X. Zhang, L. Wu, J. W. Zhou, X. H. Zhang, J. H. Chen, *J. Electroanal. Chem.*, 2015, 742, 97–103.
- 14 L. Mutihac, J. H. Lee, J. S. Kim, J. Vicens, *Chem. Soc. Rev.*, 2011, 40, 2777–2796.
- 15 R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev., 2011, 111, 7941–7980.
- 16 J. Zhou, M. Chen, G. W. Diao, ACS Appl. Mater. Interfaces, 2013, 5, 828-836.
- 17 D. Chen, L. H. Tang, J. H. Li, Chem. Soc. Rev., 2010, 39, 3157–3180.
- 18 D. R. Dreyer, S. Park, W. C. Bielawski, R. S. Ruoff, *Chem. Soc. Rev.*, 2010, **39**, 228–240.
- X. J. Chen, R. A. Boulos, P. K. Eggers, C. L. Raston, *Chem. Commun.*, 2012, 48, 11407–11409.
- E. Eroglu, W. Z. Zang, P. K. Eggers, X. J. Chen, R. A. Boulos, M. Haniff Wahid,
 S. M. Smith, C. L. Raston, *Chem. Commun.*, 2013, 49, 8172–8174.
- 21 X. J. Chen, C. T. Gibson, J. Britton, P. K. Eggers, M. Haniff Wahid, C. L. Raston, *Chem. Commun.*, 2015, , 2399–2402.
- 22 N. Batra, M. Tomar, V. Gupta, Biosens. Bioelectron., 2015, 67, 263–271.
- 23 J. Motonaka, L. R. Faulkner, Anal. Chem., 1993, 65, 3258–3261.
- Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, ACS Nano, 2010, 4, 4001–4010.
- 25 C. Z. Zhu, S. J. Guo, Y. X. Fang, S. J. Dong, ACS Nano, 2010, 4, 2429–2437.

1		
2 3 4	26	A.J. Bard, L.R.
5 6 7		Applications, s
8 9	27	L. Zhu, L. Xu,
10 11 12	28	C. Z. Zhao, L.
13 14		25–30.
15 16 17	29	N. Ruecha, R.
18 19		Bioelectron., 2
20 21 22	30	A. Ahmadaline
23 24	31	A. K. Giri, A. S
25 26 27		Panda, J. Mate
28 29	32	A. Umar, R. Al
30 31 32		Electrochim. A
33 34 35	33	U. Saxena, M.
36 37		3037-3043.
38 39 40	34	M. J. Monerris
41 42		Actuators B, 20
43 44 45	35	TB. Xin, H. C
46 47		1472–1477.
48 49 50		
51 52	Figu	ure captions:
53 54 55		
56 57 58	Fig.	1. (A) Absorba
59		

60

26	A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and
	Applications, second ed., Wiley, New York, 2001.

- 27 L. Zhu, L. Xu, L. Tan, H. Tan, S. Yang, S. Yao, *Talanta*, 2013, **106**, 192–199.
- C. Z. Zhao, L. Wan, L. Jiang, Q. Wang, K. Jiao, *Anal. Biochem.*, 2008, 383, 25–30.
- N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul, *Biosens*.
 Bioelectron., 2014, **52**, 13–19.
- 30 A. Ahmadalinezhad, A. C. Chen, *Biosens. Bioelectron.*, 2011, 26, 4508–4513.
- A. K. Giri, A. Sinhamahapatra, S. Prakash, J. Chaudhari, V. K. Shahi, A. B.
 Panda, J. Mater. Chem. A, 2013, 1, 814–822.
- 32 A. Umar, R. Ahmad, S. W. Hwang, S. H. Kim, A. Al-Hajry, Y. B. Hahn, *Electrochim. Acta*, 2014, **135**, 396–403.
- U. Saxena, M. Chakraborty, P. Goswami, *Biosens. Bioelectron.*, 2011, 26, 3037–3043.
- 34 M. J. Monerris, F. J. Arévalo, H. Fernández, M. A. Zon, P. G. Molina, Sens. Actuators B, 2015, 208, 525–531.
- 35 T.-B. Xin, H. Chen, Z. Lin, S.-X. Liang, J.-M. Lin, *Talanta*, 2010, 82, 1472–1477.

Fig. 1. (A) Absorbance spectra of MB (10 μ M) upon successive addition of CX6 (up

Analyst Accepted Manuscript

to 20 μ M) in 0.1 M PBS at pH 7.0; **(B)** Absorbance spectra for the competitive displacement of MB (10 μ M) from CX6 (20 μ M) by cholesterol (up to 20 μ M) in 0.1 M PBS at pH 7.0; **(C)** Fluorescence titrations of MB (10 μ M, λ ex = 640 nm) upon successive addition of CX6 (up to 2.5 μ M) in 0.1 M PBS at pH 7.0; **(D)** Fluorescence titration for the competitive displacement of MB (10 μ M) from CX6 (2.5 μ M) by cholesterol (up to 5.0 μ M) in 0.1 M PBS at pH 7.0.

Fig. 2. (A) Lowest energy cholesterol/CX6 docked complex for 1:1 host–guest stoichiometry (left is the side view, right is the top view); The electrostatic forces (**B**, left is the top view of CX6, right is the top view of cholesterol/CX6 complex; red represents the strongest positively charged, blue represents the strongest negatively charged) and hydrophobic forces (**C**, left is the top view of CX6, right is the top view of cholesterol/CX6 complex; brown represents the strongest hydrophobic, blue represents the strongest hydrophilic) of cholesterol/CX6 docked complex for 1:1 host–guest stoichiometry.

Scheme 1. Competitive host–guest molecular recognition of cholesterol (Cho) using CX6-Gra against MB.

Fig. 3. Nyquist diagram of the fitting curves compared with the experimental results. Inset: Randle's equivalent circuit corresponding to the impedance features.

Fig. 4. (A) DPV response of the CX6-Gra/GCE in 0.1 M pH 7.0 PBS (a); DPV response of the CX6-Gra/GCE incubated in 100 μ M MB solution for 30 min and then tested in 0.1 M pH 7.0 PBS (b); DPV response of the CX6-Gra/GCE incubated in 100 μ M MB solution for 30 min and further incubated in 25 μ M cholesterol solution for 30 min and then tested in 0.1 M pH 7.0 PBS (c). (B) DPV curves of the proposed sensing platform under different concentrations of cholesterol. (C) Calibration curves for the determination of cholesterol using the proposed sensor. The error bars represent the standard deviations of three parallel tests. (D) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration was 50 μ M against the concentration of all other substances, which was kept at 2.0 mM.

Analyst Accepted Manuscript

2	
ર	
4	
5	
ē	
О	
7	
o	
0	
9	
1	Λ
1	2
1	1
1	2
1	~
1	3
1	4
	Ē
1	5
1	6
4	-
1	1
1	8
1	o
I	3
2	0
2	1
2	2
2	2
2	3
~	4
2	4
2	5
~	č
2	6
2	7
2	0
2	Ø
2	9
2	۰ ۱
3	U
3	1
2	S
3	2
3	3
3	Λ
2	-
3	5
3	6
~	-
3	1
3	8
Š	~
3	9
4	0
1	1
4	
4	2
Λ	2
1	2
4	4
4	5
	~
4	6
4	7
4	Ø
4	9
F	0
Э	U
5	1
	2
ᄃ	2
5	~
5 5	3
5 5 5	3 ⊿
5 5 5	3 4
5 5 5 5	3 4 5
55555	3 4 5 6
5 5 5 5 5 5 5 5	3 4 5 6
5 5 5 5 5 5 5 5	3 4 5 6 7
55555555	3 4 5 6 7 8
55555555	3 4 5 6 7 8 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4 5 6 7 8 9

1

Table 1

Simulated values of the equivalent circuit elements for the bare GC, Gra/GC, and CX6-Gra/GC electrodes.

Electrode	$R_{\rm s}\left(\Omega ight)$	CPE (F)	$R_{\rm ct}\left(\Omega\right)$	$Z_{ m w}\left(\Omega ight)$
GCE	101.4	2.5E-06	805	0.28
Gra/GCE	132.0	1.1E-06	96.3	0.32
CX6-Gra/GCE	102.8	3.4E-06	1495	0.31

Table 2

Comparison of the present work with other recent literatures, using various electrode or matrix for cholesterol sensing.

Electrode or Matrix	Method	Liner range (µM)	LOD (µM)	Ref
Nafion/ChOx/GNPs-MWCNTs/GCE	DPV	10.0-5000.0	4.3	27
Chit-Hb/Chit-ChOx	amperometry	10.0-600.0	9.5	28
ChEt-ChOx/ZnO-CuO/ITO/glass	CV	500.0-12000.0	500.0	22
ChOx/PANI/PVP/Graphene	amperometry	50.0-10000.0	1.0	29
ChOx/Nano-ZnO/ITO	CV	130.0-10360.0	13.0	30
ChOx/ZnO(T)/CT/GCE	CV	400.0-4000.0	200.0	31
Nafion/ChOx/Fe ₂ O ₃	CV	100.0-8000.0	18.0	32
AuE/Dithiol/AuNPs/MUA/ChOx	CV	40.0-220.0	34.6	33
Grp/β-CD/Methylene Blue	DPV	1.0-100.0	1.0	12
Grp/β-CD/Rhodamine 6G	Fluorescence	5.0-30.0	5.0	9
CX6-Gra/GCE	DPV	0.5-50.0	0.20	This work

Table 3

Determination of cholesterol in human serum samples (n=	=3).
---	----	----

Sample	Added (µM)	Founded (µM)	RSD (%)	Recovery (%)
1	5.0	4.95±0.22	4.32	99.0
2	10.0	10.22±0.35	3.51	102.2
3	20.0	20.08±0.54	2.45	104.4

Fig. 1.

Yang et al.

Fig. 2.

Yang et al.

Analyst

Fig. 3.

Yang et al.

Fig. 4.

Yang et al.