This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Biomarker detection for disease diagnosis using cost-effective microfluidic platforms

Sharma T. Sanjay, Guanglei Fu, Maowei Dou, Feng Xu, Rutaqo Liu, Hao Qi, and XiuJun Li

Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis, is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for diseases biomarker detection. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidics devices for disease biomarker detection and the future perspectives.

Keywords: Biomarker detection, Point-of-care diagnosis, Microfluidic lab-on-a-chip, Polymer and paper-based microfluidic devices, Disease diagnosis, Cancer, Infectious diseases

1. Introduction

As a disease attacks a person, physiological signals that represent the biological state of the person change in response to the status of the disease. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, pharmacologic responses to therapeutic intervention or any measurable diagnostic indicator for assessing the risk or presence of a disease. It can include mRNA expression profiles, circulating DNA and tumor cells, proteins, proteomic pattern, lipids, metabolites, imaging methods or electrical signals. These signals/biomarkers may be obtained from sources such as urine, blood and tissues. Disease biomarker detection that is desired to be accurate, relatively noninvasive and easy to perform, even in point of care settings, can improve the screening, diagnosis, prognosis and recovery on treatment of various diseases.

Acute infectious diseases caused by pathogenic organisms such as bacteria, viruses, fungi and parasites have been a major cause of global death and high disability rates throughout the human history. In developing nations, even curable infectious diseases pose a great threat to patients due to lack of affordable diagnosis. According to a global report on infectious disease of poverty (2012) by World Health Organization (WHO), each year infectious diseases kill 3.5 million people, mostly the poor and young children who live in low and middle-income countries. Over 95% of deaths by infectious disease are due to the lack of proper diagnosis and treatment, and difficulty in accessing adequate healthcare infrastructures. Along with infectious diseases, cancer, the uncontrolled growth of abnormal cells which can spread and invade other parts of the body through the blood and lymph system, also figures among a leading cause of death worldwide with 8.2 million deaths in 2012, according to WHO. Annual cancer cases are expected to rise from 14 million in 2014 to 22 million within next 2 decades. Similar to infectious diseases, high incidence of cancer occurs in developing nations. According to WHO, 8 million (57%) of new cancer cases, 5.3 million (65%) of cancer deaths and 15.6 million (48%) of 5-year prevalence cancer cases, occurred in less developed regions. Infectious diseases and cancer along with other diseases are mostly diagnosed by biomarker detection in laboratories using conventional tests such as enzyme linked immunosorbsent assay (ELISA), immunofluorescence, western blotting, immunodiffusion, polymerase chain reaction (PCR), flow cytometry and a wide range of other techniques. However, most of these assays are complex, take hours to complete, consume large volumes of samples and reagents, and require bulky and expensive instruments limiting their applications in rural areas and developing nations. Therefore, simple, low-cost, portable diagnostic devices and methods, especially point-of-care (POC) diagnostic devices that offer great potential to detect and monitor diseases, even at resource-limited settings are in great need.
Development of POC devices for simple, timely and early disease diagnosis can prevent the spread of infectious diseases, and decrease cancer fatality, as many cancer patients (including breast, colorectal, and prostate cancers) have high chance to be cured if detected early and treated adequately. WHO has developed a list of general characteristics that make a diagnostic test appropriate for resource-limited sites, abbreviated as ASSURED, and includes, Affordable by those at risk, Sensitive, Specific, User-friendly, Rapid treatment and robust use, Equipment-free and finally Delivered to those who need it.11

Microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis, such as low volumes of reagent consumption, fast analysis, high portability along with integrated processing and analysis of complex biological fluids with high sensitivity for health care application.12-22 An enormous number of microfluidic devices have been developed for biomedical applications.23-29 These devices enable on-chip POC diagnosis and real-time monitoring of diseases from a small volume of body fluids. These microfluidic devices may act as a bridge to improve the global health care system with high efficiency and sensitivity, especially for remote areas with low-resource settings, such as the underdeveloped and developing countries, in home health care setting, and in emergency situations. Because of all these significant features, numerous microfluidic devices have been developed for the biomarker detection in disease diagnosis, which includes different types of cancer,30-32 from colorectal carcinoma31, 34 and hepatocellular carcinoma32 to ovarian cancer31, 35 and prostate cancer.36, 37 different types of infectious diseases from food-borne pathogen38 and Hepatitis B39 to meningitis40, 41 and dengue virus,42 and other diseases from cardiovascular disease.43, 44 to Alzheimer’s diseases.45, 46. These microfluidic platforms include glass,47, 49 poly(dimethylsiloxane) (PDMS),45, 48, 49 poly(methyl methacrylate) (PMMA),36, 50, 51 poly(cyclic olefin),52, 53 paper-based,54-60 and hybrid devices.60-64

This article reviews recent advances of biomarker detection for disease diagnosis using microfluidic technologies. It first introduces different microfluidic POC platforms used for disease biomarker detection with a brief introduction of their common fabrication techniques. Because of their ease of fabrication, cost-effective characteristics, and broad applications in disease diagnosis, it mainly focuses on cost-effective microfluidic platforms such as polymer (e.g. PMMA and PDMS) and paper-based microfluidic platforms. Next, it highlights various detection strategies for disease biomarker detection using microfluidic devices, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Lastly, we briefly discuss the future trends of this field. Although, microfluidic platforms have great potential for the diagnosis of a broad range of diseases, this article emphasizes the applications of microfluidic devices in infectious diseases and cancer.

2. Microfluidic platforms for biomarker detection

In the early stage of microfluidics, microfluidic devices were predominantly made with methods borrowed from microelectronics and involved materials such as glass, quartz or silicon. Silicon and glass are more expensive and less flexible to work with, as compared to polymers (e.g. PMMA and PDMS). Most of them have good optical properties similar to glass, but their fabrication (e.g. soft lithography22-24) does not have stringent requirements on cleanroom facility, which makes polymer-based microfluidic devices widely used. Within recent years, paper-based microfluidic devices have debuted as a lower-cost microfluidic platform.65, 66, 67 The choice of material depends on the research application, detection system, fabrication facility, cost and other factors such as resistance to different chemicals, thermal conductivity, dielectric strength and sealing properties. This section mainly aims to give a general introduction of various cost-effective microfluidic platforms used for disease biomarker detection. Since the focus of this article is not to review recent fabrication techniques, only common fabrication techniques and their recent advances are briefly described. A few other review articles described more details of fabrication methods for different microfluidic platforms.68-70

2.1 PDMS Microfluidic Platforms

PDMS is one of the most widely used elastomers for microfluidic devices as it is optically transparent, elastic, and cures at low temperature. It can seal with itself and a range of other materials after being exposed to air plasma. The ease and low cost of fabrication and ability to be cast in high resolution add to its advantages. In contrast to other thermoplastic materials, PDMS is gas permeable, making it compatible for cell culture. Although PDMS is one of the most widely used cost-effective microfluidic platforms, there are some limitations of PDMS as well. PDMS swells in organic solvents and low molecular weight organic solutes. It cannot withstand high temperature and the mechanical resistance is quite low. There are different methods available for the fabrication of PDMS devices including soft lithography, casting, injection molding, imprinting, hot embossing, laser ablation and others.22-24, 66

Soft lithography is the most widely used method for PDMS fabrication. Soft lithography can start with creation of a photomask in a transparency film. The resolution of transparency is >20 μm as compared to chrome mask –500 nm.71 Photore sist is then added to the silicon wafer, and exposed to UV light through the photomask to produce a positive relief of photore sist on a silicon wafer (master). Masters can also be fabricated by techniques like etching in silicon and electroforming metal. Channels in PDMS can be formed by replica molding once a master is fabricated. The cured PDMS replica can be bonded with another flat layer of PDMS, glass or other materials to form a closed system. Based on soft lithography, Kung et al.70 demonstrated a novel method for fabricating 3D high aspect ratio PDMS microfluidic networks using a plastic plate embedded hybrid stamp. Reproduced with permission from Royal Society of Chemistry.70

![Figure 1 Fabr...n ultrafine 3D high aspect ratio PDMS microfluidic networks using a plastic plate embedded hybrid stamp. Reproduced with permission from Royal Society of Chemistry.70](Image 312x382 to 561x588)
substrates. This 3D fabrication method could be applied in
electrokinetics, optofluidics, inertial microfluidics, and other fields
where the shape of the channel cross section is significant in device
physics. Comina et al.\(^{72}\) described another method for fabrication of
3D PDMS devices using templates printed with a commercial micro-
stereo lithography 3D printer with a resolution of 50 μm. The process
eliminates the need for clean room facilities and repeated
photolithographic steps required for templates with different thickness.
They reported that the templates are reusable and can be fabricated
within 20 min, with an average cost of 0.48 US$.

2.2 Thermoplastic microfluidic platforms

Thermoplastics are also being used as the substitute of glass and silicon
as the microfluidic platform due to their chemical and mechanical
properties. Thermoplastic devices are economical for mass production
and are compatible with most chemical reagents and biological assays.
Several kinds of thermoplastic have been used such as PMMA, (i.e.
acrylic), polycarbonate, polyester and polyvinylchloride (PVC),
because of their low-cost, desirable optical properties and ease of
fabrication. They offer better performances than PDMS under
thermocatalytic stress. They don’t require long fabrication and curing time.
These thermoplastic devices can be fabricated easily by cutting the
pattern using a CO2 laser cutter followed by bonding with adhesive or
heat to form 3D devices. Multilayer devices can be completed and
become ready for testing in as little as several hours.\(^{73}\) Cassano et al.\(^{14}\)
used vacuum bagging for thermal bonding of thermoplastic
microfluidic devices. Vacuum bagging completely eliminates time
consuming resulting from using solvents, adhesives, or surface
treatments. With fabrication technologies including hot embossing or
imprinting,\(^{75, 76}\) laser ablation,\(^{77}\) injection molding\(^{78}\) and soft
lithography, dimensions of plastic microchannels can be achieved in the
range of 15-30 μm. Recently, simple methods have been developed for
rapid prototyping of thermoplastic microfluidic platforms. For example,
Roy et al.\(^{79}\) reported a rapid prototyping technique for fabrication of
multilayer microfluidic device using styrene thermoplastic elastomer
(TPE). They established a proof of principle for valving and mixing with three different grades of TPE using an SU-8 master mold.
Miserere et al.\(^{80}\) proposed a strategy for the fabrication of flexible
thermoplastic microdevices based on lamination process. Low-cost
laminator can be used from master fabrication to microchannel sealing.
They demonstrated the process using Cyclo-olein Copolymer (COC).
Rahmanian et al.\(^{81}\) described rapid desktop manufacturing of sealed
thermoplastic microchannels. The channels were then permanently
sealed through solvent bonding of the microchannel chip to a mating
thermoplastic substrate. Among these various fabrication methods, two
of the most widely used fabrication techniques in the field of
thermoplastic biomarker detection are discussed in brief in this review.

2.2.1 HOT EMBOS SING

The hot embossing\(^{75, 76}\) or imprinting is an established method to
fabricate microchannels in common polymer such as polystyrene (PS),
polyethylene terephthalate glycol (PETG), PMMA, PVC, and
polycarbonate. Silicon stamps are the more commonly used embossing
tools for the fabrication of these polymeric microfluidic devices. A
typical hot embossing setup consists of a force frame, which delivers
the embossing force via a spindle and a T-bar to the boss or the embossing
tool. The microstructures are then transferred from the master to the polymer by stamping the master into the polymer by
heating above its glass transition temperature (T\(_g\)) in vacuum.\(^{75}\)
Alternatively, polymer devices can be imprinted at room temperature
with elevated pressure. The master structure is pressed into the
thermoplastic substrate with a force (e.g. 20-30 kN in case of PMMA or
PC) depending on the type and size of the substrate along with the
fabrication energy. After polymerization, the master and the substrate are
isothermally cooled to a temperature just below T\(_g\) and then separated.
The resulting plastic microchannel dimensions are the exact mirror
image of the silicon stamp when devices are hot embossed.

2.2.2 LASER ABLATION

Laser ablation\(^{77, 82}\) is also one of the rapid prototyping methods for
microfluidic devices. In this technique, the polymer is exposed to the
high intensity laser beam, which evaporates the material at the focal
point that is due to photo-degradation or thermal-degradation or the
combination of two. Pulsed laser is typically used, so each laser shot
will ablate a defined amount of material, depending on the material type
and absorption properties, laser intensity, wavelength and number of
passes made across the channel. This process leads to the rough surface
of the laser-ablated microchannels and have a rippled appearance,
which depends upon the absorption of polymer at excimer wavelength.
Very high temperature is reached during ablation and particles are
ejected from the substrate creating a void, with small particulates on the
surface of the substrate material, while other decomposition products
become gases (carbon dioxide and carbon monoxide). Laser ablation
may be achieved by two ways. Polymer substrate can be exposed to a
laser through a mask. A mask is usually made from the material that
does not have significant absorption at the laser wavelength used. In the
mask-less process, a polymer substrate is placed on a movable stage
and either the focused laser beam or the substrate is moved across in x
and y direction as defined in the desired pattern.

2.3 Paper-based microfluidic platforms

Paper is a thin sheet of material that is generally produced by pressing
together cellulose or nitrocellulose fibers.\(^{83}\) Paper can transport liquids
via capillary effect without the assistance of external forces. Fabrication of
paper-based devices is simple and does not require the use of clean-
room facilities. Paper has good stackability, which allows the formation of
3D structures for complex assays. The high surface to volume ratio
provided by the macroporous structure in paper improves the
immobilization of protein and DNA biomarkers, allowing fast
detection. Paper-based microfluidics devices can be fabricated both in
2D and 3D for either horizontal or vertical flow.\(^{84}\) Fabrication of the
paper-based devices can be subdivided into two categories: (i)
construction of hydrophobic barriers, and (ii) two-dimensional cutting.

2.3.1 CONSTRUCTING HYDROPHOBIC BARRIERS

One of the most widely used methods to prepare paper-based analytical
devices (µPADs) is to construct hydrophobic barriers in the hydrophilic
paper matrix. In this way, reagents and analytes can be made to flow in
a certain path preventing mixing and spreading across the surrounding
paper surface and achieve multiplexed assays without the issue of cross
contamination. Hydrophobic barriers can be created on paper through
either a physical deposition\(^{85}\) or a chemical modification method.\(^{86}\) A
number of different fabrication methods have been developed to
fabricate µPADs, such as fast photolithography,\(^{85, 86}\) wax-based
fabrication techniques,\(^{83}\) printing photolithography,\(^{87}\) PDMS
printing,\(^{88}\) saline UV/O\(_2\) patterning,\(^{89}\) flexographic printing,\(^{90}\)
and alkyl ketene dimer (AKD) printing.\(^{91}\) Examples of wax-based
fabrication include wax screen-printing,\(^{87}\) wax dipping,\(^{92}\) and wax
printing.\(^{93}\) In wax screen-printing,\(^{97}\) solid wax is rubbed through a
screen onto paper filters. The printed wax is then melted into paper so

ADDIN EN.CITE <EndNote><Cite><Auth 92 ironmould is first
fabricated before printing wax, and either the focused laser beam or the substrate is
moved across in x and y direction as defined in the desired pattern.
hydrophilic channel and hydrophobic barrier obtained was found to be 670 ± 50 μm and 380 ± 40 μm, respectively. Among these fabrication methods, photolithography and wax printing are widely used. Wax is inexpensive and non-toxic. Recently, paper/polymer hybrid devices have been developed (Figure 2B), but their fabrication methods is mainly derived from a combination of paper-based and polymer microfluidic device fabrication techniques.

3. Biomarker detection methods for disease diagnosis using microfluidic devices

Wide ranges of detection methods have been employed for the detection of a number of disease biomarkers in microfluidic devices, as summarized in Table 1. Colorimetric, fluorescent and electrochemical detection remain the most widely used ones. Nevertheless, detection mechanisms such as chemiluminescence, electrochemiluminescence and other detection mechanisms have also been applied to disease biomarker detection.

3.1 Colorimetric Detection

Colorimetric detection is generally carried out based on the color change of the detection system resulted from chemical/biochemical reactions between target analytes and colorimetric probes. The major advantage of the colorimetric assay is that it doesn’t rely on bulky off-chip detection system, thus allowing naked-eye-based readout methods. Therefore, colorimetric detection has attracted increasing research interest in the biomedical field especially for disease diagnosis due to its unique advantages for POC detection of infectious diseases. The summary from Table 1 shows that colorimetric detection is less widely used in cancer biomarker detection.

Many researchers have made incredible advances in the field of colorimetric detection methods. Wide ranges of biomolecules from protein biomarkers for infectious diseases to glucose and nucleic acids have been studied using colorimetric detection. For instance, Yu et al. reported a PDMS microfluidic chip for ELISA. The PDMS platform was modified with dextran to increase the hydrophilicity and to covalently immobilize proteins on the surface of PDMS. The colorimetric immunoassay in the modified PDMS microfluidic device was used to simultaneously detect multiple important biomarkers, Interlukin-5 (IL-5, a biomarker for bronchial asthma), Hepatitis B surface antigen (HBsAg, a biomarker for Hepatitis B virus) and Immunoglobulin G (IgG, a biomarker for Neuromyelitis optica). TMB was used as the enzyme substrate. Most of the reported microfluidic devices did not integrate on-chip raw sample processing. Park et al. showed Lab-on-a-disc for fully integrated multiplexed immunoassay from raw samples such as whole blood and whole saliva. Biomarkers for cardiovascular disease were detected in this centrifugal PMMA microfluidic layout. Reaction chambers were initially interconnected for sample injection, incubation and washing after which they were isolated for substrate incubation and detection. TMB was used as a substrate for HRP-conjugated antibody and detected by using the built-in LED and the photodiode. The LOD was found to be 0.30, 0.51, and 0.24 ng/mL for IgG, cTnI, and N-terminal pro-B type natriuretic peptide (NT-proBNP), respectively. Additionally, Fang et al. showed that loop mediated isothermal amplification (LAMP) of nucleic acid of Pseudorabies virus (PRV) integrated in an eight-channel PDMS microfluidic chip. Results could be viewed by the naked eye for insoluble pyrophosphate, byproduct or by absorbance, which was measured by optical sensors (high-intensity red light-emitting diode (LED) light at 640 nm and a

Figure 2 Paper-based and its hybrid microfluidic platforms. (A) FLASH fabrication for paper-based microfluidic devices. (1) Schematic of the method. (2)-(5) FLASH fabrication procedures. Reproduced with permission from Royal Society of Chemistry. (B) A PDMS/paper hybrid chip for instrument-free diagnosis of infectious diseases using a UV light pen. Reproduced with permission from American Chemical Society.

2.3.2 TWO-DIMENSIONAL CUTTING

Another way to create paper-based microfluidic device is 2D cutting. Paper channels are cut through computer controlled X-Y knife plotters or CO2 laser cutters, and then fixed to suitable plastic cassettes to form hybrid devices. Nitrocellulose, conventional photocopy paper and chromatography paper can be used. Thuo et al. described the use of embossing and a “cut-and-stack” method to develop microfluidic devices from omiphobic paper. They demonstrated that fluid flow in these devices was similar to open-channel microfluidic devices and cut layer generated 3D systems.

FLASH (FAST LITHOGRAPHIC ACTIVATION OF SHEETS)

One of the most widely used fabrication technology for constructing hydrophobic barriers in paper-based devices is photolithography or FLASH. Chromatography paper is the commonly used substrate. FLASH requires a UV lamp, a printer and a hotplate along with photore sist such as SU-8 and other organic solvents. Figure 2A shows the procedures. In this technique photore sist is first poured onto a piece of paper and spread evenly and baked on a hotplate at 130 °C for 5-10 min to evaporate propylene glycol monomethyl ether acetate (PGMEA) from the photore sist. Then, the paper is covered with a photomask and exposed to UV light. After incubation in an oven, the chromatography paper is developed in acetone, followed with rinsing with isopropyl alcohol. After drying, the paper-based device is ready to use.
Colorimetric results can either be observed by the naked eye or analyzed by software installed on a desktop computer or by applications on mobile phones. For instance, Wang et al.\(^\text{60}\) developed a tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. The approach was validated with bovine serum albumin (BSA) in artificial urine samples with colorimetric detection. The concentration range from 0 to 5 mg/mL and the concentration as low as 0.08 mg/mL could be detected using Bromophenol blue (BPP) as the indicator. Results were analyzed either from comparison of the color by the naked eyes or from measuring the intensities in the standard curve from the software Quantity One. Recently, Ahmed et al.\(^{61}\) showed power-free enzyme immunoassay for detection of Prostate specific antigen (PSA), a biomarker for prostate cancer. Magnetic nanoparticles capture the target and move through chambers having reagents for ELISA. The color change of an HRP-substrate [ABTS (2,2’-Azinobis[3-ethylbenzothiazoline-6-sulfonicacid]-diammonium salt)] in the PMMA based device could be imaged through a smartphone camera and analyzed using Matlab\(^\circ\). The LOD for PSA in serum samples was found to be 3.2 ng/mL.

Multiple indicators have also been used for multiplexed assay. For example, Dungchai et al.\(^{62}\) reported the use of multiple indicators on \(\mu\)PAD. The oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte gives an extended range of operation. To show the effectiveness of the approach, the mixture of 4-aminopantyprine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, \(\alpha\)-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a \(\mu\)PAD. They quantified glucose (0.5–20 mM), lactate (1–25 mM), and uric acid (0.1–7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples were performed to demonstrate the applicability of this device for biological sample analysis. Jokser et al.\(^{63}\) developed a paper-based analytical device for detection of food borne pathogens. Detection was achieved by using a chromogenic indicator with an enzyme associated with the pathogen of interest reacts with a chromogenic substrate (\(\beta\)-galactosidase with chlorophenol red \(\beta\)-galactopyranoside (CPRG) for Escherichia coli; phosphatidylinositol specific phospholipase C (PI-PLC) with 5-bromo-4-chloro-3-indolyl-myo-inositol phosphate (X-InP) for Listeria monocytogenes; and esterase with 5-bromo-6-chloro-3-indolyl caprylate (magenta caprylate) for Salmonella. enterica). The concentration of 10 cfu/cm\(^2\) of the target bacterial species was detected within 8, 10, and 12 h of enrichment for \(S\). typhimurium, \(E\). coli O157:H7, and \(L\). monocytogenes, respectively.

Different kinds of nanoparticles have been used in colorimetric detection to increase the sensitivity of the assay. Good optical properties, controlled synthesis and easy surface conjugation make AuNPs one of the most attractive materials for biosensing. Lei et al.\(^{64}\) developed a colorimetric immunoassay chip based on gold nanoparticles (AuNPs) and gold enhancement for amplifying the specific binding signal. The antibody-biotin conjugate were directly immobilized on a 3-aminopropytriethoxysilane (APTES)-glutaraldehyde modified glass surface. AuNPs were bound to antibodies through biotin-streptavidin linkage. In gold enhancement process, gold ions in a solution were catalytically deposited onto the AuNPs and aggregated to metallic gold precipitations. Color intensity was mapped to the concentration of immobilized antigen (IgG) in a dynamic range of 1–1,000 ng/mL. Liang et al.\(^{65}\) developed a paper-based microfluidic colorimetric immunodevice based on the Pd/Fe\(_3\)O\(_4@C\) NPs and flower-like AuNPs for multiplexed colorimetric immunodetection. In the sandwich-type immunodevice, AuNPs were utilized to immobilize primary antibodies on paper sensing zones, while Pd/Fe\(_3\)O\(_4@C\) NPs labelled secondary antibodies were employed as the effective peroxidase mimetics to catalyse the chromogenic reactions (TMB and o-phenylenediamine as chromogenic substrates). The microfluidic immunodevice showed good colorimetric response to multiple cancer biomarkers with low limits of detection of 1.7 pg/mL for carcinoembryonic antigen (CEA) and \(\alpha\)-fetoprotein (\(\alpha\)-AFP).

Orntaska et al.\(^{66}\) used redox nanoparticles of cerium oxide as the chromogenic indicator for colorimetric detection of glucose. Filter paper was first silanized with aminopropyltriethoxysilane (APTS), before cerium oxide nanoparticles and glucose oxidase were co-immobilized. In the presence of glucose, the enzymatically-generated hydrogen peroxide induced a colorimetric change of nanoparticles from white-yellowish to dark orange (Figure 3A).\(^{54}\) The method involves two enzymatic reactions. In the first step \(H_2O_2\) is released when the oxidase enzyme oxidizes substrate. In the second step, \(H_2O_2\) is coupled with HRP and the ceria nanoparticles to generate a color change. Hydroxylated Ce\(^{4+}\) forms a reddish-orange complex with \(H_2O_2\) with maximum absorbance at 465 nm. They also demonstrated the detection of glucose in human serum samples. The LOD of 0.5 mM glucose and the linear range from 2.5-100 mM were achieved using the colorimetric detection. The bioassay platform could be stored for at least 79 days at room temperature and be reused for 10 consecutive measurement cycles with the same analytical performance. Kumar et al.\(^{67}\) developed a paper-based microfluidic colorimetric device for the detection of uric acid that is associated with several diseases such as diabetes, kidney disease and heart disease. In this microfluidic device, positively charged AuNPs embedded in the device were employed to facilitate the reaction between TMB and \(H_2O_2\) to produce a clear colour change. It was found that the colorimetric method could detect uric acid at a concentration as low as 8.1 ppm. Baeissa et al.\(^{68}\) showed DNA functionalized monolithic hydrogels and AuNPs for colorimetric DNA detection. Acrydite-modified DNA was covalently functionalized to the polyacrylamide hydrogel during gel formation. By using the attached AuNPs to catalyze the reduction of Ag\(^{+}\), the concentration as low as 1 pM target DNA could be detected. In addition, Wang et al.\(^{69}\) fabricated an integrated microfluidic device utilizing tyramine-conjugated magnetic beads to capture multiple strains of bacteria and nanogold labelled specific nucleotide probes for colorimetric PCR-free pathogen detection. Microfluidic device had suction-type micropumps, microvalves, microchannels, and microchambers for complete automation. The LOD of the PDMS microdevice was found to be 10^4 CFU/mL of \(E\). coli.

![Figure 3 Biomarker detection using integrated nano-sensors on the chip.](image-url)
nanosensors. (1) The hybrid microfluidic biochip layout. (2) and (3) One step turn-on detection based on interaction among GO, aptamers and pathogens. (4) Cross-reaction investigation of *Staphylococcus aureus* and *Salmonella enterica* with their corresponding and non-corresponding aptamers. Reproduced with permission Royal Society of Chemistry.

3.2 Fluorescent Detection

The availability of highly sensitive and selective fluorescent labeling techniques makes fluorescence one of the most widely used optical methods for biomolecular sensing in microfluidic systems. A fluorescent dye, is a small molecule, protein or a quantum dot, which emits photon after being excited and can be used to label proteins, nucleic acids, or lipids. The detection requires excitation light, fluorescent dyes (if no intrinsic fluorescence), multiple filters, and a detector to record emitted photons. Compared to colorimetric detection, one of the drawbacks of fluorescence detection is that fluorescence optical detection system is fairly complex and bulky.

Detection of protein biomarkers for infectious diseases and cancer are some of the different application areas where fluorescence detection has been utilized. *Lee et al.* reported a PDMS microfluidic system utilizing a hybrid microfluidic biochip for the detection of infections by the dengue virus by simultaneous rapid detection of immunoglobulin G (IgG) and immunoglobulin M (IgM). IgG and IgM in serum samples were captured by virus-bound magnetic beads. The interfering substances in the biological substances were washed away, after which the fluorescence-labeled secondary antibodies were bound to the surface of the IgG/IgM complex attached onto the magnetic beads. The target IgM and IgG were recognized by the specific attached antibodies (anti-human IgG antibody labeled with fluorescein isothiocyanate (FITC) and anti-human IgM antibody labeled with Rh-phycoerythrin (R-PE)). The optical signals were then measured and analyzed by a real-time optical detection module. The LOD for IgG was shown to be 21 pg/mL. *Mohammed et al.* demonstrated a PMMA based autonomous capillary microfluidic system with embedded optics for detection of cTnI, a cardiac biomarker. They used CO2 laser engraving for rapid prototyping of the capillary system with on-chip planar lenses and bio-sensing elements. The fluoro-immunoassay was done in modified PMMA using fluorescein isothiocyanate (FITC). The fluorescence excitation and detection instrumentation was simple, which was palm-sized and battery powered. The LOD was found to be 24 pg/mL. *Diercks et al.* developed a PDMS microfluidic device for multiplexed protein detection in a nano-liter volume. Chip had optically encoded microspheres to create an array of approximately 100-μm² sensors functionalized with capture antibodies directed against distinct targets. The sensitivity of the device was sufficient to detect 1000 copies of tumor necrosis factor (TNF) in a volume of 4.7 nL. *Castro-Lopez et al.* developed a portable device for the quantification of TNF-α in human plasma with fluorescence detection using the dye fluorescein amide (FAM). They performed magnetic bead-based proximity ligation assay (PLA) where probes were immobilized on streptavidin-coated magnetic beads. The cyclo-olefin polymer based device interfaced with a quantitative real-time PCR device developed in-house, had an assay time of 3 h with the LOD of 3.1 pg/mL.

Hybrid microfluidic devices that can draw benefits from multiple device substrates have also been developed for the detection of pathogen. *Li and his co-workers* developed the first PDMS/paper hybrid microfluidic biochip for one-step multiplexed pathogen detection with aptamer-functionalized graphene oxide nano-biosensors (see Figure 3B). When the Cy3-labeled fluorescent aptamer is adsorbed on the surface of chromatography paper disks inside PDMS microwells, the fluorescence is quenched by graphene oxide (GO) (Figure 3B). In the presence of a target pathogen, the target pathogen induces the aptamer to be liberated from GO and thereby restores its fluorescence for detection. The novel use of paper in this hybrid systems facilitated facile nanosensor immobilization on the chip, which avoided complicated surface modification to immobilize nanosensor in non-hybrid microfluidic platforms. The PDMS/paper hybrid microfluidic platform was used for the detection of *Lactobacillus acidophilus* with the LOD of 11.0 colony forming unit (cfu)/mL. The hybrid microfluidic device was further used for simultaneous detection of two infectious pathogens, *S. aureus* and *S. enterica* with high specificity (Figure 3B). Recently, *Dou et al.* reported a PDMS/paper hybrid microfluidic platform integrated with loop-mediated isothermal amplification (LAMP) for instrument-free infectious disease diagnosis with high sensitivity. As shown in Figure 2B, the chip consists of one top PDMS layer, one middle PDMS layer, and one glass slide for reagent delivery, LAMP reaction, and structure support, respectively. A chromogenic paper disk was placed inside each LAMP zone for preloading LAMP primers. It was found that the use of paper in this hybrid system enabled longer shelf life time of the hybrid microfluidic platform than a paper-free platform. When a positive sample is shined by a potable UV light pen, bright green fluorescence from calcein can be observed on the naked eye, or imaged by a cell phone camera. The limit of detection of *N. meningitidis* was found to be 3 copies per LAMP zone within 45 min, comparable with that of real-time PCR. This kind of hybrid microfluidic devices can draw more benefits from both substrates, and avoid limitations from individual chip substrates. *Jing et al.* developed a PMMA/PDMS hybrid microfluidic device for efficient airborne bacteria capture and enrichment. The device had two PDMS plates sandwiched by two plates of PMMA using four screws for tight seal. Choristia developed a PDMS microfluidic detector to record emitted photons. Compared to colorimetric detection, the optical signals were then measured and analyzed by a real-time optical detection module. The LOD for IgG was shown to be 21 pg/mL. *Mohammed et al.* demonstrated a PMMA based autonomous capillary microfluidic system with embedded optics for detection of cTnI, a cardiac biomarker. They used CO2 laser engraving for rapid prototyping of the capillary system with on-chip planar lenses and bio-sensing elements. The fluoro-immunoassay was done in modified PMMA using fluorescein isothiocyanate (FITC). The fluorescence excitation and detection instrumentation was simple, which was palm-sized and battery powered. The LOD was found to be 24 pg/mL. *Diercks et al.* developed a PDMS microfluidic device for multiplexed protein detection in a nano-liter volume. Chip had optically encoded microspheres to create an array of approximately 100-μm² sensors functionalized with capture antibodies directed against distinct targets. The sensitivity of the device was sufficient to detect 1000 copies of tumor necrosis factor (TNF) in a volume of 4.7 nL. *Castro-Lopez et al.* developed a portable device for the quantification of TNF-α in human plasma with fluorescence detection using the dye fluorescein amide (FAM). They performed magnetic bead-based proximity ligation assay (PLA) where probes were immobilized on streptavidin-coated magnetic beads. The cyclo-olefin polymer based device interfaced with a quantitative real-time PCR device developed in-house, had an assay time of 3 h with the LOD of 3.1 pg/mL.

Microfluidic droplets can act as microfluidic bioreactors for enzymatic amplification that has been used to increase the sensitivity of fluorescence detection. For example, *Joensson et al.* described a method for the detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification inside the microscopic droplets within a microfluidic device. Cells were labeled for cell-surface biomarkers with biotinylated antibodies to bind streptavidin-coupled β-galactosidase. The enzyme labeled cell stream was merged with a fluorescent substrate (fluorescein-di-β-D-galactopyranoside, FDG) in the device. The fluorescence of individual droplets was quantified using laser-induced fluorescence (500-1500 droplets per second). They demonstrated detection of the low-abundance biomarkers CCR5 (a co-receptor in HIV-1 infection) and CD19 (a B-cell lineage marker) from single human monocytes (U937) cells. Recently, *Lin et al.* demonstrated bubble-driven mixer in a PMMA/PDMS hybrid microfluidic device for bead-based ELISA to detect bladder cancer. They used a wooden gas diffuser to generate bubbles less than 0.3 mm. The micromixer reduced the time for incubation from 60 min to 8 min, so that ELISA reaction time was reduced to 30-40 min. A fluorescent dye, FITC-streptavidin complex was used in this PDMS device, wherein magnetic beads were used to coat the primary antibody. Apolipoprotein A1 (APOA1), a biomarker highly correlated with bladder cancer was detected with the LOD of 9.16 ng/mL, which was lower than the detection cut-off value of 11.16 ng/mL.

It has always been a great challenge to capture and analyse a small number of circulating tumor cells (CTCs) from a large pool of cancer samples. *Riahi et al.* developed a cyclic olefin polymer (COP) microfluidic device that uses a size and deformability-based capture system to capture and analyse CTCs of breast cancer. The device selects and segregates the CTCs in their own chamber, thus enabling morphological, immunological and genetic characterization of each CTC at the single cell level. Immunostaining of different breast cancer biomarkers was used to further characterize differential expressions of the captured cells. AlexFlour 488 conjugated antibodies against either
vimentin or E-cadherin were used for staining. Nuclei were counterstained with Hoechst-33342. The efficiency of cell capturing ranged from 78-85% for MCF7, 77-85% for MDA-MB-231 and 78-89% for SKBR3 in a range of cells from 20-2,000. Their result showed that the microfluidic device captured both epithelial cancer cells such as MCF7 and SKBR3 and epithelial to mesenchymal transition (EMT)-like cells such as MDA-MB-231. Immunostaining of captured cells in microchannel devices helped to identify differential expressions and phenotypes of captured cells using panel of epithelial and mesenchymal breast cancer biomarkers.

Quantum dots (QDs) have advantages over conventional dye molecules such as tunable fluorescence signatures, narrow emission spectra, brighter emission, and good photostability. Use of QDs as a fluorogenic dye can help increase the sensitivity of the assay. Hu et al. developed a PDMS microfluidic protein chip for multiplexed assay of cancer biomarkers. The antibody-antigen could recognize quantum dots (aqQDS) as fluorescent signal amplifiers. Secondary antibodies were conjugated to luminescent CdTe/CdS QDs as the fluorescent probe. They showed that their microfluidic protein chip possessed femtomolar sensitivity for cancer biomarkers and was selective enough to be directly used for two biomarkers detection in serum. The LODs were estimated to be 250 fm for both carcinoembryonic antigen (CEA) and prostate specific antigen (PSA) biotin moieties as the signal probe. Dual signal amplification resulted in the LOD of 0.2 fg/chip for AFP. Yu et al. developed another PDMS microfluidic chip based on self-assembled magnetic bead pattern and quantum dots for cancer biomarker detection in serum. High magnetic field gradient was generated using nickel pattern to increase the magnetic force on the superparamagnetic beads (SPMBs), which was stable during fast continuous washing. This continuous wash could remove specifically adsorptive contaminants more efficiently than fixed volume batch washing, increasing the specificity. Streptavidin modified QDs were used as fluorescence indicator to obtain the LOD of 3.5 ng/mL and 3.9 ng/mL for CEA and AFP, respectively.

Upstream sample processing is often a limiting step in the microfluidic devices. Hoffman et al. demonstrated a microfluidic immunosensor with biomarker purification and enrichment. They utilized stimulus-responsive polymer-antibody conjugates for sample processing in the circular microreactor with transverse flow generators to purify and concentrate proteins in the sample matrix. The antibody-antigen could recognize quantum dots as fluorescent signal amplifiers. Secondary antibodies were conjugated to luminescent CdTe/CdS QDs as the fluorescent probe. They showed that their microfluidic protein chip possessed femtomolar sensitivity for cancer biomarkers and was selective enough to be directly used for two biomarkers detection in serum. The LODs were estimated to be 250 fm for both carcinoembryonic antigen (CEA) and prostate specific antigen (PSA) biotin moieties as the signal probe. Dual signal amplification resulted in the LOD of 0.2 fg/chip for AFP. Yu et al. developed another PDMS microfluidic chip based on self-assembled magnetic bead pattern and quantum dots for cancer biomarker detection in serum. High magnetic field gradient was generated using nickel pattern to increase the magnetic force on the superparamagnetic beads (SPMBs), which was stable during fast continuous washing. This continuous wash could remove specifically adsorptive contaminants more efficiently than fixed volume batch washing, increasing the specificity. Streptavidin modified QDs were used as fluorescence indicator to obtain the LOD of 3.5 ng/mL and 3.9 ng/mL for CEA and AFP, respectively.

In recent years, great efforts have been devoted for the development of the electrochemical detection-based microdevice for cancer diagnosis especially for the detection of cancer biomarkers and infectious diseases. Li et al. described an electrochemical ELISA on paper-based microfluidic devices. Paper-based microfluidic devices were fabricated by patterning chromatography paper using the photolithography technique. Working and counter electrodes were screen-printed from graphite ink, and a reference electrode from silver/silver chloride ink. The electrochemical ELISA of IgG based on cyclic voltammetry (CV) was demonstrated with the LOD of 3.9 fm. Wu et al. developed a microfluidic paper-based electrochemical immunodevice integrated with amplification-by-polymerization for multiplexed detection of cancer biomarkers by using differential pulse voltammetry (DPV) method. In this work, the paper-based immunodevice was prepared based on the photore sist-patternning technique (Figure 4A). Eight working electrode zones were screen-printed with carbon ink in a specific area on paper-A. In the same manner, carbon ink and Ag/AgCl ink were screen-printed on a predesigned area of paper-B as the counter electrode and the reference electrode, respectively. Eight working electrodes shared one pair of counter and reference electrodes after the two paper layers were stacked together (Figure 4A). GO was modified on the working electrode to construct the sandwiched immuno-structure (Figure 4B). Four cancer biomarkers, namely carcinoembryonic antigen (CEA), AFP, cancer antigen 125 (CA-125, a biomarker for ovarian cancer), and carbohydrate antigen 153 (CA153, a biomarker for breast cancer) were detected by using the HRP-O-phenylenediamine-H2O2 electrochemical system. The LODs were found to be 0.01 ng/mL, 0.01 ng/mL, 0.05 ng/mL, and 0.05 ng/mL, respectively. Chikkaveeraiah et al. reported a microfluidic electrochemical immunoassay for multiplexed detection of cancer biomarkers using a molded PDMS channel and routine machined parts interfaced with a pump and sample injector. The LODs of 0.23 pg/mL for PSA and 0.30 pg/mL for Interleukin 6 (IL-6) were obtained in diluted serum mixtures. In addition, Su et al. developed a paper-based microfluidic electrochemical cyto-device (µ-PECD) for cancer cell detection and in situ screening of anticancer drugs in a multiplex manner based on in-electrode 3D cell culture. This entire µ-PECD was fabricated on a single sheet of flat paper. The LOD for HL-60 (human acute promyelocytic leukemia) cell was calculated to be 350 cells/mL using fast-response DPV method. Furthermore, in situ anticancer drug screening was successfully implemented in this µ-PECD. Sun et al. presented a paper-based microfluidic electrochemical immunosensor for CEA detection based on 3D flower-like gold electrode and gold-silver bimetallic nanoparticles. The LOD was found to be 0.3 pg/mL using an amperometric method.

3.3 Electrochemical Detection

Electrochemical detection involves interaction of chemical species with electrodes or probes to obtain electrical signals, such as potential or current, enabling quantitative analysis of target analytes. Either a chemical reaction is promoted by passing an electrical current through the electrode system or electrode responses are triggered due to specific chemical reactions (oxidation and reduction). A typical electrochemical cell consists of a working electrode where detection of a certain analyte is analyzed, a reference electrode where a standard oxidation/reduction is conducted and a counter electrode to minimize the electrical current flowing through the reference electrode, thus maintaining its potential constant during the operation of the electrolytic cell. Recently, incorporation of electrochemical detection in paper-based microfluidic devices has led development of easy-to-use, low cost, portable diagnostic devices with high sensitivity and selectivity by proper choices of detection potential and/or electrode materials, as shown by many reports of paper-based electrochemical systems listed in Table 1. Microfluidic channels can be fabricated on cellulose paper using different techniques mentioned before, while electrodes can be printed on paper by methods including screen-printing, direct writing with a pen/pencil dispensing conductive material, physical deposition of metals, and spraying conductive inks through stencils. However, screen-printing approach remains the most common technique for electrode fabrication.
cTnl and c-reactive protein (CRP) on a PDMS microfluidic chip. Cardio troponin I is used to diagnose acute myocardial infarction. C-reactive protein (CRP) is used in the risk assessment of cardiovascular diseases and in optimizing therapy in the primary and secondary prevention settings of cardiovascular diseases. The methodology was based on ELISA performed in PDMS-gold nanoparticle composite microreactors. Sandwich immunoassay was done by bioconjugating CdTe and ZnSe quantum dots. Cd2+ and Zn2+ were detected by square-wave anodic stripping voltammetry for quantification of the two biomarkers. The immunosensor could simultaneously detect cTnl and CRP in the linear ranges between 0.01-50 μg/L and 0.5-200 μg/L respectively. They showed that the limits of detection were 5 amol and 307 amol in a 30 μL sample corresponding to cTnl and CRP, respectively. Liang et al. developed a microfluidic electrochemical immunoassay for the detection of heart failure markers amino-terminal pro-brain natriuretic peptides (NT-proBNP) in whole blood with the LOD of 0.05 ng/mL. Magnetic nanoparticles and the biotin-avidin system were employed in the microfluidic device to fabricate the regeneration-free electrochemical immunosensor. Recently, Horak et al. presented a polymer-modified microfluidic immunochip fabricated in a Vacrel® 8100 photore sist film and surface functionalization by polyethyleneimine (PEI) was utilized to construct the microfluidic device. A 18-fold improvement of the LOD and 2.5 times faster read-out time in comparison to the assay without the PEI coating were achieved with the LOD of 25 pg/mL.

Microfluid electrochemical devices have also been used for the detection of other important biomarkers. Medina-Sanchez et al. reported an electrochemical assay for apolipoprotein E (ApoE, a biomarker of Alzheimer’s disease) using cadmium/selenide/zinc sulfide quantum dots as the labeling carrier. The electrochemical detector consisted of a set of three electrodes produced by screen-printing with a micro-potentiotstat. A PDMS film was bound to APTES modified PC substrate after plasma treatment for irreversible bonding. Tosylactivated magnetic beads were used as a pre-concentration platform for the immunooassay. The use of a microchannel with a magnetic retention zone allowed the sample purification and pre-concentration using magnetic beads as stationary support, providing good sensitivity and control. Electrochemical detection was obtained by square wave anodic stripping voltammetry. The limit of detection was found to be 12.5 ng/mL with a linearity range from 10 to 200 ng/mL. Zhao et al. reported a paper-based microfluidic electrochemical array for multiplexed detection of metabolic biomarkers. An array of eight electrochemical sensors and a handheld custom-made electrochemical reader for signal readout were employed in the device for the simultaneous detection of glucose, lactate and uric acid in urine with the limits of detection of 0.35 mM, 1.76 mM, and 0.52 mM, respectively. Recently, Ben-Yoav et al. illustrated a controllable PDMS microfluidic electrochemical method for label-free analysis of DNA hybridization in diagnosis of genetic disorders. The theoretical LOD was found to be 1 nM of complementary ssDNA target using CV method.

3.4 Chemiluminescence detection

Chemiluminescence (CL) is another optical detection method for analyte detection where the target binding leads to certain chemical reactions to cause photochemical emission, either directly or with the help of an enzyme label. CL detection systems may be more convenient for point-of-care setting, because this technique does not require excitation light source and emission filters as compared to fluorescence detection. However, the development of low-cost photodetectors is still necessary for its wide application in POC settings.

Chemiluminescence detection of various cancer biomarkers has been achieved in different microfluidic platforms. Wang et al. described a paper-based microfluidic chemiluminescence ELISA. The μPAD was fabricated by wax-screen printing method and modified with chitosan. Lumisol-p-iodophenol-H₂O₂ solution used as the substrate for HRP-CL. Chemiluminescence ELISA showed the linear ranges of 0.1-35.0 ng/mL for AFP, 0.5-80.0 U/mL for CA-125 and 0.1-70.0 ng/mL for...
CEA. The LODs were found to be 0.06 ng/mL, 0.33 ng/mL, and 0.05 ng/mL for AFP, CA-125, and CEA, respectively. Ge et al.48 developed 3D microfluidic analysis device for multiplexed chemiluminescence immunoassay. Blood plasma separation from whole blood and rinse steps were integrated into the device. Ag nanoparticles were used to catalyze typical luminol- H$_2$O$_2$-CL system. The LODs for simultaneous detection of four tumor biomarkers AFP, CA 153, CA 199, and CEA were found to be 1 ng/mL, 0.4 U/mL, 0.06 U/mL, and 0.02 ng/mL, respectively. In addition, chemiluminescence has also been used to study human thyroid stimulating hormone. Matos Pires et al.44 developed an HRP-luminol-peroxide-based chemiluminescence biosensor using an integrated polycarbazole photodiode as the detector. Chemiluminescence immunoassay was performed in a PDMS-gold glass microfluidic chip. Human thyroid stimulating hormone was detected with a linear range from 0.03 to 10 ng/mL and the LOD was found to be 68 pg/mL.

AuNPs were utilized in microfluidic CL detection to enhance the detection sensitivity. For instance, Liu et al.142 showed chemiluminescence detection of rare cells based on aptamer-specific capture in PDMS microfluidic channels. Biotinylated aptamers were immobilized in the channel by the strong adsorption of avidin to the glass surface and then the avidin-biotin system (Figure 5A).44 Specific cells (CCRF-CEM cell line, human acute lymphoblastic leukemia) and Ramos cell line (CRL-1596, B cell line, human Burkitt's lymphoma) from a cell mixture were captured and isolated by aptamers immobilized microfluidic channel. CL reaction was then triggered by the addition of AuNPs modified with aptamers to bind to the cells. Based on the luminol-H$_2$O$_2$-AuNPs CL reaction, CL signal could be detected when a luminol-H$_2$O$_2$ solution was pumped into the microfluidic channel. A PMT was placed directly underneath the PDMS microfluidic channel for CL detection. A low LOD of 30 target cells in a 3 μL cell mixture was obtained. Spiked whole blood samples were also used to verify the practicability of the method for inexpensive and rapid CL detection. Yang et al.143 described gold nanoparticle enhanced chemiluminescence immunosensor for the detection of Staphylococcal Enterotoxin B (SEB), which is a major cause of foodborne disease. Anti-SEB antibody-gold nanoparticle complex was immobilized on a polycarbonate surface and detected by a sandwich immunoassay. Signal was detected by using a portable detector based on a cooled CCD sensor or a plate reader, and the LOD was found to be 0.01 ng/mL.

Microfluidic microarrays have also been used for high-throughput chemiluminescence detection. Zhao et al.144 developed a low-cost 1536 channel microfluidic microarray for mood-disorder-related serological studies. In the pilot study they quantified 384 serological biomarkers. The device was modeled similar to 1536-well microtiter plate for measuring chemiluminescence immunoassay (SuperSignal® as a substrate) using a microplate reader. The modified PMMA platform showed a similar LOD as standard ELISA but with reduced operation time (1/2 h). Matos Pires et al.145 developed a PMMA microfluidic biosensor array for multiplexed detection of pathogens. Organic blend heterojunction photodiodes were integrated for chemiluminescence. E. coli, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by using poly (2,7-carbazole)/fullerene organic photodiodes (OPDs). Chemiluminescence signal was obtained from SuperSignal® chemiluminescence reagents added onto the streptavidin-HRP conjugate. The LOD was found to be 5 x 105 cells/mL for E. coli, 1 x 106 cells/mL for C. jejuni, and 1 x 102 mg/mL for adenovirus.

3.5 Electrochemiluminescence detection

ECL detection combines electrochemical and luminescence techniques that can provide good selectivity and sensitivity wherein a set of electrodes is used to trigger and control a chemiluminescence reaction involving an ECL active lumophore compound.144 ECL has been widely applied in microfluidic analytical methods for biomarker detection for disease diagnosis due to its unique advantages. The outstanding advantage is its versatility and simplified optical setup compared to photoluminescence, and good temporal and spatial control compared to chemiluminescence. It does not require a bulky light source like fluorescence detection and can be generated on an electrode on a chip. Additionally, the background signal is negligible, thereby allowing optical detectors to be used at their maximum sensitivity. As summarized in Table 1, there has been a recent interest in paper-based ECL sensors.

Among various applications of microfluidic ECL biomarker detection,149 the detection of cancer biomarkers for cancer diagnostics has been the subject of great research interest, as shown in Table 1. Ge et al.147 reported a 3D microfluidic paper-based ECL immunodevice for multiplexed measurement of tumor biomarkers. In this work, a wax-patterned paper-based device using the typical tri-(bipyridine)-ruthenium (II)-tr-n-propylamine ECL system was reported. The LODs were found to be 0.15 ng/mL, 0.6 U/mL, 0.17 U/mL, and 0.5 ng/mL for AFP, CA-125, CA-199, and CEA, respectively. Yang et al.146 fabricated a paper-based microfluidic pen-on-paper ECL (PoP-ECL) immunodevice for POC determination of CA-199 with the LOD of 0.0055 U/mL. The PoP-ECL device was constructed with a hydrophilic paper channel and two PoP electrodes with a rechargeable battery as the constant-potential power supplier to trigger the ECL. Sardesai et al.149 described a PMMA/PDMS microfluidic ECL device for detecting cancer biomarker proteins, PSA and IL-6 in serum (Figure 5B).14 The microfluidic system employed three PDMS channels on a conductive pyrolytic graphite chip (2.5 x 2.5 cm) inserted into a machined chamber and interfaced with a pump, switching valve, and sample injector. The antigens were captured by capture-antibody decorated single-walled carbon nanotubes (SWCNT) fabricated at the bottom of the wells. Then, RuBPY-silica-secondary antibody (Ab2) label was injected to bind to antigen on the array, followed by injection of sacrificial redundant tripropylamine (TPrA) to produce ECL. Potential applied versus Ag/AgCl oxidized TPrA to produce ECL by redox cycling the RuBPY-protected polymer. When the TPrA was reduced and transformed into RuBPY-silica, the silicate delivered electrons to the RuBPY, which was measured by a CCD camera. The microfluidic ECL array provided sensitivity at clinically relevant levels of PSA from 100 fg/mL to 10 ng/mL and IL-6 from 10 fg/mL to 1 ng/mL. The LODs were found to be 100 fg/mL (9 zeptomole) for PSA and 10 fg/mL (1 zeptomole) for IL-6. Assay of synthetic human serum samples in microfluidic array was compared with single protein ELISAs, and t tests at 95% confidence level confirmed no significant difference between the two methods. Additionally, Li et al.148 demonstrated battery-triggered ECL paper-based immunodevice for multiplexed immunoassay. They used dual-signal amplification strategy by using GO-chitosan/gold nanoparticles (GCA) immunosensing platform and [4,4-(2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diy)] dibenzonic acid (P-acid) functionalized nanoporous silver (P-acid/NPS) signal amplification label. Corresponding capture-antibody-secondary antibody (Ab2) label nanoparticles were immobilized onto paper working zones on the back of screen-printed carbon working electrodes. PSA and CEA were detected in the linear ranges of 0.003–20 ng/mL and 0.001–10 ng/mL with the LODs down to 1.0 pg/mL and 0.8 pg/mL, respectively.
found to be logarithmically related to the concentration of MCF-7 cells immobilized on the surfaces of cellulose fibers to form 3D origami cyto-device.1 Wang 35 developed a paper-based 3D microfluidic ECL chip; 11) Immunoassay complex on RuBPY-silica nanoparticles. Different nanomaterials such as AuNPs and graphene have been employed for microfluidic ECL biomarker detection. Wu et al.30 developed a paper-based microfluidic electrochemiluminescence origami cyto-device (µ-PECLOC) with aptamer-modified Au electrodes. Wax-fabricated paper was used for screen-printing of the electrode array. Paper was modified through growth of the layer of Au nanoparticles on the surfaces of cellulose fibers to form 3D macroporous Au-paper cell electrode (PCE) array for the immobilization of aptamers. Owing to the effective disproportionation of hydrogen peroxide and specific recognition of mannose on cell surface, concanavalin-A conjugated porous AuPd alloy nanoparticles were introduced into this µ-PECLOC as the catalytically promoted nanolabels for the peroxysulfate ECL system. The ECL intensity was found to be logarithmically related to the concentration of MCF-7 cells in the range of 450–1.0 X 103 cells/mL with the LOD of 250 cells/mL. To further improve the detection performance, nanomaterials with good sensing properties have been incorporated into the microfluidic ECL device. Wang et al.35 developed a paper-based 3D microfluidic ECL immunosensor for POC detection of CA-125. To construct a sensitivity-enhanced sandwich-type ECL immunosensor in the microfluidic device, AuNPs were employed as both the pathway of electron transfer and the probe to label the signal antibody. AuNPs can overcome the poor sensitivity, poor stability, and safety problems associated with the use of radiotracers, fluorescent, and enzyme labels.149 The device had the LOD of 0.0074 U/mL for CA-125. Xu et al.150 established a paper-based solid-state ECL sensor using poly (sodium 4-styrenesulfonate) functionalized graphene/nafion composite film for discrimination of single-nucleotide mismatch in human urine matrix. Li et al.151 developed a microfluidic paper-based ECL sensor for DNA detection using a graphene-modified Au-paper working electrode and calcium carbonate/carboxymethyl chitosan hybrid microspheres on luminescent silver nanoparticles (AgNPs) composites. The paper-based DNA sensor could detect target DNA in the range of 4.0 × 10-17–5.0 × 10-11 M, with the LOD of 8.5 × 10-18 M.

3.6 Other detection methods

Several other detection mechanisms have been utilized on the microfluidic devices. Koh et al.152 developed bead affinity chromatography (BAC) in a temperature controlled PDMS microsystem for detection of biomarkers and preparation of samples for matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. RNA aptamer-immobilized microbeads capture cancer biomarkers in BAC, which can be denatured and released by controlling the temperature. CEA was concentrated and purified from human serum in the microsystem and detected by MALDI-TOF MS. Mousavi et al.153 used capped Gold Nanoslit Surface plasmon resonance (SPR) on a PMMA microfluidic chip for detection of urinary micro-RNA biomarker. They used magnetic nanoparticles for the isolation of target molecule and enhanced the signal in conjunction with SPR on capped gold nanoslit. miRNA-16-5p, a specific and noninvasive biomarker for acute kidney injury (AKI) was detected with a LOD of 17 fM. Zhou et al.15 described localized surface plasmon resonance (LSPR) on a glass/poly(ethylene glycol) (methacrylate) (POEGMA) microfluidic device. The fluorescence dyes conjugated to the analyte was excited by plasmonic field to increase the sensitivity. The chip was inserted into a POC system, which had micropumps to control the microfluid flow, a light source for fluorescence excitation, a camera system for fluorescence detection, and software to automate the POC system and to analyze the result. The LOD for PSA was found to be 100 pg/mL. Tian et al.154 developed a different LSPR-based microfluidic device using antibodies-functionalized gold nanorods on common laboratory filter paper to produce biplasmonic nanostructure for sensitive detection of bioanalytes in physiological fluids. Zhang et al.46 developed a PDMS microfluidic device for automatic detection of CEA in exhaled breath condensate (EBC) using long wave surface acoustic wave (SAW) immunosensor. Sandwich immunoassay using antibody labeled with AuNPs and subsequently mass enhancement using gold staining solutions showed good sensitivity with the LOD of 1.25 ng/mL. Due to multiple advantages of biplasmonic paper such as high specific surface area, mechanical flexibility, compatibility with conventional printing approaches, it was used for rapid and label-free detection of proteins aquaporin-1 (AQP1), a biomarker for early detection of renal cancer carcinoma (RCC), with the LOD of about 24 pg/mL in artificial urine.

4 Conclusions and future perspective

A number of microfluidic platforms including different polymers, paper-based, and hybrid microdevices have been developed for rapid detection of biomarkers of infectious diseases, cancer and other diseases (Table 1). Microfluidic platforms offer many advantages over conventional diagnosis methods, such as low cost, ease of use, high portability or disposability. With the progress in fabrication technology, it is now possible to tailor a fabrication material ranging from polymers to paper, method to match the specific requirement of the device, the cost and application of the device. It has been demonstrated that these microfluidic devices have emerged as promising diagnostic platforms to improve human health in low resource settings. Despite the exciting progress in the field, there are still many hurdles for the application of microfluidic biochips as routine diagnostic devices, especially for the field diagnosis and POC diagnosis in low-resource settings. For example, many microfluidic devices still use complex detection methods and require expensive external equipment, which limits the use of these devices as POC detection in low-resource settings. Although colorimetric detection is highly simple and suitable for low-resource settings, the sensitivity and quantitation are often compromised. Electrochemical detection is highly sensitive and quantitative, but smaller and inexpensive electrochemical analyzers are...
expected to take advantage of electrochemical detection for the field diagnosis. Optical detection remains an attractive technique for microfluidic analysis of pathogens and proteins, although integrating sensitive optical detectors in inexpensive microfluidics-based devices remains a bottleneck to develop POC devices. An increasing number of new Apps and add-ons enabled powerful smartphones to have more and more functions for monitoring personal health status. There have been reports of full laboratory-quality immunoassay that can be run on a smartphone accessory. Therefore, we believe that the combination of smartphone technologies with microfluidic devices could cause great impacts on health care (i.e. mHealth) and disease monitoring in the near future to make certain laboratory-based diagnostics accessible to people with smartphone access.

The future trend in microfluidic devices also includes new methods for sample collection and preparation, reagent storage and fully integrated lab-on-a-chip. Sample preparation on chip is often not considered and there are only a small number of devices that offer total analysis on chip. Microfluidic biochips that can directly test crude real-world samples (e.g. blood, urine, and saliva) may be the alternative to sample preparation on a chip. Similarly, validation of the on-chip detection approaches against real samples is a requirement for successful adoption of these systems by the clinical personnel. Although, there are a vast number of reported microfluidic devices for detection of different diseases, commercialization of these devices and their use outside the research laboratories remain a major challenge. It may be because current clinical diagnostic approaches are well developed and accepted over a long period of time. Hence, the microfluidic platforms do need to solve those challenging real-world issues, and demonstrate robustness and convincing advantages of microfluidic biochips over conventional methods to clinical personnel before they become widely used by clinical personnel. More exciting work is expected from the close collaboration and exchange between the microfluidic lab-on-a-chip community, biology and the clinical communities.
Table 1 Summary of biomarker detection using microfluidic platforms

<table>
<thead>
<tr>
<th>Specific disease</th>
<th>Biomarkers</th>
<th>LOD</th>
<th>Detection Method</th>
<th>Microfluidic platform</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td>CEA</td>
<td>250 fM</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>3.5 ng/mL</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.01 ng/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.01 ng/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.05 ng/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.02 ng/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.5 ng/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.8 pg/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>1.25 ng/mL</td>
<td>SAW</td>
<td>PDMS</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>0.3 pg/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>1.7 pg/mL</td>
<td>Colorimetric</td>
<td>Paper</td>
<td></td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>AFP</td>
<td>250 fM</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>0.01 ng/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>1 pg/mL</td>
<td>Electrochemical</td>
<td>PMMA</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>0.06 ng/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>1 ng/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>3.9 ng/mL</td>
<td>Electrochemical</td>
<td>PDMS</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>0.2 fg/chip</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
<td>1.7 pg/mL</td>
<td>Colorimetric</td>
<td>Paper</td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>CA-125</td>
<td>0.05 ng/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CA-125</td>
<td>0.2 mL/U/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>CA-125</td>
<td>0.33 ng/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>CA-125</td>
<td>0.6 U/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>CA-125</td>
<td>0.0074 U/mL</td>
<td>ECL</td>
<td>PDMS</td>
<td>35</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>PSA</td>
<td>0.23 pg/mL</td>
<td>Electrochemical</td>
<td>PMDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>100 fg/mL</td>
<td>ECL</td>
<td>PMMA/PMDS</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>1 pg/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>100 pg/mL</td>
<td>Electrochemical</td>
<td>POEGMA/glass</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>3.2 ng/mL</td>
<td>Colorimetric</td>
<td>PMMA</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>0.5 pM</td>
<td>Fluorescent</td>
<td>FNIPAAm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>100 pg/mL</td>
<td>ECL</td>
<td>POEGMA/glass</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>IL-6</td>
<td>0.30 pg/mL</td>
<td>Electrochemical</td>
<td>PDMS</td>
<td>49</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>CA-199</td>
<td>0.17 U/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>CA-199</td>
<td>0.0055 U/mL</td>
<td>ECL</td>
<td>Paper</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>CA-199</td>
<td>0.06 U/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>140</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>CA153</td>
<td>0.05 ng/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CA153</td>
<td>0.4 U/mL</td>
<td>Chemiluminescence</td>
<td>Paper</td>
<td>140</td>
</tr>
<tr>
<td>Human acute leukemia</td>
<td>HL-60</td>
<td>350 cells/mL</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>CCL-119</td>
<td>30 cells/3 μL</td>
<td>Chemiluminescence</td>
<td>PDMS</td>
<td>142</td>
</tr>
<tr>
<td>Renal cancer carcinoma</td>
<td>AQPl</td>
<td>24 pg/mL</td>
<td>LSPR</td>
<td>Paper</td>
<td>154</td>
</tr>
<tr>
<td>Bladder cancer</td>
<td>APOA1</td>
<td>9.16 ng/mL</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>TFN</td>
<td>3.1 pg/mL</td>
<td>Fluorescent</td>
<td>Cyclo-olefin</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>TFN</td>
<td>1000 copies/4.7 mL</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>115</td>
</tr>
<tr>
<td>Infectious disease</td>
<td>HBsAg</td>
<td>100 pg/mL</td>
<td>Colorimetric</td>
<td>PDMS</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Pseudorabies virus</td>
<td>Nucleic acid</td>
<td>Colorimetric</td>
<td>PDMS</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Dengue virus</td>
<td>IgG/IgM</td>
<td>Fluorescent</td>
<td>PDMS</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Meningitis</td>
<td>ctraA gene</td>
<td>3 copies/LAMP zone</td>
<td>Fluorescent</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Food-borne</td>
<td>SEB</td>
<td>0.01 ng/mL</td>
<td>Chemiluminescence</td>
<td>143</td>
</tr>
<tr>
<td>disease</td>
<td>S.enterica</td>
<td>61 cfu/mL</td>
<td>Fluorescent</td>
<td>PDMS/paper hybrid</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>(Aptamer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.aureus</td>
<td>800 cfu/mL</td>
<td>Fluorescent</td>
<td>PDMS/paper hybrid</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>(Aptamer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>5 × 10^3 cells/mL</td>
<td>Chemiluminescence</td>
<td>PMMA</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>C. jejuni</td>
<td>1 × 10^6 cells/mL</td>
<td>Chemiluminescence</td>
<td>PMMA</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>IgG</td>
<td>3.9 fM</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>130</td>
</tr>
<tr>
<td>Other diseases</td>
<td>Conditions</td>
<td>Reactant</td>
<td>Concentration</td>
<td>Method</td>
<td>Matrix</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Diabetics</td>
<td>Glucose</td>
<td>0.5 mM</td>
<td>Colorimetric</td>
<td>Paper</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>0.35 mM</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>136</td>
</tr>
<tr>
<td>Thyroid dysfunction</td>
<td>Human thyroid stimulating hormone</td>
<td>68 pg/mL</td>
<td>Chemiluminescence</td>
<td>PDMS/glass</td>
<td>141</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>cTnl</td>
<td>5 amol/30 μL</td>
<td>Electrochemical</td>
<td>PDMS</td>
<td>174</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>ApoE</td>
<td>12.5 ng/mL</td>
<td>Electrochemical</td>
<td>PMMA</td>
<td>103</td>
</tr>
<tr>
<td>Bronchial asthma</td>
<td>IL-5</td>
<td>100 pg/mL</td>
<td>Colorimetric</td>
<td>PDMS</td>
<td>39</td>
</tr>
<tr>
<td>Neuromyelitis optica</td>
<td>IgG</td>
<td>100 pg/mL</td>
<td>Colorimetric</td>
<td>Paper</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Uric acid</td>
<td>0.52 mM</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Uric acid</td>
<td>8.1 ppm</td>
<td>Colorimetric</td>
<td>Paper</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Lactate</td>
<td>1.76 mM</td>
<td>Electrochemical</td>
<td>Paper</td>
<td>136</td>
</tr>
</tbody>
</table>

Acknowledgements

The Li group would like to acknowledge the financial support of the National Institute of Allergy And Infectious Diseases of the National Institutes of Health (NIH) under Award Number R21AI107415, and the National Institute of General Medical Sciences of the NIH under Award Number SC2GM105584. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Financial supports from the IDR Program at the University of Texas at El Paso (UTEP) and the NIH RCMI Pilot Grant are also gratefully acknowledged. F.X. would like to acknowledge the financial support of the International Science & Technology Cooperation Program of China and the National Institute of General Medical Sciences of the NIH under Award Number R21AI107415, and the National Institute of General Medical Sciences of the NIH under Award Number R21AI107415.

Notes and references

ARTICLE

