This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Selective detection of elemental mercury vapor using a surface acoustic wave (SAW) sensor

K. M. Mohibul Kabir\(^1\), Ylias M. Sabri\(^1\), Glenn I. Matthews\(^2\), Lathe A. Jones\(^1\), Samuel J. Ippolito\(^1,2\)*, Suresh K. Bhargava\(^1\)*

\(^1\)Mercury Management and Chemical Sensing Laboratory (MMCSL), Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia

\(^2\)School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3001, Australia

E-mail: samuel.ippolito@rmit.edu.au, suresh.bhargava@rmit.edu.au

Phone: +61 3 9925 2330

Abstract. The detection of elemental mercury (Hg\(^0\)) within industrial processes is extremely important as it is the first major step in ensuring the efficient operation of implemented mercury removal technologies. In this study, a 131 MHz surface acoustic wave (SAW) delay line sensor with gold electrodes was tested towards Hg\(^0\) vapor (24 to 365 ppb\(_v\)) with/without the presence of ammonia (NH\(_3\)) and humidity (H\(_2\)O), as well as volatile organic compounds (VOCs) such as acetaldehyde (MeCHO), ethylmercaptan (EM), dimethyl disulfide (DMDS) and methyl ethyl ketone (MEK), which are all common interfering gas species that co-exist in many industrial applications requiring mercury monitoring. The developed sensor exhibited a detection limit of 0.7 ppb\(_v\) and 4.85 ppb\(_v\) at 35 and 55°C, respectively. Furthermore, a repeatability of 97% and selectivity of 92% in the presence of contaminants gases was exhibited by the sensor at the chosen operating temperature of 55°C. The response magnitude of the developed SAW sensor towards different concentrations of Hg\(^0\) vapor fitted well with the Langmuir extension isotherm (otherwise known as loading ratio correlation (LRC)) which is in agreement with our basic finite element method (FEM).
work where an LRC isotherm was observed for a simplified model of the SAW sensor responding to different Hg contents deposited on the Au based electrodes. Overall, the results indicate that the developed SAW sensor can be a potential solution for online selective detection of low concentrations of Hg0 vapor found in industrial stack effluents.

1. Introduction

Anthropogenic mercury emission (i.e. from mining, combustion of fossil fuels and coal-fired power plants) is now considered a major global concern due to its detrimental effects on human health and the environment1-3. The total emission of gaseous mercury which originates from natural and anthropogenic sources in the form of elemental mercury (Hg0) is estimated at 5500 tons per year1-7. Due to its high mobility and low vapor pressure Hg0 vapor has the ability to travel long distances in the atmosphere as it can stay airborne for up to 5 years before it forms more toxic organic compounds7-9. Among these compounds, methyl mercury (CH\textsubscript{3}Hg+) in particular, can bio accumulate in seafoods and enter the food chain, thus severely affecting human health through kidney damage, neurotoxicity and causing cardiovascular diseases just to name a few10-13. Therefore the World Health Organization (WHO)14 threshold exposure limit of Hg in the air is set at a low ~5.6 ppb\textsubscript{v}. From anthropogenic point of view, reports indicate that mercury emissions have increased 3-4 times during the industrialization period15-17. Around 30\% of these emissions have resulted from coal-fired power plants with release concentrations ranging from 0.1 to 2 ppb\textsubscript{v}18. In order to limit anthropogenic mercury emissions, governments worldwide are introducing new and more stringent regulations19. For example, continuous detection of Hg emission in cement kilns in Germany has now become mandatory20 with Hg emission limits being as low as ~6 and ~3.5 ppb\textsubscript{v} for half-hourly and daily averages, respectively21. An important part of the mercury emission control process is mercury monitoring systems which provide feedback to the removal technology for efficient operation. It is therefore very important to develop a monitoring system at common emission sources for efficient measurement of Hg0 vapor present among other contaminant gases.
Most of the commercially available mercury detection systems are based on atomic absorption spectroscopy (AAS) and atomic fluorescence spectrometry (AFS)\(^{22, 23}\). Although these techniques have been approved by United States Environmental Protection Agency (US-EPA) and possess high sensitivity towards Hg\(^0\) vapor\(^{24, 25}\), they tend to suffer from cross-sensitivity in the presence of common interfering gases such as NH\(_3\), H\(_2\)O and volatile organic compounds (VOC), which results in inaccurate reporting of Hg\(^0\) vapor concentration within many industrial applications. These methods can be aided with amalgamation techniques where the gas samples are separated and pre-concentrated using gold traps\(^{26}\) to overcome the cross-interference of the contaminant gases. However, the gold traps are required to be heated up to \(750^\circ\text{C}\)\(^{27, 28}\) in order to release the trapped Hg\(^0\) thereby making the operating lifetime and online monitoring capability of these methods very limited. In addition, these methods are associated with high cost, logistical and skilled personnel requirements which make these methods infeasible for real-world applications\(^{29}\).

Alternative Hg\(^0\) vapor detection methods based on micro-sensors employing either cantilever, acoustics, chemiresistive or surface plasmon resonance (SPR) techniques are primarily based on strong interaction between Hg\(^0\) and Au (known as amalgamation) have also been investigated extensively\(^{30-32}\). More recently, researchers have employed Au nanostructures to increase the sensitivity of these types of sensors\(^{14, 33}\). However, the effect of common interferant gases on the sensitivity of these types of sensors still needs thorough study, as operation of these sensors in an industrial environment will always be in the presence of such impurities.

Our group has recently shown that mass-based Quartz Crystal Microbalance (QCM) sensors are highly selective towards Hg\(^0\) vapor in the presence of interfering species such as NH\(_3\), humidity and VOCs\(^{29, 34}\). However, the low sensitivity (limit of detection \(~8\ \text{ppb}, \text{ at } 35^\circ\text{C}\) of the QCM sensor limits the sensor from detecting low concentrations of Hg\(^0\) vapor. Surface acoustic wave (SAW) sensors are an elite family of mass based micro-sensors\(^{35, 36}\) which have the potential to possess much higher sensitivity towards Hg\(^0\) vapor compared to a QCM based sensor\(^{37}\). SAW based sensors for detecting low concentrations of Hg\(^0\) vapor was first demonstrated by Caron et al.\(^{38}\), where they showed that a SAW delay line with aluminum interdigitated transducers (IDTs) and a thin film of
gold employed as sensing layer was capable of detecting low concentrations of \(\text{Hg}^0 \) vapor (down to 100 ppb\(_v\)) at different operating temperatures. A decade later Jasek et al.\(^{39}\) presented a different SAW resonator design based on gold electrodes and reflector for detecting low concentrations (down to 300 ppb\(_v\)) of \(\text{Hg}^0 \) vapor. Recently, we have reported the cross sensitivity effect of common industrial relevant volatile organic compounds (VOCs) such as ethylmercaptan (EM), dimethyl disulphide (DMDS) and methyl ethyl ketone (MEK) on a SAW based \(\text{Hg}^0 \) vapor sensor\(^{40}\). However, the selectivity performance of the SAW based sensor towards \(\text{Hg}^0 \) vapor in critical conditions (dry and humid) as well as effect of other important interfering gas species such as ammonia (NH\(_3\)), acetaldehyde (MeCHO) etc. still need to be investigated and is necessary in determining the feasibility of the SAW based solid state sensor for efficient monitoring of \(\text{Hg}^0 \) vapor. Furthermore, the alteration of the SAW device designs to achieve better detection limit, repeatability and selectivity while measuring low concentrations of \(\text{Hg}^0 \) vapor, are yet to be investigated.

Typically, SAW transducers are used as mass-based sensors where mass perturbations on the sensing layer along the propagation path of the acoustic wave acts as the sensing mechanism\(^{41}\). The gas to be detected (analyte) interacts with a sensing film which is placed in between the input and output IDTs. This interaction results in a change in the acoustic wave velocity which is detected in the output IDT as a shift in the SAW resonant frequency \((f_0)\). The shift in frequency is then related to the analyte concentration present in the atmosphere.

In this work, we demonstrate a two port SAW delay line sensor which employs the interdigitated transducers (IDTs) electrodes as the sole sensing element without introducing any additional sensing layer in-between the transmitting and receiving IDT. This approach in SAW based sensor design was found to be able to detect very low concentration of \(\text{Hg}^0 \) vapor in the presence of common interfering gases and humidity at the different operating temperatures tested. The interfering gases tested were NH\(_3\), DMDS, MEK, EM and Acetaldehyde which are common gases present in industrial effluents.
2. Theoretical Modeling

In the current SAW sensor design, the resonant frequency of the sensor changes when Hg0 vapor comes in contact with the Au electrode surface. The change in the resonant frequency of the sensor occurs due to the mechanical and acoustoelectric perturbations of the Au-thin film which results from Hg-Au amalgamation. The shift in resonant frequency due to Au-film mechanical perturbations can be represented by Equation 142 while the shift in SAW velocity results from the acoustoelectric perturbations can be expressed by Equation 243,44.

\[
\Delta f = (k_1 + k_2) f_0^2 \rho h - k_2 f_0^2 \rho h \left(\frac{\lambda + \mu}{\lambda + 2\mu} \right)
\]

(1)

\[
\frac{\Delta v}{v_0} = -\frac{k^2}{2} \frac{1}{1 + \left(\frac{\rho f_0^2}{\rho h} \right)^2}
\]

(2)

In these equations, k_1 and k_2 represent substrate material’s constant, ρ and h are Au film density and thickness, respectively, λ and μ are Au film’s Lame constants, σ_{sh} is sheet conductivity of Au-film, ε_{ρ} is the effective permittivity of the structure including free space permittivity and k^2 represents the electro-mechanical coupling coefficient of the substrate material. From Equation 1, it can be observed that an increase in film density and thickness (related to mass loading) will result in a decrease in the resonant frequency of the sensor. On the other hand, an increase in the Lame constants (related to mechanical stiffness) will result in an increase in the resonant frequency. However, mechanical stiffening effect can be ignored for extremely thin films42. Therefore, Equation 1 can be simplified in the form of Equation 3.

\[
\Delta f = (k_1 + k_2) f_0^2 \rho h
\]

(3)

It can be observed from Equation 2 that the acoustoelectric response of the sensor is directly proportional to the electro-mechanical coupling coefficient of the device substrate material. This indicates that the SAW velocity shift due to acoustoelectric perturbations can be significant for SAW substrate with high electro-mechanical coefficient such as YZ LiNbO$_3$ (k^2=4.8). However,
this phenomenon is not as significant when ST- quartz is used as the SAW substrate due to its extremely low \(k^2 \) value (0.11).

The negative shifts in the resonant frequency \((f_0) \) of the SAW sensor will be proportional to the concentration of Hg\(^0\) vapor that comes in contact with the Au electrodes. As the number of Hg\(^0\) monolayers formed on the Au surface is proportional to the Hg\(^0\) vapor concentration, the resonant frequency shift will also be proportional to the number of Hg\(^0\) monolayers formed on the Au surface. The higher the vapor concentration, the greater the number of Hg\(^0\) monolayers that undergo sorption and diffusion; thus increasing the thickness and the effective mass density of the IDT electrode fingers.

In order to analyse the SAW device behaviour when Au electrodes are exposed to Hg\(^0\) vapor, a series of finite element method (FEM) simulations were performed on a simplified SAW delay line model using a commercially available FEM package (COMSOL multiphysics 4.3b). As shown in Figure 1a, a simplified 2D SAW delay line structure with two pairs of gold electrodes (each having defined dimensions of 6 \(\mu \)m length and 100 nm thickness) in both the input and output IDTs placed on a quartz substrate was considered for simulation. The length and height of the simulated structure was 1000 and 500 \(\mu \)m, respectively. Full time-dependent analyses (60 ns simulation time) were performed in order to obtain the dynamic response of the simulated device. For all simulations, an impulse voltage (described by Equation 4) was applied to the input electrodes where \(V_+ \) and \(V_- \) was applied to the odd and even voltages, respectively.

\[
V_+ = \begin{cases}
V, 0 \leq t \leq 1ns \\
0, t \geq 1ns
\end{cases} \\
V_- = 0V
\]

(4)

The voltage of both even and odd output electrodes was set to zero and were coupled separately. The initial displacement fields both in the X and Y directions \((U_x \) and \(U_y \)) along with initial structural velocity field \(\partial U/\partial t \) were set to zero. FEM meshes for all simulations were arranged by keeping a density of 48 nodes per wavelength along the surface. Relatively coarser node density was maintained in the depth of the substrate. This was because the node density vertical axis was
not expected to affect the simulation result significantly given that the mismatch between the denser and coarser region was maintained in a minimum level throughout the depth. In addition, the coarser meshing in the depth of the structure was arranged to reduce the number of elements hence reducing the simulation time. However, the area immediately under the surface of the device was set to high node density of 24 per wavelength in order to obtain high accuracy of the results. As shown in Figure 1b, the meshing arrangement allowed for much higher node densities at the location of the surface, requiring a total of 36306 elements. Details of simulated SAW structure parameters are listed in Table 1 while material properties for quartz and unperturbed gold can be found elsewhere.

A series of simulations were performed by varying the nominal number of Hg0 monolayers formed on the Au electrodes between 1 and 50. The effective mass density per area and the thickness of the Au electrodes were varied according to the number of Hg0 monolayers as shown in Table 1. These changes in effective mass density and the thickness of the Au electrodes for various number of Hg0 monolayers were calculated based on reports that (i) each monolayer has a surface coverage of 469 ng/cm2, (ii) the Hg0 atoms’ diameter are 0.342 nm4 and (iii) the Hg0 atoms are diffused only up to top an Au depth of 10 nm from the surface. For mercury coverage of 20 monolayers, it is assumed that both the effective mass density and the thickness of the Au electrodes are increased. At this coverage level, the process of diffusion and amalgamation is assumed to be significantly reduced due to the Au surface reaching saturation thereby resulting in the effective mass density change approaching a maximum value (Table 1). Thereon, any additional mercury is assumed to be loosely adsorbed and contributes to increase in film thickness alone. After every simulation, the X component of the displacement field (defined as ‘u’ in COMSOL multiphysics) at the starting point (point ‘P’ in Figure 1a) of the output IDT was acquired. Figure 2a shows the X component of the displacement field at point ‘P’ at different times for both the unperturbed Au electrodes and Au electrodes containing 50 monolayers of Hg contents while the surface plots for total piezoelectric displacement under the IDT area when the simulations were performed with unperturbed Au electrodes and Au electrodes with 50 Hg0 monolayers can be seen.
from Figure 2c and 2d, respectively. As shown, the displacement field was delayed as the Hg0 molecules were diffused into the Au electrodes. The time delay in displacement field can be directly related to the resonant frequency change of the SAW device. As stated in Table 2, the time delay in the displacement field varied between 0.0067 to 0.1845 ns for 1 to 50 Hg0 monolayer formations on the Au electrodes. It was observed that the relationship between the time delay shifts over the number of monolayer formation followed the Langmuir extension isotherm (Figure 2b). This indicates that the SAW based Hg0 vapor sensor with Au electrodes act as sensing elements can be well suited for detection of low concentrations of Hg0 vapor since higher dynamic response can be obtained between relatively lower concentrations of Hg0 vapor.

3. Experimental

3.1 SAW fabrication & oscillator setup

A SAW delay line device with two ports was fabricated on a ST-X cut quartz substrate (Figure 3). ST-X cut quartz (which is also referred as 42.75° rotated Y cut Quartz) was chosen for its relatively better temperature stability at 20-60°C than other common substrate cuts used for SAW device fabrication (such as XY Lithium Niobate or 36°YX Lithium Tantalate)50. Initially, a 20 nm thick Titanium (Ti) and a 30 nm thick Nickel (Ni) adhesion layer followed by a 50 nm thick Au layer was evaporated on a 15 mmx9 mm quartz substrate. Standard photolithography processes were used to pattern the input and output IDT electrode fingers. Both the input and output IDTs were patterned with 180 finger pairs with all electrode fingers having a width and spacing of 6 µm, which resulted in acoustic wavelength (λ) of 24 µm. The aperture width (w) was 1700 µm for all electrodes and the delay line length was kept at 75λ as shown in Figure 3. Using a Rhode & Schwartz vector network analyzer, the scattering parameters of the fabricated sensor was tested. An insertion loss of -11 dB was observed at the center frequency of approximately 131 MHz.

A radio frequency (RF) amplifier was designed and fabricated to be used to construct the SAW oscillator circuit by connecting it on a feedback path of the SAW sensor. The fabricated amplifier was measured to have 27 to 29 dB gain at 100MHz to 300MHz frequency which made it suitable for the SAW device fabricated.
3.2 Hg\(^{0}\) vapor testing

The fabricated sensor was placed securely inside a test cell having a volume of ~100 ml. A PID temperature controller was used to generate different concentrations of Hg\(^{0}\) vapor by changing the temperature of a Hg\(^{0}\) permeation tube (VICI, TX, USA). The target rate of the permeation tube was 3100 ng/min at 100°C (as certified by NIST). A temperature range of 40°C to 80°C was set on the mercury generator to produce the different concentrations of Hg\(^{0}\) vapor tested. The permeation rate (i.e. Hg\(^{0}\) vapor concentration generated) was re-confirmed by taking a series of wet chemical trapping experiments based on a modified version of the Ontario Hydro method by capturing the generated Hg\(^{0}\) vapor in a train of four potassium permanganate (K\(\text{MnO}_4\)) trapping solutions at the point before the vapor entered the sensor cell and analyzing the taped solution for mercury by Inductively coupled plasma mass spectrometry (ICP-MS). The temperature of the sensor cell was controlled by thermocouples providing feedback to the heater. A multi-channel mass flow controller (MFC) system was used to control the flow of Hg\(^{0}\) vapor, H\(_2\)O vapor and of the five different interfering gases tested which were stored in five different cylinders. A constant total flow of 200 standard cubic centimeters (sccm) in the sensor cell was maintained throughout the whole experiment. The oscillation frequency of the SAW device was continuously monitored with an Agilent 53131A frequency counter. A block diagram of the experimental setup used can be found in the supplementary information, SI, Figure S1.

The sensing performance of the developed sensor was tested by exposing it towards Hg\(^{0}\) vapor concentrations of 24, 51, 104, 142, 195, 265 and 365 ppb\(_v\). Each mercury pulse consisted of a 30 minute Hg\(^{0}\) vapor exposure followed by a 90 minute dry N\(_2\) purge in order to allow the sensor to return to its center frequency through the desorption of Hg\(^{0}\) from the gold electrode surfaces. It should be noted that desorption process used to regenerate the sensor surface between each pulse was accomplished by only switching the stream to dry N\(_2\) gas flow without changing the operating temperature or the total flow rate. This sequence is referred to as a pulse throughout the remainder of the manuscript. The selectivity tests involved exposing the SAW based sensor towards different concentrations of Hg\(^{0}\) vapor in the presence of 383.8 ppm\(_v\) ammonia (NH\(_3\)), 303.4 ppm\(_v\),
acetaldehyde (MeCHO), 2.61 ppm, ethylmercaptan (EM), 5.01ppm, dimethyl disulfide (DMDS),
40.1 ppm, methyl ethyl ketone (MEK) and H₂O vapor (with equivalent relative humidity (RH) of 50
and 20% at 35 and 55°C, respectively).

The noise profiles of the sensor following Hg⁰ exposure tests at different operating temperatures
between 35 and 75°C (with 10°C increments) were recorded for a period of 1 hour while flushing
the sensor chamber with dry nitrogen (N₂). The noise profiles were used later to calculate the limit
of detection (LOD) of the developed SAW sensor at different operating temperatures. Noise profiles
of the sensor for different operating temperatures are shown in SI, Figure S2. It can be observed that
the sensor exhibited higher noise magnitudes at elevated operating temperatures. This is primarily
thought to result from the temperature fluctuations (±0.3°C) of the temperature controller that was
used in this study. The sensor showed almost similar noise magnitudes while operating at 35 to
55°C while higher noise magnitudes were observed beyond 55°C. This can be explained since the
temperature coefficient of ST cut quartz has higher sensitivity to temperature fluctuations when
operated at higher temperatures⁵⁰.

4. Results and Discussion

4.1 Sensor performance at different operating temperatures

The sensor was tested towards different concentrations of Hg⁰ vapor ranging from 24 to 365 ppb.
at operating temperatures between 35 and 75°C in 10°C increments. Each exposure to mercury
vapor resulted in the oscillation frequency reducing as a function of both exposed Hg⁰ vapor
concentration as well as the operating temperature. An example of the sensors dynamic response
towards the different concentrations of Hg⁰ vapor at 55°C can be seen from Figure 4a. As shown,
during the Hg⁰ vapor exposure period (30 minutes) of every pulse, the sensor response exhibited a
negative shift in operating frequency. Upon exposure, the Hg⁰ vapor atoms are expected to deposit
on the Au electrode surface due to the high affinity between the two metals that result in the
formation of Hg-Au amalgams. This process results in the mechanical and acoustoelectric
perturbations of the Au electrodes thereby resulting in sensor’s oscillation frequency to change
according to Equation 2 and 3, as described in Section 2.

As can be observed from Figure 4a, the desorption process was started well before the sensors
response magnitude reached the saturation yet it operated well as a sensor towards different
concentrations of Hg⁰ vapor. This 30 minutes exposure time was based on our previous
observations where it was found that the Au based transducer can take up-to 8 hours before
reaching the saturation, a period that is not suitable for industrial use where fast turn-around times
are required. Interestingly, no external heat and change in flow rate during the regeneration
period was required for the developed sensor.

The response magnitude of the developed sensor towards the different Hg⁰ vapor concentrations
tested was used to obtain the calibration curve at each operating temperature. It was observed that
the sensor response magnitude was related to the Hg⁰ vapor concentration (calibration curve)
through the Langmuir extension isotherm or LRC (Equation 5) at all the operating temperatures
tested (Figure 4b shows LRC for 55°C). LRC for other tested operating temperatures are shown in
SI, Figure S3.

\[
\Delta f = \frac{ab[Hg]^c}{(1+b[Hg])^c} \tag{5}
\]

In Equation 5, \(\Delta f\) represents the SAW response magnitude, \([Hg]\) represents Hg⁰ vapor
concentrations exposed to the sensor while \(a\), \(b\) and \(c\) are constants.

These experimental observations are in line with the FEM modeling findings where the sensor
response (time delay) was found to follow the same trend (LRC) against the number of Hg⁰
monolayers formed on the Au surface, which is proportional to the Hg⁰ vapor concentration in the
atmosphere. The sensitivity of the developed SAW sensor towards Hg⁰ vapor is deduced to be
dependent on the concentration being measured, the relation of which can be derived from the
derivative of the calibration curve (Equation 5) as presented in Equation 6. It can be deduced that
the sensitivity decreases with increasing Hg⁰ vapor concentration, indicating that the developed
sensor is designed well to detect low concentrations of Hg0 vapor usually present in industrial stack effluents.

\begin{equation}
\text{sensitivity} = \frac{df}{d[Hg]} = \frac{abc[Hg]^{c-1}}{(1+b[Hg])^2}
\end{equation}

In order to determine the optimum operating temperature for the developed SAW based Hg0 vapor sensor, the temperature profile of the sensor was acquired (Figure 5a) and critically analysed. The temperature profile of the sensor was obtained by exposing it towards Hg0 vapor pulses in order of low to high concentrations at different operating temperatures. From the response magnitude perspective, it can be observed that the sensor exhibited the highest response magnitudes towards Hg0 vapor when operated at 35°C. It can also be seen that, for elevated operating temperatures (45 to 75°C) the response magnitudes of the sensor did not vary significantly. Furthermore, the limit of detection (LOD) was also favorable at 35°C relative to all other operating temperatures tested. In order to determine the LOD of the sensor towards Hg0 vapor, the method of three standard deviations was employed to the noise profile of the Hg exposed sensor. This data was acquired by exposing the sensor towards dry N\textsubscript{2} for one hour period at all operating temperatures (as discussed in section 3.2). The LOD of the sensor at different operating temperatures was observed to increase with increasing operating temperature and range between 0.7 ppb\textsubscript{v} and ~15 ppb\textsubscript{v} as seen in Figure 5b. This trend can be explained by the noise magnitudes of the sensor which were also found to increase with increasing operating temperature. However, due to the similar noise magnitudes and sensitivity, the LOD of the sensor was found to be almost identical (4.50 ppb\textsubscript{v} and 4.54 ppb\textsubscript{v}) at 45 and 55°C, respectively. However from the operability perspective the higher temperature of 55°C is favored over 45°C as the effect of cross-contamination from interfering gas species has been reported to reduce with increasing operating temperature when detecting mercury with mass-based sensors. Therefore the operating temperatures of 35 and 55°C were chosen for further tests as the sensor has the lowest detection limit at 35°C while expected to have better selectivity towards low concentrations of Hg0 vapor at 55°C.
4.2 Repeatability and stability of the SAW based Hg\(^0\) vapor sensor

The repeatability of the developed sensor was tested by comparing the response magnitude of the sensor towards a series of six Hg\(^0\) vapor pulses having the same concentration (365 ppb\(_v\)). In order to compare the repeatability of the developed SAW sensor at two different operating temperatures (35 and 55°C), the coefficient of variances (COV) was calculated for the sensor response magnitudes in the series at both temperatures. The COV is a measurement of the spread of a dataset around its mean and is therefore a good indication of the sensor repeatability\(^{51}\). A lower value of COV is an indication of better repeatability of the sensor (i.e. repeatability = 100% - COV). The mean or average response magnitude (\(\Delta f_{Hg(avg.)}\)) and standard deviation (\(\sigma\)) of the sensor response can be calculated using Equation 7 and Equation 8, respectively.

\[
\Delta f_{Hg(avg.)} = \frac{\Sigma \Delta f_{Hg}}{n},
\]

\[
\sigma = \sqrt{\frac{\Sigma (\Delta f_{Hg} - \Delta f_{Hg(avg.)})^2}{n-1}}.
\]

The symbol \(\Delta f_{Hg}\) represents the sensor’s response magnitude for each Hg\(^0\) vapor pulse, \(\Delta f_{Hg(avg.)}\) is the average response magnitude of the repeated Hg\(^0\) vapor pulses and \(n\) is the total number of Hg\(^0\) vapor pulses. It was found that the sensor’s response magnitude for the six repeated pulses varied by around ~3\% (otherwise referred to as 97\% repeatability) while measuring 365 ppb\(_v\) of Hg\(^0\) vapor at 35 and 55°C (as shown in Figure 6a, 6b), indicating that the developed sensor had excellent repeatability at both operating temperatures tested.

From a long-term sensor stability point of view, we have previously reported that mass based acoustic wave sensors can efficiently detect Hg\(^0\) vapor for up-to a six months period\(^{29}\) while still being operable. In this study, it can be observed from SI, Figure S4 that the developed sensor’s response magnitude towards a Hg\(^0\) vapor concentration of 195 ppb\(_v\) only deviated by less than 5\% following a testing period of one week. Furthermore, the SAW transducer was observed to oscillate and operate as a sensor following four weeks of experimental testing.
4.3 Selectivity of SAW towards Hg0 vapor sensor

The selectivity of the developed SAW sensor towards Hg0 vapor was tested by exposing the sensor towards Hg0 vapor of different concentrations in the presence of common interfering gas species present in industrial environments. The concentrations used for different interfering gases are listed in Section 3.2. The concentrations of the common interference gas species used in this study are much higher than their normal levels in an industrial environment (low ppb, levels)52. The higher concentrations were chosen for testing in order to realize the developed sensor’s cross-sensitivity performance when operated under extreme environmental conditions.

Example of selectivity test for Hg0 vapor concentrations of 365 ppb\textsubscript{v} at an operating temperature of 55°C is shown in Figures 7a. As labeled in the figure, the tests involved exposing the sensor to clean Hg0 vapor pulses while one or more interfering gases (NH\textsubscript{3}, MeCHO, EM, DMDS, MEK and H\textsubscript{2}O vapor) are added with the Hg0 vapor in each alternative pulse. The selectivity of the developed SAW based Hg0 vapor sensor for different interfering gases was calculated using Equation 9.

\[
\text{Selectivity} \, (\%) = \left(1 - \frac{\Delta f_{(\text{Hg}^0 + \text{int. gas})}}{\Delta f_{(\text{Hg}^0)}} \right) \times 100 \%
\]

(9)

The symbols \(\Delta f_{(\text{Hg}^0 + \text{int. gas})}\) and \(\Delta f_{(\text{Hg}^0)}\) represent the sensor’s response magnitude towards Hg0 vapor with and without the presence of interfering gases, respectively.

The sensor showed excellent selectivity at both operating temperatures of 35°C (89 to 92%) and 55°C (93 to 97%) when the tests were performed under dry conditions (i.e. without the presence of humidity). The overall selectivity data is shown in Figure 7b and tabulated in Table 3. It can be observed that the sensor exhibited better selectivity for all tested interfering gases when the operating temperature was increased from 35 to 55°C. Moreover the sensor showed much higher response (spikes of several kHz) towards Hg0 vapor when in the presence of a humidity level of 20.6 g/m3 (equivalent 50% RH at 35°C) at the operating temperature of 35°C. As shown in Figure S5a, the sensor showed almost double the response magnitudes when humidity was introduced with 365 ppb\textsubscript{v} of Hg0 vapor at 35°C compared to Hg0 vapor exposure alone. Therefore, it can be assumed that the sensor had no selectivity (\(\Delta f_{(\text{Hg}^0 + \text{int. gas})}\) set to 0 Hz by default) towards
Hg0 vapor in the presence of humidity at 35°C. However, the sensor showed excellent selectivity when the same humidity concentration ($20.6 \text{ g/m}^3 = 20\% \text{ RH at } 55^\circ\text{C}$) was present at 55°C (Figure S5b). As shown in Figure 7b and Table 3, the developed sensor showed selectivity of 92 to 96% for Hg0 vapor exposure along with different interfering gases while in the presence of H$_2$O vapor. This observation is in agreement with past studies which have shown that mass based Hg0 vapor sensors (i.e. QCMs) exhibit better selectivity at relatively higher operating temperatures29. It is postulated that the sensor stopped functioning at the lower tested operating temperature of 35°C in humid conditions due to the dew point (23°C) being close to the operating temperature. This has likely resulted in water molecules condensing on the IDTs which resulted in meaningless and abrupt frequency changes in the sensor response profiles thus it was not possible for the developed SAW sensor to detect Hg0 vapor in the presence of such high humidity content at 35°C. The higher selectivity of the sensor observed at the elevated operating temperature is postulated to be due to the relatively higher vapor pressure of H$_2$O at 55°C and the fact that this temperature is relatively much higher than the dew point (23°C) thus ensuring that most of the H$_2$O molecules are in the gaseous form and do not condense onto the sensor surface.

5. Conclusions

In summary, a SAW sensor employing gold IDTs as the sensing elements was developed and tested for selective detection of low concentrations of Hg0 vapor of low ppbv levels in the presence of NH$_3$, VOCs and high humidity content at both 35 and 55°C. The response magnitude of the developed SAW sensor towards different concentrations of Hg0 vapor fitted well with the LRC which was in line with our theoretical FEM modeling. The LRC model fit further confirmed that the sensor design is well suited for detecting low concentration of Hg0 vapor. It was also found that there is a tradeoff in the operating conditions to be chosen such that although the sensitivity of the developed SAW sensor decreases with increasing temperature, the selectivity towards Hg0 vapor increases. The operating temperature at which the sensor was found to simultaneously have excellent sensitivity, repeatability and selectivity towards Hg0 vapor among common interfering
gases both in dry and humid conditions was found to be 55°C. Moreover, these sensitivity,
repeatability and selectivity was observed without the Au based SAW sensor requiring any external
heat source or change in total flow rate during the regeneration step. The promising results make
this sensor a potential solution for detecting low concentration of Hg vapor in industrial stack
effluents where the presence of interfering gases and humidity is very common.
Acknowledgements

The authors acknowledge the Microelectronic and Materials Technology Centre (MMTC) at RMIT University for allowing the use of their facilities. The authors are thankful to Dr. Ahmad Kandjani for his help and suggestions. Authors also acknowledge the Australian Research Council (ARC) for supporting this project and SI acknowledges the ARC for APDI fellowship (LP100200859).
References

Figure Captions

Figure 1. a) Simulated SAW delay line structures with 2 pairs of gold electrodes at both of the input and output IDTs placed on a quartz substrate. b) FEM mesh used for all simulations.

Figure 2. a) Time delay between the X displacement for the SAW structure simulated with a clean Au electrode and with an Au electrode having 50 monolayers of Hg\(^0\) atoms. b) Langmuir curve fit for time delay in the displacement field against different number of monolayers formed on the Au electrodes. c) Surface plot showing the total piezoelectric displacement under the IDT area of the SAW structure for unperturbed Au electrodes and d) Au electrodes with 50 Hg\(^0\) monolayers.

Figure 3. Image of the fabricated SAW sensor utilizing a ST quartz substrate and gold IDTs

Figure 4. a) Sensor’s dynamic response for the different Hg\(^0\) vapor concentrations tested at 55°C. b) Demonstration of Langmuir adsorption isotherm fitting on the sensor calibration curve at 55°C.

Figure 5. a) Sensor’s temperature profile showing temperature dependency of the sensor for different concentrations of Hg\(^0\) vapor. b) Detection limit of the sensor at different operating temperatures.

Figure 6. a) Example of sensor repeatability showing dynamic responses for six repeated pulses of 365 ppb\(_v\) Hg\(^0\) vapor at 55°C and b) Repeatability (indicated by 100%-COV) of the sensor for six repeated pulses of 365 ppb\(_v\) Hg\(^0\) vapor at 55 and 35°C. The dashed line (along 100% normalized response magnitude) indicates the average response magnitude of the sensor for the repeated pulses. Normalized response magnitude is calculated as the ratio of (in %) response magnitude to that of average response magnitude over six pulses (Δf/Δf\(_{avg}\) × 100%).

Figure 7. a) Sensor dynamic response for different interfering gases exposed with 365 ppb\(_v\) of Hg\(^0\) vapor at operating temperature of 55°C and b) Bar graph shows overall selectivity of the sensor Hg\(^0\) vapor exposure in the presence of various interfering gases while operating at 35 and 55°C.

Table Captions

Table 1. Parameters of simulated SAW delay line structure

Table 2. The time delay calculated from FEM simulation obtained for different numbers of monolayers adsorbed/diffused on the Au electrode

Table 3. Selectivity of the sensor towards 365 ppb\(_v\) Hg\(^0\) vapor in the presence of different interfering gases

Analyst Accepted Manuscript
Figure 1
Figure 2

a) Displacement, X Component (pm)

-0.2
-0.1
0.0
0.1
0.2
0.3

Displacement, X Component (pm)

0 15 30 45 60
-0.2
-0.1
0.0
0.1
0.2

Unperturbed Au electrode

Time (ns)

0 15 30 45 60
-0.2
-0.1
0.0
0.1
0.2

50 Hg^0 atom monolayers

b) Time Delay (ns)

0 10 20 30 40 50
0.00
0.05
0.10
0.15
0.20

Time delay

Langmuir Isotherm Fit

No. of Hg^0 Atom Monolayers

0 10 20 30 40 50
0.00
0.05
0.10
0.15
0.20

2.56 \times 10^{-7}
5.85 \times 10^{-11}
4.16 \times 10^{-11}
2.62 \times 10^{-7}

V^+ V^+ V^- V^- 0 0 0 0

1 \lambda depth
136 \mu m

V^+ V^+ V^- V^- 0 0 0 0

1 \lambda depth
136 \mu m

V^+ V^+ V^- V^- 0 0 0 0

1 \lambda depth
136 \mu m

V^+ V^+ V^- V^- 0 0 0 0

1 \lambda depth
136 \mu m

2.56 \times 10^{-7}
5.85 \times 10^{-11}
4.16 \times 10^{-11}
2.62 \times 10^{-7}
Figure 3
Figure 4

(a) SAW Response, Δf (kHz) vs. Time (Hrs) at Operating Temp: 55°C

(b) Langmuir Curve Fit of Response Magnitudes vs. Hg\(^{0}\) Vapor Concentration (ppb).

- Response Magnitudes
- Langmuir Curve Fit

Operating Temp: 55°C
Figure 5
Figure 6
Figure 7

\[A = 383.8 \text{ ppm}_v \text{NH}_3 \quad B = 303.4 \text{ ppm}_v \text{MeCHO} \quad C = 2.61 \text{ ppm}_v \text{EM} \]
\[D = 5.01 \text{ ppm}_v \text{DMDS} \quad E = 40.1 \text{ ppm}_v \text{MEK} \quad F = 20.6 \text{ g/m}^3 \text{H}_2\text{O} \]
<table>
<thead>
<tr>
<th>SAW structure parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Length</td>
<td>1000 µm</td>
</tr>
<tr>
<td>Substrate Height</td>
<td>500 µm</td>
</tr>
<tr>
<td>No. of Electrode pairs</td>
<td>2 (in both IDTs)</td>
</tr>
<tr>
<td>Electrode Length</td>
<td>6 µm</td>
</tr>
<tr>
<td>Electrode Height</td>
<td>100 nm</td>
</tr>
<tr>
<td>Wavelength</td>
<td>24 µm</td>
</tr>
<tr>
<td>Delay line length</td>
<td>54 µm</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>No. of Hg⁶ Monolayers</th>
<th>Effective Au mass density (g/cm³)</th>
<th>Effective Au Electrode Thickness (µm)</th>
<th>Time Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.77</td>
<td>0.100342</td>
<td>0.0067</td>
</tr>
<tr>
<td>2</td>
<td>20.24</td>
<td>0.100684</td>
<td>0.0141</td>
</tr>
<tr>
<td>3</td>
<td>20.71</td>
<td>0.101026</td>
<td>0.0207</td>
</tr>
<tr>
<td>4</td>
<td>21.18</td>
<td>0.101368</td>
<td>0.028</td>
</tr>
<tr>
<td>5</td>
<td>21.65</td>
<td>0.101710</td>
<td>0.0347</td>
</tr>
<tr>
<td>10</td>
<td>23.99</td>
<td>0.103420</td>
<td>0.0708</td>
</tr>
<tr>
<td>20</td>
<td>28.68</td>
<td>0.106840</td>
<td>0.1452</td>
</tr>
<tr>
<td>30</td>
<td>28.68</td>
<td>0.110260</td>
<td>0.1579</td>
</tr>
<tr>
<td>40</td>
<td>28.68</td>
<td>0.113680</td>
<td>0.1709</td>
</tr>
<tr>
<td>50</td>
<td>28.68</td>
<td>0.117100</td>
<td>0.1845</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Tested interfering gases along with Hg0 vapor</th>
<th>Hg0 Vapor Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55°C</td>
</tr>
<tr>
<td>NH\textsubscript{3}</td>
<td>93.7</td>
</tr>
<tr>
<td>MeCHO</td>
<td>95.7</td>
</tr>
<tr>
<td>EM</td>
<td>95.4</td>
</tr>
<tr>
<td>DMDS</td>
<td>97.4</td>
</tr>
<tr>
<td>MEK</td>
<td>93.5</td>
</tr>
<tr>
<td>H\textsubscript{2}O Vapor</td>
<td>92.4</td>
</tr>
<tr>
<td>H\textsubscript{2}O Vapor and NH\textsubscript{3}</td>
<td>94.4</td>
</tr>
<tr>
<td>H\textsubscript{2}O Vapor and CH\textsubscript{3}CHO</td>
<td>92.0</td>
</tr>
<tr>
<td>H\textsubscript{2}O Vapor and EM</td>
<td>96.3</td>
</tr>
</tbody>
</table>