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Vessey a

.  

Emerging pattern mining techniques have been applied to datasets of Ames mutagens.  The 

discovered patterns give rise to clusters of compounds from large and biased datasets which are 

used to develop new structural alerts for mutagenicity in the Derek Nexus expert system. 

Introduction 

Knowledge based expert systems can be used to predict the 

potential toxicity of novel chemicals and typically do so by 

means of identifying toxicophoric chemical substructures 

known as structural alerts1 2 3 4 5.  The creation of a structural 

alert is commonly done by human experts who can investigate 

literature and private source data for supporting mechanistic 

information.  Knowledge base development can, therefore, be a 

very time consuming process so methods of aiding human 

experts to identify a structural alert are of interest. 

Emerging pattern (EP) mining is a data mining technique to 

distinguish combinations of binary descriptors that are more 

common in one class (such as toxic compounds) than in another 

(such as non-toxic compounds)6.  EP mining techniques have 

been used to investigate a variety of biological targets and 

toxicity endpoints7 8 9.  In this paper we show how the 

techniques have been applied to investigate areas of chemical 

space containing mutagens identified by the Ames test and how 

they have been used to discover relevant clusters of 

compounds.  These clusters were further investigated and 

subsequently used to develop new structural alerts in the 

knowledge base of the Derek Nexus expert system3. 

Background 

Previously, we have described how emerging pattern 

technology can be used to mine chemical data sets.  The first 

study10 concentrated on jumping emerging patterns (JEPs) – 

that is, patterns of descriptors which occur exclusively in 

compounds of one class; in this case the class is Ames-positive 

compounds. 

JEPs are by their nature very intolerant of noisy data: in 

practice this results in the production of many overlapping JEPs 

describing similar chemical space.  In contrast, the second 

study11 focussed on emerging patterns, which are patterns of 

descriptors which are more common in one class over another – 

for example more common in active rather than inactive 

compounds – and which are much more noise tolerant. 

Both EPs and JEPs can be mined from binary fingerprints of 

compounds in a dataset.  In this study the descriptors tried were 

binary fingerprints generated from the freely available RDKit 

tools12 and simple structural fragments generated in-house by a 

procedure described below. 

It is important to distinguish the aims of this paper – new 

knowledge discovery – from other data mining attempts, 

particularly a QSAR approach to predictive model building.  

The motivation for this study was to expedite development of 

expert predictions by identifying clusters of compounds 

suitable for the attention of experienced scientists to enhance a 

knowledge base.  It was expected that clusters of compounds 

which share easily interpretable features would become 

apparent in the analysis of Ames mutagenicity because that 

endpoint is relatively well understood in terms of molecular 

initiating events some of which can be attributed to 

electrophilic functional groups which themselves are relatively 

easy to describe. 

The datasets used in this study were a curated version of the 

Hansen data set13 and a curated CFSAN dataset14 from which 

compounds also contained in the Hansen data set had been 

deleted. 

Pre-computed sets of fragments – such as those available in 

commercial packages such as Dragon15 or Leadscope 

Enterprise16 – were found to be of limited value in this study 

because (a) too many closely related descriptors were available 
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and, conversely, (b) some fragments known to be closely allied 

to Ames mutagenicity, for example N-nitro groups, were not 

contained in off-the-shelf descriptor sets.  In that any 

information in a dataset relating structure to activity must come 

from within the dataset, it was decided to generate a fragment 

dictionary from the dataset itself and that the dictionary should 

consist of functional groups which could be related by human 

experts to mutagenicity on a mechanistic basis. 

Results and Discussion 

Method  

The reader is referred to Figure 1 for the steps in the approach 

reported in this paper. 

 
Figure 1: Flowchart of the approach reported in this paper.  Step numbers are 

explained in more detail in the text. 

Step 1: The structures in the datasets were curated as reported 

previously11 after which each molecule in the training set was 

represented in its fully hydrogen expressed format.  Properties 

such as number of neighbouring atoms and whether or not the 

atom had aromatic bonds were added to each atom.  

The EP mining process requires that data associated with the 

compounds in the training set are expressed as a binary 

fingerprint. Steps 2 – 6 detail two different fingerprinting 

methods used in this study. 

Step 2: Functional group fragments were generated from the 

curated structures by removing all the carbon-carbon single 

bonds, carbon-carbon aromatic bonds and the carbon-hydrogen 

bonds.  Of the resulting fragments, those with more than one 

atom represent discrete functional groups within the molecule 

and were considered for inclusion in the emerging patterns 

analysis. 

The atoms in the fragments retained their information about the 

number of neighbours and aromaticity so that groups such as 

N=O would not match N+(=O)O- or that aromatic cN(H)(H) 

would not match aliphatic CN(H)(H); the chemical moieties 

here are represented in SMILES format17. 

No further filtering of the fragments, for example by fragment 

size or by finding subset-superset relationships, was found to be 

necessary. The method generated 1296 fragments from the 

Hansen dataset, 1288 of which had 20 atoms or fewer, the 

exceptions being fragments derived from polypeptide 

structures. 

Step 3: Ring fragments were generated by a similar method: 

this involved, for each molecule in the training set, removing all 

bonds other than those in rings, exo- double bonds and ring 

positions substituted by heteroatoms.  Again fragments with 

more than one atom present were retained.  This generated 

2382 fragments from the Hansen dataset, 2312 of which had 30 

atoms or fewer; again larger fragments were those derived from 

polypeptide structures. 

Step 4: The combined fragments generated by both methods 

were represented as canonicalised SMARTS18 patterns which 

allowed duplicate fragments to be identified and eliminated.  

This produced a dictionary of 3678 different fragments from 

the Hansen dataset. 

Step 5: The fragment dictionary was then matched against all of 

the molecules in the training set with the presence or absence of 

the fragment in the molecule being recorded producing the 

fingerprint for each compound based on the generated 

fragments.  It would have been possible at this stage to remove 

any entries in the dictionary that fell below the threshold for 

occurrence in the EP mining step, but in practice this was not 

necessary. 

Step 6: Fingerprints from the RDKit KNIME19 node were also 

generated; these were only used for the JEP study. 

Step 7: EPs were mined from the full Hansen dataset.  The EP 

mining used the previously described method11: the minimum 

threshold on support in both active compounds and inactive 

compounds was set at 1% and the curve frontier parameter to 

control noise was set at 1.3. Under these conditions the 

discovery of the EPs took ca. 10 minutes and was not, therefore 
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significant in the time taken to develop the alerts. A total of 604 

EPs were generated and organised into 181 hierarchies of 

structurally related support sets. 

Step 8: It was anticipated that the EPs might represent the 

chemical signatures of structural alerts.  Thus, when developing 

new structural alerts for a knowledge base prediction system, 

the clusters of interest will be those supported by the highest 

number of false negatives and lowest number of true negatives.  

In this study the false negatives (FNs) and true negatives (TNs) 

were classified as those compounds for which Derek Nexus did 

not contain an alert and were found experimentally to be active 

and inactive respectively.  Of the 181 ‘root’ EPs in these 

hierarchies, the three that were supported by the highest number 

of false negatives and lowest number of true negatives were 

selected as the most promising candidates for new structural 

alerts. 

Step 9: As an alternative to mining the full data set, JEPs of 

descriptors of FNs were obtained from a set of FNs and TNs.  

The method of JEP mining has been described previously.9  As 

the dataset of FNs and TNs was somewhat smaller than the full 

dataset, the time taken to discover the JEPs was also a matter of 

minutes.  JEPs were mined from both the fragment fingerprints 

generated in Steps 2 – 5 and the RDKit fingerprints generated 

in Step 8. 

Step 10: Where the support set of compounds for a JEP was 

large enough to merit further assessment (typically 4 or more 

compounds), they were analysed visually to identify SMARTS 

patterns which best summarised the support set.  This was done 

without reference to the descriptors which made up the JEP as 

the supporting sets were typically small (10 compounds or 

fewer) whereas the SMARTS patterns covered more chemical 

space.  For example, the 11 compounds in Figure 2 form the 

support set for the JEP {CSCCl, C(=O)OH} discovered from 

the simple fragments fingerprint from the Hansen training set; 

the set was summarised with the SMARTS pattern ClC=CS. 

The SMARTS patterns were matched against the training set to 

generate clusters which were candidates for further 

investigation. 

Step 11: Each cluster sdf file was imported into an Excel sheet 

using JChem for Excel20.  The chemical name and CAS number 

retrieved for each compound by browsing Chemspider21, 

CHEBI22, ChemID plus23 or other chemistry databases.  

Toxicological data were retrieved if possible for each active 

compound in the cluster which did not already activate an alert 

in Derek Nexus by browsing TOXNET24, the NTP toxicity 

studies database25 or querying Vitic Nexus26 by CAS number.  

Wider searches involving querying TOXNET (through ChemID 

plus) and Vitic Nexus using substructure searches were also 

performed to ensure that all relevant or related compounds were 

found in the data searches.  All data were checked against the 

source publications.   

Step 12: Finally, when possible, the mechanistic rationale of 

activity was investigated and assessed using literature found 

from the PubMed database27. 
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Figure 2: The support set for the JEP {CSCCl, C(=O)OH} summarised with the 

signature ClC=CS 

Study with EPs 

Owing to its inherent noise tolerance, EP mining is well suited 

to the initial exploratory analysis of previously unseen datasets.  

A relatively small number of EPs are typically generated, with 

relatively large support sets; therefore, a knowledge base 

scientist will be presented with a manageable number of 

clusters and a set of easily interpretable common features 

requiring less post-processing modification than needed for JEP 

analysis. 

The structural fragments comprising the three selected EPs are 

shown in Figure 3.  The EPs for Cluster 1 and Cluster 2 are 

single fragments, while the EP for Cluster 3 is composed of a 

benzene ring and a dimethoxy group between two aromatic 

carbon atoms. 

Where an EP is defined by a single fragment, the technique 

effectively produces the same result as a common substructure 

analysis, however one of the advantages of the EP mining 

techniques is that the user does not assume this to be the case 

before performing the analysis and indeed Cluster 3 could not 

have been found from a common substructure analysis. 
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Figure 3: Structural fragments forming EPs which defined the most significant 

clusters of interest.  

Study with JEPs 

As shown in Table 1, the simple fragments produced many 

fewer JEPs than did the RDKit fingerprints, whereas the JEPs 

from the RDKit fingerprint were more supported.   

Table 1: Number of minimal JEPs, level of greatest support for a JEP and 

number of JEPs assessed further from different training sets and fingerprints. 

Each SMARTS pattern was evaluated against the training set 

from which the JEPs had been derived (internal validation) and 

one other dataset - either of Hansen or CFSAN (whichever had 

not been used to derive the JEPs; i.e. external validation).  For 

example, the SMARTS pattern ClC=CS found 14 structures in 

the Hansen data set of which all were FNs and 1 in the CFSAN 

data set, which again was a FN. 

Distinct SMARTS patterns which produced clusters from the 

internal or external validation sets which were enriched in FNs 

relative to the validation dataset as a whole are shown in Table 

2.  In some cases substructures were suggested by more than 

one set of JEPs, e.g. from both RDKit and functional group 

fragments of compounds in the Hansen data set or from 

compounds in both Hansen and CFSAN datasets; in these cases 

the substructures are only recorded once. 

The FN:TN ratios in Table 2 show how the emerging pattern 

technique is more useful than others, such as a common 

substructure approach, in cases where there is significant bias in 

the training data: patterns of descriptors are generated and 

investigated automatically until either the signal contained in 

the support set becomes interesting to the user, or until it 

becomes clear that no further investigation of a combination of 

features will provide a pattern that fulfils the user’s 

requirements.  In the case of this investigation, clusters can be 

found and investigated where there is still a preponderance of 

TNs. 

In Table 2 interesting clusters have been highlighted and these 

were taken forward for investigation for new structural alerts; 

the clusters’ signatures are shown in Figure 4.  As the signature 

of Cluster 6 is similar to that of Cluster 1, Cluster 6 was not 

analysed further.  

Table 2: TN and FN distribution of clusters defined by SMARTs from JEPs 

 

Figure 4: Chemical signatures of clusters derived from JEPs 

Investigation of new alerts from EPs and JEPs 

Having identified several clusters of compounds with defined 

and easily recognisable commonality which showed a 

preponderance for activity, they were then assessed as new 

chemical classes for the development of structural alerts. 

Training set Fingerprint Number of 

minimal JEPs 

Greatest 

support 

Number of JEPs 

assessed further 

i.e. support ≥ 4 

Hansen RDKit 2485 13 195 

Hansen Simple 

fragments 

308 11 31 

CFSAN RDKit 4444 23 209 

CFSAN Simple 

fragments 

149 4 4 

 CFSAN (training) Hansen (test ) 

 TN FN Ratio TN FN Ratio 

All data 1486 335 0.22 2216 787 0.36 

 

SMARTS summarising JEPs   

from RDKit fingerprints 

c1@C(O)@C(O)@[#6]@[#6]c1 0 14 ∞ 17 41 2.4 

[#6]N([CH2][CH3])[CH2;R0][#6] 21 27 1.29 24 21 0.88 

[#6]C([#6])=C1C=CC 

(=[N+]([#6])[#6])C=C1 

3 15 5 4 5 1.25 

 

SMARTS summarising JEPs 

from functional group fingerprints 

c12ccccc1ccnc2 3 6 2 6 12 2 

c12ccccc1COC2=O 10 6 0.6 7 2 0.28 

c1cc[o+]cc1 1 5 5 2 2 1 

 

 CFSAN (test) Hansen (training) 

SMARTS summarising JEPs 

from RDKit fingerprints 

c1c(c)c(c)cc(@C(=O)@[#6])c1 1 2 2 7 19 2.71 

 

SMARTS summarising JEPs 

from functional group fingerprints 

ClC=CS 0 1 ∞ 0 14 ∞ 

c1cccc2[#6](=O)c3ccccc3 

[#8,#16]c12 

0 2 ∞ 1 15 15 

c1cccc2cc3ccccc3nc12 1 4 4 2 11 5.5 

C1OOC1 0 0 - 3 14 4.5 

C1OC1C=O 1 8 8 7 13 1.86 

c12ccccc1CC=N2 0 0 - 1 5 5 

c1ccnn1 2 0 0 7 9 1.28 

a12aaaaa1a3aaaaa3n2 7 8 1.12 8 30 3.75 

NC([CH2;R0]S)C(=O)O 4 3 0.75 11 11 1 

C=N[#7] 8 4 0.5 9 11 1.22 
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Clusters from EP mining 

CLUSTER 1 Cluster 1 contained 30 compounds with 13 FNs; 

Figure 5 and Table 3 summarise the data found for 17 

compounds of this class. Table 4 summarises the metrics of 

Cluster 1 as a whole.  Although grouped together in a single 

cluster from the EP analysis, two different mechanisms of 

action of compounds in the cluster are observed and thus two 

new structural alerts could be made.  Firstly, the mutagenic 

activity of the 1,3-dihydroxyxanthones is likely to involve a 

non-covalent DNA intercalation28 with a 1,3-

dihydroxyxanthone metabolite as evidenced by several 

experiments including ethidium bromide displacement and 

changes to DNA viscosity and transition temperature29.  

Secondly, the thioxanthones and analogues have been shown to 

undergo activation at the C4 position30 leading to a benzylic 

cation which is likely to be the active mutagen, which binds or 

intercalates and then alkylates DNA causing frameshift and 

other mutations. 

 

 

Figure 5: Structures of compounds whose toxicity data are reported in Table 3 

CAS number. Strains Overall call Ref. 

 TA100 TA97 TA98 TA1537   

 -S9 +S9  -S9 +S9  -S9 +S9  -S9 +S9   

21811-73-4   Neg Neg Neg Neg Neg Neg Neg 31 

90-47-1 Neg Neg Neg Neg Neg Neg   Neg 32 

90-46-0 Neg Neg Pos Pos Pos Pos   Pos 32 

529-49-7 Neg Pos Neg Pos Neg Neg   Pos 32 

437-50-3 Neg Pos Neg Pos Neg Neg   Pos 32 33 

13379-35-6 Neg Pos Neg Pos Neg Neg   Pos 32 

491-64-5 Neg Pos Neg Pos Neg Neg   Pos 32 33 

3722-54-1 Neg Pos Neg Pos Neg Neg   Pos 32 

2980-32-7 Neg Neg Neg Pos Neg Neg   Pos 32 

2798-25-6 Neg Neg Pos Pos Neg Neg   Pos 32 

5557-27-7 Neg Neg Equ1 Pos Neg Neg   Pos 32 

54954-12-0 Neg Neg2 Neg Neg2 Neg Neg   Neg 32 

4773-96-0 Neg Neg Neg Neg Neg Neg   Neg 32 

112022-07-8       Pos  Pos 34 

479-50-5       Neg3 Pos3 Pos 35 

3105-97-3     Pos Pos   Pos 35 

23255-93-8       Pos4 Pos4 Pos 35 

Table 3: Structures, CAS numbers and Toxicological data for Xanthone derivatives and analogues.  Abbreviations: Pos – positive, Neg – negative, Equ- 

equivocal . Structures are shown in Figure 5. 

1 Activity seen versus control but not determined to be significantly strong enough to be a clear positive.  2 If β−glucosidase is present in the S9 activation 

medium, the compounds are positive.  3 Also negative in TA 1538.  4 Also positive in TA 1538. 
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Predicted toxicity Total 

Experimental toxicity + - 
 

+ 10 13 23 

- 6 1 7 

Total 16 14 30 

Table 4: Numbers of compounds in Cluster 1 with experimental and 

predicted toxicity; predictions are from Derek Nexus version 3.0.1.  

 
Predicted toxicity Total 

Experimental toxicity + - 
 

+ 25 19 44 

- 8 10 18 

Total 33 29 62 

Table 5: Numbers of compounds in Cluster 2 with experimental and 

predicted toxicity; predictions are from Derek Nexus version 3.0.1  

O

O

O
 

Figure 6: Benzofuran dioxetane  

 
Figure 7: Structures of compounds whose toxicity data are reported in Table 6  

CLUSTER 2 Cluster 2 contained 62 compounds with 19 FNs.  

Table 5 summarises the metrics of Cluster 2.  Most of the FNs 

are benzofuran dioxetane derivatives with a core shown in 

Figure 6. 

Figure 7 and Table 6 summarise the data found for a series of 

benzofuran dioxetane compounds.  Mechanistically, this class 

of compounds is thought to interact with DNA via alkylating 

properties, the ultimate mutagen is proposed to be the epoxide 

formed by deoxygenation36.  A new structural alert for 

mutagenicity of aryl fused furan 2,3-dioxetanes was 

constructed. 

CLUSTER 3 Cluster 3 contained 55 compounds with 19 FNs.  

Table 7 summarises the metrics of Cluster 3.  This cluster was 

too general and picked up a part of bigger molecules containing 

a polyaromatic hydrocarbon skeleton, PAH, (a class that is 

already covered in the Derek Nexus knowledge base) which 

seems not to be responsible for any mutagenicity.  This 

investigation did not lead to the development of a new 

mutagenicity alert. 

Clusters from JEP mining 

CLUSTER 4 Cluster 4 was generated from the Hansen data set 

using the SMARTS pattern c1@C(O)@C(O)@[#6]@[#6]c1; 

the cluster contained 121 compounds with 41 FNs.  Table 8 

summarises the metrics of Cluster 4. 

As with cluster 3, the cluster was too generic and could not be 

used directly to derive new structural alerts.  However, a look at 

the FNs in more detail supported the following conclusions.  

The FNs were reorganised into two subcategories: 

FLUORANTHENE AND DERIVATIVES have a core as shown in 

Figure 8.  Figure 9 and Table 9 show the toxicological data 

found for 32 fluoranthene derivatives.  Under the forward 

mutation assay conditions in Salmonella typhimurium TM677, 

the ultimate mutagen is identified as the 2,3-diol-1,10-epoxide 

fluoranthene37,38.  The implication that this diolepoxide is the 

ultimate mutagenic form responsible for activity is further 

supported by evidence suggesting that i) diastereoisomers of the 

2,3-dihydrodiol-1,10b-epoxide of benzo[ghi]fluoranthene were 

demonstrated to react with DNA in vitro39,40, and ii) 

fluoranthene formed similar DNA adducts in vitro in the 

presence of metabolic activation, which were identified as 

being formed through the diolepoxide metabolites41.  Based on 

this research an alert covering the mutagenicity of 

fluoranthenes and their 2,3-diol derivatives was developed. 

 
Figure 8: Fluoranthene 

PAH DIHYDRODIOL DERIVATIVES have a core as shown in 

Figure 10.  These compounds are formed by CYP450 oxidation 

and results, after a subsequent oxidation, in the ultimate 

mutagen of bay containing-PAH, namely the 1,2-diol-3,4-

epoxide as shown in Scheme 1.  Figure 11 and Table 10 show 

the toxicological data found for 23 such compounds.  Based on 

the mechanistic evidence and toxicological data42, the 

mutagenicity of the 1,2-dihydrodiol derivatives of bay-PAH 

could be covered by being included in the scope of an existing 

structural alert for the mutagenicity of PAH.  In contrast, 

metabolism of K-region epoxides of PAHs to 9, 10–dihydro 

diols are considered to be a detoxification pathway and these 
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diols are reported to be negatives in Ames tests43 (see Scheme 

2). 

 

CAS number Strains Ref 

 TA100  

 -S9  

33973-15-8 Pos 44 45 

128753-82-2 Pos 44 45 

128753-83-3 Pos 44 45 

130293-26-4 Pos 44 45 

128753-86-6 Pos 44 

128753-87-7 Pos 44 

128753-88-8 Pos 44 

128753-90-2 Pos 44 

128753-91-3 Pos 44 45 

128753-93-5 Neg# 44 

128753-94-6 Neg# 44 

128753-95-7 Pos 44 45 

128753-96-8 Pos 44 45 

128753-99-1 Pos 44 

129812-24-4 Pos 45 46 

129812-26-6 Pos 46 

129812-29-9 Neg* 45 46 

129812-30-2 Neg* 46 

129833-00-7 Pos 46 

Table 6: Toxicological data for benzofuran dioxetane derivatives shown in 

Figure 7; * tested to 100 ug/plate; # highest dose tested not stated 

 
Predicted toxicity Total 

Experimental toxicity + - 
 

+ 12 19 31 

- 4 20 24 

Total 16 39 55 

Table 7: Numbers of compounds in Cluster 3 with experimental and 

predicted toxicity; predictions are from Derek Nexus version 3.0.1  

 
Predicted toxicity Total 

Experimental toxicity + - 
 

+ 50 41 91 

- 13 17 30 

Total 63 58 121 

Table 8: Numbers of compounds in Cluster 4 with experimental and 

predicted toxicity; predictions are from Derek Nexus version 3.0.1  

 
Scheme 1: Generation of the mutagenic 1,2-dihydrodiol-3,4-epoxide.  At least 

one of the bonds marked * must be fused to an aromatic ring.  

 
Scheme 2: Detoxification of K-region PAHs epoxide to their 9, 10-diols. 

CLUSTER 5 was generated from the Hansen data set using the 

SMARTS pattern ClC=CS, it contained 17 compounds with 13 

FNs.  Table 11 summarises the metrics of Cluster 5.  Although 

the signature of the cluster represents beta-halo alkenyl thiol 

derivatives, the cluster led to the identification of a range of 

mutagenic alpha-halo alkenyl-thiol derivatives, including S-

glutathione and S-cysteine conjugates of haloalkenes, and a 

number of S-benzyl and disulphide derivatives.  The 

mutagenicity of these compounds is believed to involve 

metabolic or abiotic transformation to the corresponding thiol, 

which may either lose halide to give a thioketene or tautomerise 

to a thioacyl halide47,48.  These metabolites are electrophilic and 

may form DNA adducts via reaction with nucleophilic groups 

in DNA49.  In the Derek Nexus version 3.0.1 knowledge base, 

an alert covers the mutagenicity of halogenated alkenes but that 

alert is based on a different mechanism (epoxidation of the 

double bond).  Therefore, a new alert covering the activity of S-

haloalkenyl derivatives, via formation of thioketene or thioacyl 

halide metabolites, was implemented. 

Figure 12 and Table 12 summarise the data found for this class 

of compounds. 

CAS number/ 

identifier 
Strains 

Overall 

call 
Ref 

 TA100 + 

S9 

TA98 + 

S9 

E. Coli WP2 

uVrA + S9 
  

98601-00-4 Pos   Pos 50 

98600-98-7 Pos   Pos 50 

98601-01-5 
Weakly 

Pos 
 

 Weakly 

Pos 
50 

93673-37-1 Pos Pos 
 

Pos 
51 
52 

132172-57-7 Pos   Pos 53 

132172-58-8 Pos  Pos Pos 53 

72100-19-7 Pos  Pos Pos 53 

160637-30-9 Pos  Pos Pos 54 

160543-23-7 Neg  Neg Neg 54 

160637-29-6 Pos  Pos Pos 54 

28622-72-2 Pos Pos  Pos 43 

96383-86-7 Pos Neg  Pos 43 

87707-06-0 Neg   Neg 55 

87976-64-5 Neg   Neg 55 

1 Pos   Pos 54 

87480-50-0 Neg   Neg 54 

87436-71-3 Neg   Neg 54 

87425-69-2 Neg   Neg 54 

134109-01-6 Pos   Pos 54 

134109-03-8 Neg   Neg 54 

134109-02-7 Neg   Neg 54 

1421-82-5 Pos   Pos 56 

1421-83-6 Pos   Pos 56 

Table 9: Toxicological data for fluoranthene derivatives shown in Figure 9.  

Experimental 

The Hansen dataset was obtained and curated as described in a 

previous publication11. 

Functional group and heterocycle fragments were generated in 

KNIME19 using nodes built in-house based on the Ceres62 63 

chemical engine.  EP mining was done using an in-house Java 

implementation of the published contrast pattern tree mining 

algorithm64.  JEP mining was done again in KNIME using an 

in-house built node implementing published algorithms6,65,66. 

Workflows in were built in KNIME version 2.5.2. 
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83606-71-7 205-82-3 207-08-9

76479-15-7 5385-75-1 74340-04-8

74339-98-3 74339-99-4 15299-08-8

60032-80-6 93285-74-6 205-99-2

95741-48-3 95741-50-7 95741-52-9

95741-49-4 95741-46-1 95741-47-2

95741-51-8 95741-53-0 116208-67-4

113600-17-2 113600-15-0 112575-92-5

112575-91-4 76479-15-7 206-44-0

33543-31-6 1706-01-0 83606-70-6

83606-71-7 82911-12-4  
Figure 9: Structures of compounds whose toxicity data are reported in Table 9 

 
Figure 10: bay-PAH-1,2-dihydrodiols.  At least one of the bonds marked * must 

be fused to an aromatic ring. 

 

Figure 11: Structures of compounds whose toxicity data are reported in Table 10 
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CAS number Strains Reference 

 TA100 + S9  

83606-71-7 Pos 57 

205-82-3 Pos 57 

207-08-9 Pos 57 

76479-15-7 Pos 57 

5385-75-1 Pos 58 

74340-04-8 Pos 58 

74339-98-3 Pos 58 

74339-99-4 Pos 58 

15299-08-8 Neg 58 

60032-80-6 Neg 58 

93285-74-6 Neg 58 

205-99-2 Pos 59 

95741-48-3 Pos 59 

95741-50-7 Pos 59 

95741-52-9 Neg 59 

95741-49-4 Weakly Pos 59 

95741-46-1 Weakly Pos 59 

95741-47-2 Neg 59 

95741-51-8 Pos 59 

95741-53-0 Pos 59 

116208-67-4 Pos 60 

113600-17-2 Pos 60 

113600-15-0 Pos 60 

112575-92-5 Weakly Pos 60 

112575-91-4 Weakly Pos 60 

76479-15-7 Pos 60 

206-44-0 Pos 61 

33543-31-6 Pos 60 

1706-01-0 Pos 61 

83606-70-6 Pos 61 

83606-71-7 Pos 61 

82911-12-4 Pos 61 

Table 10: toxicological data for PAH diols.  Structures corresponding to CAS 

numbers and identifiers can be found in Figure 11 

 Predicted toxicity Total 

Experimental 

toxicity 
+ -  

+ 4 13 17 

- 0 0 0 

Total 4 13 17 

Table 11: Numbers of compounds in Cluster 5 with experimental and 

predicted toxicity; predictions are from Derek Nexus version 3.0.1  

 

CAS number/ identifier Strains Overall call Ref 

 TA100 TA98   
 -S9 + S9 -S9   

627-72-5 Equ Pos Weakly pos Pos 67 68 

87619-82-7 Pos Pos Pos Pos 67 68 

98025-31-1 Pos  Pos Pos 67 

89784-39-4 Neg Pos  Pos 69 

111348-61-9 Pos Pos  Pos 70 

115453-72-0 Pos Pos  Pos 71 

111959-96-7 Neg Pos  Pos 72 

91085-62-0 Neg Pos  Pos 72 

2 Pos  Pos Pos 73 

3 Pos  Pos Pos 73 

111574-85-7 Neg Pos Pos Pos 73 

4 Neg Pos Pos Pos 73 

133831-60-4 Pos   Pos 48 

117760-95-9 Pos   Pos 48 

133831-61-5 Pos   Pos 48 

133831-62-6 Pos   Pos 48 

Table 12: Toxicological data for halogenated alkene thiol conjugates 

Structures corresponding to CAS numbers and identifiers can be found in 

Figure 12. 

Toxicity predictions and TN and FN classifications were made 

using Derek Nexus version 3.0.1 in Lhasa Knowledge Suite – 

Nexus 1.5. 

Conclusions 

EP and JEP mining offer enhanced rates of knowledge 

discovery in the hands of expert scientists.  They allow experts 

to tackle large and biased datasets from which it is difficult to 

extract knowledge manually and this has led to EP mining tools 

being implemented at Lhasa Limited. 

The success of the approach is significantly impacted by the 

fragments from which patterns are mined, where commercial 

sources proved inferior to a custom developed approach.  

The alerts discovered in this work have been implemented in 

the knowledge base of Derek Nexus version 4.0.5. 
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Figure 12: Structures of compounds whose toxicity data is reported in Table 12  
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