Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

PAPER

Page 1 of 8 Journal of Jou Materials Chemistry C

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Colloidal solutions of niobium trisulfide and niobium triselenide

Vladimir E. Fedorov,^{**a*, *b*} Sofya B. Artemkina,^{*a*, *b*} Ekaterina D. Grayfer,^{*a*} Nikolay G. Naumov,^{*a*, *b*} Yuri V. Mironov,^{*a*} Alexander I. Bulavchenko,^{*a*} Vladimir I. Zaikovskii,^{*b*} Irina V. Antonova,^{*c*} Alexander I. Komonov,^{*c*} and Maxim V. Medvedev^{*d*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Exfoliated nanomaterials, such as graphene and related few-layered materials, are now widely studied for electronics, electrodes and composites, so it is desirable to demonstrate exfoliation of a wider number of layered materials. We have shown that bulk niobium trichalcogenides NbS₃ and NbSe₃ may be stably

¹⁰ dispersed in a number of common organic solvents by ultrasonic treatment. The most concentrated dispersions are obtained in alcoholic media (up to $\sim 0.443 \text{ g} \cdot \text{L}^{-1}$). The colloids contain thin well-crystallized nanoribbons of NbS₃ and NbSe₃. Filtration or spraying of the colloids produces strongly textured thin films with good conducting properties.

Introduction

- ¹⁵ The 2000s saw a revived interest in layered materials and their exfoliation to nanosheets and nanoribbons by various methods. After the discovery of intriguing properties of graphene mechanically exfoliated from bulk graphite, its inorganic counterparts were also studied extensively.¹⁻¹⁷ Families of layered
- ²⁰ materials suitable for exfoliation are graphite, *h*-BN, metal dichalcogenides, transition metal trichalcogenides, metal halides and oxides, clays, layered double hydroxides, ternary transition metal carbides and nitrides.^{7, 8} It is important to demonstrate exfoliation of a wide selection of materials.
- Transition metal trichalcogenides MQ₃ (M = Ti, Zr, Hf, Nb, Ta; Q = S, Se) attracted much attention in the physics community due to their unusual properties including superconductivity, Peierls instability, charge density wave transport.^{18, 19} They were also studied as lubricants²⁰ and as electrode materials in lithium
- ³⁰ electrochemical cell.^{21, 22} Recently MQ₃ micro- and nanostructures of various morphologies have been synthesized: 2-D nanocrystals of ZrSe₃ and HfSe₃;²³ nanowires, nanoribbons and nanobelts of NbSe₃,²⁴⁻²⁷ TaS₃,²⁸ ZrS₃,²⁹ HfS₃,²⁹ and TiS₃;³⁰ ringlike structures of NbSe₃³¹ and TaSe₃³²; Mobius strips of TaSe₃,³²,
- ³⁵ ³³ NbSe₃, and TaS₃, and more complex morphologies.³³ DFT calculations have been made for NbS₃ nanostructures.³⁴ Many of these anisotropic nanostructures are achieved by carefully adjusting synthetic conditions of the vapor transport process, i.e. by bottom-up approach (from elements) as MQ₃ grow as needle-⁴⁰ or fiber-like crystals.

In MQ₃ each metal atom is located at the center of a trigonal prism of chalcogen atoms arranged in chains along the *b* axis (Fig. 1 a, c). M-Q bond length inside the MQ₆ prisms is almost identical with M-Q bond length linking adjacent chains. Thus, ⁴⁵ strong covalent bonds are realized both inside the MQ₆ prisms and between the neighboring prisms. It means that the chains are connected in layers which face each other with Q atoms and are bonded by relatively weak Van der Waals forces (Fig. 1 b, d). Therefore, trichalcogenides may also be regarded as layered ⁵⁰ materials. Two-dimensional or layer-type character of these MQ₃ systems was proved by Raman and IR data, combined with a valence force model of the lattice dynamics^{35, 36} and by experimentally observed quadratic temperature behavior of the heat capacity.³⁷ Therefore, MQ₃ structures may have the ⁵⁵ properties both of quasi-1D systems and layer-type (2D) structures.

Although MQ₃ are described by the same formulae, they have essential distinctions in crystal structures and electronic properties.¹⁸ According to structural and spectroscopic data, the ⁶⁰ MQ₃ phases can be described by an ionic model M⁴⁺(Q₂)²⁻Q²⁻ containing two non-equivalent states of chalcogens – simple chalcogenide ions Q²⁻ and dichalcogenide groups (Q₂)²⁻. Dichalcogenide groups (Q₂)²⁻ are regarded as electron reservoirs providing MQ₃ phases with some remarkable electronic ⁶⁵ properties. Triclinic NbS₃ is a semiconductor as a result of Nb⁻Nb (d¹⁻d¹) pairing in each chain (Fig. 1 a).^{38.40} Monoclinic NbSe₃ consists of three equidistant metal chains with different (Se₂)²⁻ groups (Fig.1 c); its metallic conductivity is characterized by two gigantic anomalies, at T₁ = 145K and T₂ = 59K due to the ⁷⁰ generation of two independent charge density waves in two different types of chains.^{41, 42}

Two important consequences of MQ₃ structure are significant anisotropy of physical properties, as mentioned above, and ability for intercalation. Intercalation compounds with lithium,^{18, 21, 22, 48} rs sodium⁴⁹ and hydrazine⁵⁰ are described. Ternary phases of the type Li_xMQ₃ are formed by electrochemical method or upon interaction with *n*-butyllithium. These intercalation compounds retain chain structure with relatively small expansion.⁴⁸ For

Fig. 1. Structures of trichalcogenides NbQ₃: the chains of coupled trigonal prisms [NbQ₆₂] in NbS₃ (a) and in NbSe₃ (b) structures along *b* axis; structure projections on the *ac* plane for NbS₃ (c) and NbSe₃ (d). Different sorts of prismatic columns are marked with two- and three-colour schemes.

Fig. 2. Characteristics of colloidal dispersions: a) UV-vis spectra of the NbS₃ (red line) and NbSe₃ (black line) colloid solutions in acetonitrile. Inset shows Tyndall effect for NbS₃/DMF (left) and NbSe₃/CH₃CN (right); b) UV-vis spectra for NbS₃ dispersed in CH₃CN (magenta), NMP (blue), DMF (green), ⁱPrOH (black), vol. 50% EtOH in water (red). The colloid solutions in CH₃CN, DMF, ⁱPrOH, vol. 50% EtOH are diluted in order to bring together the absorbance bands near 600 nm for comparison; c) DLS monomodal distribution of hydrodynamic diameters for the NbS₃ dispersion in CH₃CN.

NbSe₃ intercalation is reversible.²¹ Onuki et al. observed some exfoliation of ZrS_3 and, more significant, of TaSe₃ studied as cathode materials in electrochemical cells.²² These early findings imply that MQ₃ may be exfoliated under some conditions.

- ¹⁵ Nowadays chemical exfoliation techniques widely applied to various layered materials include intercalation, oxidation and ultrasonic treatment in solvents, surfactants or polymers. Few studies mention top-down approach to the synthesis of MQ₃ nanostructures, such as exfoliation of NbSe₃ in surfactant ²⁰ solutions,^{20, 25} in pyridine²⁷ and in toluene.⁵¹ For example,
- sonication of bulk NbSe₃ in pyridine and in toluene. For example, sonication of bulk NbSe₃ in pyridine led to the formation of NbSe₃ nanowires 30 nm to 300 nm in width and 2 to 20 μ m in lengths. However, these treatments produced suspensions, rather than stable colloids. If exfoliated in a liquid phase, MQ₃ could be
- ²⁵ transformed into thin films, inserted into polymers or mixed with other nanomaterials to yield interesting composites as it was done with graphene and transition metal dichalcogenides.⁵² However, MQ₃, especially in a nanosized state, still remain largely unexplored materials. Therefore, since niobium trichalcogenides
- ³⁰ NbS₃ and NbSe₃ possess attractive physical properties and layered structure, it is the aim of this work to study liquid-phase dispersion of bulk NbS₃ and NbSe₃ in organic solvents and their assembly into thin films.

Results and discussion

10

35 NbS₃ and NbSe₃ colloidal solutions

Powdered bulk samples of triclinic NbS₃ and monoclinic NbSe₃ were sonicated in a number of common organic solvents. Earlier studies on carbon nanotubes, graphene, *h*-BN and MQ₂ have shown that successful exfoliation depends on the minimization of

40 the enthalpy of mixing, which is achieved when surface energies

of a dispersible material and solvent match. Coleman et al. suggest that the value of surface energy of $\sim 70 \text{ mJ} \cdot \text{m}^{-2}$ is probably appropriate not only for carbon nanotubes and graphene but also for many Van der Waals bonded surfaces.¹ To the best of

- ⁴⁵ our knowledge no reports of measured surface energies of NbS₃ or NbSe₃ exist. Therefore we have chosen solvents which are widely available and suitable for exfoliation of carbon nanotubes, graphene and transition metal dichalcogenides (Table 1).
- Table 1. Concentrations of NbS3 and NbSe3 dispersed in common

 50 solvents. The data are obtained by weighting method and are averaged from not less than five trials each.

Solvent	NbS_3 concentration in the colloid solutions $(g \cdot L^{-1}; M)$	NbSe ₃ concentration in the colloid solutions $(g \cdot L^{-1}; M)$
DMF	$0.0589; 3.11 \cdot 10^{-4}$	No dispersion
Acetone	No dispersion	No dispersion
Acetonitrile	$0.191 \cdot 1.01 \cdot 10^{-3}$	$0.402 \cdot 1.22 \cdot 10^{-3}$
ricetointine	0.191, 1.01 10	0.102, 1.22 10
Water	No dispersion	No dispersion
FtOH	No dispersion	$0.145 \cdot 4.40 \cdot 10^{-4}$
Lion	No dispersion	0.145, 4.40 10
H ₂ O/EtOH (1/1 vol.%)	0.443; 2.34.10 ⁻³	No dispersion
Isopropanol	$0.332: 1.76 \cdot 10^{-3}$	$0.119: 3.61 \cdot 10^{-4}$
- r ·r		
NMP	Unstable dispersion	No dispersion

Fig. 3. Microscopy images of NbS₃ particles deposited from colloidal solution in acetonitrile: a) SEM image of NbS₃ nanoparticles filtered from colloid; b) survey AFM image of NbS₃ nanoribbons; c) AFM images of thin nanoribbons in the sample with thickness profile; d) HRTEM-image of the NbS₃ lattice indicating well-crystalline structure; e) Fourier-picture with indexed reflections; f) view of one layer of the wedge-shaped column along crystallographic direction b as seen in Fig. 3 d; g) HRTEM-image of a folded (001) layers of a particle with d-spacing 0.91 nm corresponding to c parameter; h) intensity profile along [001] direction for the image in Fig. 3 g.

Sonication followed by centrifugation produced stable beige-tobrown (NbS₃) or grey-pink (NbSe₃) transparent dispersions ¹⁰ demonstrating Tyndall effect (light scattering on particles in the solutions) (Fig. 2 a, inset). NbS₃ and NbSe₃ concentrations were determined (i) by filtering the dispersions and weighing the filtered mass, and (ii) by analyzing Uv-*vis* spectra. Uv-*vis* spectra of NbSe₃ colloid solutions possess one band in the region near ¹⁵ 250 nm whereas NbS₃ colloids demonstrate at least three bands in

- their spectra (Fig. 2 a). UV-vis spectra of NbS₃ dispersed in various solvents clearly show a band at 580-600 nm, the band location being slightly different from solvent to solvent (Fig. 2 b). This characteristic band can be used for determination of NbS₃
- ²⁰ concentration in the colloid solutions. For NbS₃ colloids in CH₃CN and DMF the correlation dependences were plotted down (ESI, Fig. S1). Calculated concentrations derived from both methods are in good agreement.
- In contrast to carbon nanotubes, graphene and transition metal ²⁵ dichalcogenides well-dispersible in high-boiling point *N*-methyl-2-pyrrolidone (NMP), our bulk NbS₃ and NbSe₃ showed best dispersibilities in volatile solvents, and almost no dispersibility in NMP. For NbSe₃ the highest concentration was found in acetonitrile (0.402 g·L⁻¹). For NbS₃ highest concentrations of ³⁰ 0.332 g·L⁻¹ and 0.443 g·L⁻¹ were observed in isopropanol and
- ethanol-water mixture, respectively. EtOH/water mixture was

earlier shown to exfoliate MoS_2 , WS_2 and *h*-BN better than a corresponding single solvent (water or ethanol),⁵³ and our results confirm this finding for the case of NbS₃.

35 Dynamic light scattering (DLS) measurements yielded an average effective hydrodynamic diameter of ~168 nm for a NbS₃/DMF, 115 nm for NbSe₃/iPrOH, 153 nm for NbSe₃/CH₃CN, and 202 nm for NbSe₃/EtOH (Fig. 2 c and Fig. S2, S3 in the ESI). Microscopy studies were undertaken to 40 further evaluate morphology, size distribution and structure of the dispersed niobium trichalcogenides. Scanning electron microscopy (SEM) images of NbS3 filtered from colloidal solution typically contained ribbon-like particles with lengths of a few hundred nanometers and widths well below 100 nm (Fig. 3 a 45 and Fig. S4 in the ESI). Trichalcogenide nanocrystals are elongated in the direction of b axis.^{24, 30} AFM measurements also indicated that the particles in dispersion existed in a form of thin nanostructures with high aspect ratio which may be termed as nanoribbons. The lengths of NbS3 nanoribbons deposited from so acetonitrile dispersion were $\sim 50 - 200$ nm, which agrees reasonably well with DLS data taking into account that DLS characterizes a sphere that diffuses at the same rate as the solvated nanoribbon in solution (Fig. 3 b, c and Figs. S5, S6 in the ESI). The thickness of the ribbons in Fig. 3 b, c ranged 55 approximately from 1 ~ 4 to 20 nm. For NbSe3 nanoribbons

Fig. 4. Characteristics of NbS₃ films obtained via filtration through the Whatman[©] Anodisc membrane: a) photos of two NbS₃ films of different thickness
 on the membrane; b) X-ray powder diffraction patterns from powder sample prepared in high-temperature synthesis (top) and film deposited from NbS₃ colloidal dispersion in DMF (bottom); middle curve is simulated from triclinic NbS₃ structure data; c) Raman spectra of NbS₃ polycrystalline powder (bottom) and NbS₃ film (top).

deposited from the acetonitrile dispersion lengths were in the interval of $\sim 50 - 400$ nm, and thicknesses from $\sim 3 - 40$ nm (Fig. ¹⁰ S5 in the ESI). High-resolution TEM (HRTEM) images and associated Fourier transforms (Fig. 3 d, e and Fig. S7 in the ESI) proved that the particles in dispersions retained good crystallinity with triclinic NbS₃ cell undamaged during sonication process. Lattice fringe spacings indicated in a TEM image and its Fourier

- ¹⁵ transform (Fig. 3 e) were measured to be 0.672 nm, 0.457 nm, and 0.379 nm and were indexed as (010), (-101), and (-1-11) reflections of a triclinic NbS₃ particle. Fig. 3 f schematically shows packing of the prisms forming the sample surface depicted in Fig. 3 d. An example of a folded edge of NbS₃ nanoparticle is
- ²⁰ given in Fig. 3 g. Intensity profile for 5 interlayer spacings (Fig. 3 h) allows to identify the distance between these layers as 0.91 nm confirming that this is the side view of the *ab* planes. This value agrees well with the reported *c* parameter of 0.9144(4) nm.³⁹ The particle in Fig. 3 g contains approximately 10 12 25 double prism layers.
- The question arises as to exactly how the bulk is transformed into colloid. Theoretically, there are 3 possible directions to break a trichalcogenide nanocrystal: (i) parallel to the *ab* plane (001 direction), thus exfoliating of layers from the bulk; (i) parallel to
- ³⁰ *bc* plane (100 direction), thus breaking interchain bonds; and (iii) parallel to *ac* plane, thus cutting the chain lengths. The presence of thin nanoribbons in our colloids proves that there should be exfoliation parallel to *ab* plane, as one would expect from the fact that it only requires to overcome weak Van der Waals bonds
- ³⁵ between layers. Dispersion of NbS₃ and NbSe₃ probably occurs in the result of solvent intercalation in the inter-prism spaces leading to delamination of the materials and stabilization of the formed colloids by the solvent molecules with appropriate surface energies. In that case, given that the thickness of a NbS₃
- ⁴⁰ monolayer exfoliated along the crystallographic direction *c* is about 1 nm (1.5 nm for NbSe₃), this suggests that the thinnest NbS₃ nanoribbons in Fig. 3 b,c consist of 1 - 4 layers, although thicker particles are also present (the thinnest NbSe₃ nanoribbons consist of 2 layers and the thicker ones are up to 27 layers).
- ⁴⁵ Overall, microscopic characterization shows that trichalcogenide nanoribbons in colloids are thinner and shorter than the nanoribbons synthesized from elements where the thicknesses of NbSe₃ samples were from 20-30 nm to 95 nm.^{24, 26} We do not

rule out other possibilities for crystal fragmentation. Due to the ⁵⁰ crystal morphology of NbS₃ and NbSe₃, it is possible that they are cut during sonication similarly to carbon nanotubes or polymers.^{54, 55} In that case cavitation bubbles induce high strain rates in the solvent and stretch the polymer eventually breaking chemical bonds. Sonication parameters such as time, power, ⁵⁵ frequency and device type may influence the nature of the forming nanostructures. Future studies should be able to identify appropriate conditions for predominant exfoliation of layers instead of cutting into 1D chains and chain scission. Also, separation methods such as gradient centrifugation may be useful ⁶⁰ for obtaining more homogenous samples.

Preparation and characterization of NbS₃ films

It is well known that multilayered films constructed of reassembled nanosheets of graphene or its inorganic analogues can have improved properties in the areas of supercapacitors, ⁶⁵ batteries, photoconductive materials, new magnetic materials etc.⁹ We therefore further demonstrate applicability of our NbQ₃ colloid solutions to form thin films and investigate their properties.

NbS₃ films were prepared by two methods: (i) filtration of ⁷⁰ colloidal dispersions through 0.02 μ m membrane filter "Whatman Anodisc"; and (ii) spraying colloidal dispersions on heated substrates (~ 200–250°C). The latter method is more flexible as it allows to prepare coatings of different complex configurations. Typical view of the films (Fig. 4 a and Figs. S8, S9 in the ESI) ⁷⁵ shows that thin films are quite smooth and transparent. The films were studied by powder X-ray diffraction (PXRD), Raman and IR spectroscopies.

As may be seen from PXRD data, films are characterized by strongly textured nature (Fig. 4 b). This fact may be expected from general structural consideration, but experimental evidence of such oriented packing is important. PXRD powder patterns of the films have high intensity of *001* Bragg reflections. Figure S10 (ESI) compares calculated NbS₃ PXRD patterns for the samples with different degree of texture. Powder patterns were simulated by PowderCell 2.4 software⁵⁶ using cell parameters and atomic coordinates of single crystal NbS₃ data taken from Inorganic Crystal Structure Database, No. 2380. For simulation of textured X-Ray diffraction patterns we used Pseudo Voigt-2 profile

Fig. 5. a) $I_{DS}(V_G)$ characteristics for NbS₃ films obtained from an ethanol/water colloid solution (1) and CH₃CN colloid solution (2). Drain-source voltage V_{DS} was 0.5 V. Inset shows device configuration; b) $I_{DS}(V_{DS})$ characteristics for the same NbS₃ films.

⁵ functions and the model of Rietvield-Toraya for plate crystals in Bragg-Brentano diffractometer geometry along *001* directions with empirical coefficients O_1 which were changed and marked in Fig. S10 (ESI), and O_2 which was fixed to be 0. The texture coefficients were determined according to Eq. (1):

$$O_{HKL} = \sum_{i=1}^{MU} (o_1 + (1 - o_1)e^{-o_2^2 \phi^2}) \cdot \frac{\sum_{j=1}^{S} MU_j}{\sum_{j=1}^{S} O_j}$$
(1)

One can see that the increased O_1 parameter is responsible for texture. The intensities of Bragg reflections with indexes 00l and

¹⁵ 10l increase, while intensities of other Bragg reflections (in normalized presentation) rapidly decrease and become negligible after O₁ exceeds 10. We can assume that powder patterns of NbS₃ films correspond to simulation with O₁ close to 20. These data show that nanosized particles of layered trichalcogenides are
 ²⁰ highly oriented in the film along 00l planes indicating that during

filtration they fall on the filter (and each other) in a similar manner.

Raman spectra of bulk and film NbS₃ samples recorded at $\lambda =$ 488.0 nm are in good accordance with published data with only 25 minor differences of peak positions.⁵⁷ Raman peaks in the two Raman spectra (Fig. 4 c) were assigned following previous work by Sourisseau et al.⁵⁷ Low-frequency peak at 151 cm⁻¹ is caused by lattice compression along the columns $((T'_v) mode)$, and the one at 159 cm⁻¹ is a Nb–Nb stretching mode. The prominent peak 30 at 193 cm⁻¹ may be assigned to $v(Nb-(S_2)^{2-})$. Symmetrical valence Nb-S vibrations («rigid»-sublattice) appear at 260 cm⁻¹. Weak peaks in the area of 298–319 cm⁻¹ may be ascribed to $v(Nb-S^{2-})$ intrachain vibration, and the peaks at 375 cm⁻¹ and 387 cm⁻¹ originate from $v(Nb-S^{2-})$ interchain modes. The high-³⁵ frequency bands at 556–568 cm⁻¹ are due to stretching vibrations of S-S bonds in $(S_2)^{2-}$ pairs. IR spectra also agree well with reported data (Fig. S11 in the ESI).⁵⁷ Therefore, XRD, IR and Raman spectroscopies confirm phase composition of the films: they are composed of well-crystallized triclinic NbS3 40 nanoribbons, which are highly oriented in the film along 00l

Electrical properties of thin films

 NbS_3 is a semiconductor with $E_g\,$ of about 0.3 eV. $^{38,\ 40}$ As an example of the properties of the fabricated thin films we further 45 study their current-voltage characteristics. Thin NbS3 film $(\sim 0.5 - 1 \text{ um})$ was deposited from colloidal dispersion by sprav technology on a SiO₂/Si substrate in transistor configuration with the use of Si substrate as a gate (Fig. 5 a, inset). Two planar contacts (a drain and a source) were attached to NbS₃ layer on the 50 SiO₂ surface, and the third contact was connected to the silicon substrate. The drain current I_{DS} as a function of V_{DS} was linear and demonstrated ohmic behavior of contacts attached to NbS3 (Fig. 5 b). Taking into account the geometrical size of the samples, their sheet resistivities were $3.5 \cdot 10^6$ Ohm sq⁻¹ (1) and $55 1.3 \cdot 10^8$ Ohm \cdot sq⁻¹ (2). Measurement of current in the NbS₃ film as a function of gate voltage V_G allowed to calculate carrier mobility. The constant voltage applied between the drain and source ranged from 0.2 V to 1 V, and the dependence of the drain current on the gate voltage I_{DS} (V_G) was studied. From the I_{DS} $_{60}$ (V_G) characteristics (Fig. 5), the ratio of the current of open channel I_{on} to the current of closed channel I_{off} and the value of the carrier mobility were calculated using traditional approach for semiconductor field-effect transistors. The electron (μ_e) and hole (μ_h) mobilities were determined from the linear slope of the I_{DS} 65 (V_G) according to Eq. (2):

$$\mu = \frac{L}{C_{ox}WV_{DS}} \frac{\Delta I_{DS}}{\Delta V_g}$$
(2)

⁷⁰ where μ is the carrier mobility, W and L are NbS₃ layer width and length, respectively, $C_{\text{ox}} = \varepsilon_{\text{ox}}\varepsilon_{\text{o}}/t_{\text{ox}}$ is the gate oxide capacitance ($\varepsilon_{\text{ox}} = 3.9$ is the dielectric constant of silicon dioxide and $t_{\text{ox}} = 300$ nm is the thickness of the gate oxide layer), and ΔI_{DS} is the shift of current I_{DS} induced by a gate-voltage change ΔV_g .

The highest carrier mobility was found in the NbS₃ films obtained from an ethanol/water colloid solution. In this case the mobility of electrons and holes was estimated as ~ 1200 - 2400cm²V⁻¹s⁻¹. The I_{DS} current value in the layer is modulated by the

planes.

gate voltage on the 3-4 orders of magnitude. For the NbS₃ layers, created from NbS₃/CH₃CN colloid solutions, carrier mobility determined from the similar I_{DS} (V_G) characteristics had values of ~10 cm²/V⁻¹s⁻¹. Carrier mobility for films created from other s solutions was even lower. The high value of carrier mobility for NbS₃/ethanol/water solution is most likely due to functionalization of the NbS₃ flakes by solvent molecules. The

shift of Dirac (neutrality) point from zero to positive voltage for the film obtained from NbS₃/CH₃CN colloid solution corresponds to *p*-type doping, whereas Dirac point shift to negative voltage for the film obtained from NbS₃/ethanol/water solution corresponds to *n*-type conductivity. Change in doping type also

may support a suggestion of functionalization of the NbS₃ flakes.

Conclusions

- ¹⁵ In conclusion, we have demonstrated for the first time that NbS₃ and NbSe₃ may be directly dispersed in low-boiling point organic solvents such as ethanol/water mixture or acetonitrile by sonication. Stable concentrated colloidal dispersions contain thin crystalline nanoribbons of transition metal trichalcogenides. They
- ²⁰ may be reassembled into well-textured thin films with good conducting properties. Our findings may be potentially extended to the whole family of transition metal trichalcogenides, and indeed our preliminary studies confirm that TiS₃, TaS₃, NbSe₃ may be exfoliated in this way as well. Solution processability of
- ²⁵ transition metal trichalcogenides opens up many opportunities for their use in thin film devices, batteries, supercapacitors, hybrids with other layered nanomaterials, polymer fillers and other applications yet to be discovered.

Experimental

³⁰ The syntheses of niobium trichalcogenides were carried out using high temperature ampoule method starting from high purity elements (see ESI for more information).

Dispersions of NbS3 and NbSe3

Bulk powdered samples of NbS₃ (0.5 g) or NbSe₃ (0.8 g) were ³⁵ sonicated (Elmasonic S40 ultrasonic bath, ultrasound power 120 W) in 250 mL of a solvent (DMF, acetone, acetonitrile, water, ethanol, water-ethanol mixture (55/45 vol.%), isopropanol or *N*-methyl-2-pyrrolidone) for 30 hours. This resulted in brownbeige (NbS₃) or dark-grey (NbSe₃) non-transparent mixtures. The

⁴⁰ resulting mixtures were centrifuged at 2600 rpm for 30 minutes to remove large (heavy) particles.

Thin films

 NbS_3 and $NbSe_3$ thin films were prepared from colloidal dispersions by their filtration using membrane filters Whatman

⁴⁵ Anodisc with pore size of 0.02 μ m and by spray method. Film thickness may be varied according to the volume used. The thicknesses of the film prepared by filtration were from 0.25 to 9 μ m, and the sprayed films were 0.5 – 1.0 μ m thick.

Characterization

⁵⁰ Powder X-Ray diffraction patterns of the synthesized compounds (both powder samples and films) were recorded using Philips PW1820/1710 X-Ray diffractometer (Cu Kα radiation, graphite monochromator, silicon plate used as an external standard). Raman spectra were excited with the 488.0 nm lines of an argon 55 ion laser and analyzed with a Triplemate instrument. The particle

⁵⁵⁵ ion laser and analyzed with a Triplemate instrument. The particle size distribution for dispersions was estimated by dynamic light scattering (DLS) method using 90Plus Brookhaven Inst. UV-vis spectra of the dispersions were obtained using Ultrospec 3300 pro spectrometer in the wavelength interval of 200 – 1100 nm.
⁶⁰ HRTEM images were obtained on a JEM-2200FS electron microscope (JEOL, Japan) with a lattice-fringe resolution of 0.1 nm at an accelerating voltage of 200 kV. The high-resolution images of periodic structures were analyzed by the Fourier method. Samples to be examined by HRTEM were prepared on a ⁶⁵ perforated carbon film mounted on a copper grid. The thickness and surface morphology of particles were measured by scanning probe microscope (Solver P-47H, NT-MDT, Russia). Images

70 Acknowledgements

The study was financially supported by Samsung Advanced Institute of Technology, Suwon, Korea (GRO Project) and by Siberian Branch of Russian Academy of Sciences (Project 75).

were obtained in atomic force microscopy mode with using of

non-contact cantilevers (NSG-11, NT-MDT, Russia).

Notes and references

```
    <sup>a</sup>Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the
Russian Academy of Sciences,
    3, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation.
    Fax: +7383-330-94-89; Tel: +7383-330-92-53; E-mail: <u>fed@niic.nsc.ru</u>
<sup>b</sup>Novosibirsk State University, 2, Pirogova st., Novosibirsk, 630090,
    Russian Federation
    <sup>c</sup>Rzhanov Institute of Semiconductor Physics, Siberian Branch of the
Russian Academy of Sciences
    13, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation
    <sup>d</sup>Samsung Advanced Institute of Technology,
```

85 Suwon, South Korea

† Electronic Supplementary Information (ESI) available: additional synthetic and characterization details (DLS, TEM, AFM, XRD, IR, photographs). See DOI: 10.1039/b000000x/

- J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V.
- Nicolosi, *Science*, 2011, **331**, 568-571.
 Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, *Angew. Chem., Int. Ed.*, 2011, **50**, 11093-11097.
- 100 3. Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon and C.-p. Wong, J. Mater. Chem., 2012, 22, 13494-13499.
 - L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li and J. Zhong, J. Mater. Chem., 2012, 22, 4921-4926.
- Y. Du, Z. Yin, J. Zhu, X. Huang, X.-J. Wu, Z. Zeng, Q. Yan and H.
 Zhang, *Nat Commun*, 2012, 3, 1177.
 - Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng and H. Zhang, *Angew. Chem., Int. Ed.*, 2012, **51**, 9052-9056.
 - V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, *Science*, 2013, 340, 1226419.

- 8. K. J. Koski and Y. Cui, ACS Nano, 2013, 7, 3739-3743.
- S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S.
- ⁵ Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl and J. E. Goldberger, *ACS Nano*, 2013, 7, 2898-2926.
- M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, *Nature Chem.*, 2013, 5, 263-275.
- 11. S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B. Kaner,
- S. Sriram, M. Bhaskaran and K. Kalantar-zadeh, *Adv. Funct. Mater.*, 2013, 23, 3952–3970.
 - X. Huang, Z. Zeng and H. Zhang, Chem. Soc. Rev., 2013, 42, 1934-1946.
- 13. X. Song, J. Hu and H. Zeng, J. Mater. Chem. C, 2013, 1, 2952-2969.
- 15 14. C. N. R. Rao, H. S. S. Ramakrishna Matte and U. Maitra, Angew. Chem., Int. Ed., 2013, 52, 13162-13185.
 - Z. Zeng, C. Tan, X. Huang, S. Bao and H. Zhang, *Energy Environ.* Sci., 2014, 7, 797-803.
 - 16. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H.
- 20 Young Jeong, B. Liu and K. Ping Loh, *Nat Commun*, 2014, **5**, 2995.
 - J. L. Gunjakar, I. Y. Kim, J. M. Lee, Y. K. Jo and S.-J. Hwang, J. Phys. Chem. C, 2014, 118, 3847-3863.
 - S. K. Srivastava and B. N. Avasthi, J. Mater. Sci., 1992, 27, 3693-3705.
- 25 19. V. Y. Pokrovskii, S. G. Zybtsev, M. V. Nikitin, I. G. Gorlova, V. F. Nasretdinova and S. V. Zaitsev-Zotov, *Phys. Usp.*, 2013, 56, 29-48.
 - H. Tang, C. Li, X. Yang, C. Mo, K. Cao and F. Yan, *Cryst. Res. Technol.*, 2011, 46, 400-404.
- D. W. Murphy and F. A. Trumbore, J. Cryst. Growth, 1977, 39, 185 199.
 - Y. Ōnuki, R. Inada, S. Tanuma, S. Yamanaka and H. Kamimura, Solid State Ionics, 1983, 11, 195-201.
 - S. Jeong, D. Yoo, J.-t. Jang, M. Kim and J. Cheon, J. Am. Chem. Soc., 2012, 134, 18233-18236.
- 35 24. Y. S. Hor, Z. L. Xiao, U. Welp, Y. Ito, J. F. Mitchell, R. E. Cook, W. K. Kwok and G. W. Crabtree, *Nano Lett.*, 2005, 5, 397-401.
- S. De, C. S. Boland, P. J. King, S. Sorel, M. Lotya, U. Patel, Z. L. Xiao and J. N. Coleman, *Nanotechnology*, 2011, 22, 285202.
- 26. A. A. Stabile, L. Whittaker, T. L. Wu, P. Marley, M., S. Banerjee and
- 40 G. Sambandamurthy, *Nanotechnology*, 2011, **22**, 485201.
 - E. Slot, M. A. Holst, H. S. J. van der Zant and S. V. Zaitsev-Zotov, *Phys. Rev. Lett.*, 2004, 93, 176602.
 - M. O. King, M. Popland, S. J. Denholme, D. H. Gregory, D. A. MacLaren and M. Kadodwala, *Nanoscale*, 2012, 4, 607-612.
- 45 29. H. Jin, D. Cheng, J. Li, X. Cao, B. Li, X. Wang, X. Liu and X. Zhao, *Solid State Sci.*, 2011, **13**, 1166-1171.
 - J. Ma, X. Liu, X. Cao, S. Feng and M. E. Fleet, *Eur. J. Inorg. Chem.*, 2006, 2006, 519-522.
 - 31. F. A. Trumbore and L. W. Ter Haar, Chem. Mater., 1989, 1, 490-492.
- 50 32. T. Matsuura, S. Tanda, K. Asada, Y. Sakai, T. Tsuneta, K. Inagaki and K. Yamaya, *Physica B: Condensed Matter*, 2003, **329–333**, Part 2, 1550-1551.
 - S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya and N. Hatakenaka, *Nature*, 2002, 417, 397-398.
- 55 34. A. N. Enyashin and A. L. Ivanovskiĭ, *Phys. Solid State*, 2006, 48, 780-785.

- A. Grisel, F. Lévy and T. J. Wieting, *Physica B+C*, 1980, 99, 365-370.
- 36. S. P. Gwet, Y. Mathey and C. Sourisseau, *Phys. Status Solidi B*, 1984, **123**, 503-517.
- K. R. Zhdanov, A. V. Mishenko, F. S. Rakhmenkulov and V. E. Fedorov, *physica status solidi (a)*, 1984, 83, 147-152.
- L. A. Grigoryan and A. V. Novoselova, *Dokl. Chem.*, 1962, 144, 795-797.
- 65 39. J. Rijnsdorp and F. Jellinek, J. Solid State Chem., 1978, 25, 325-328.
- M. E. Itkis, F. Y. Nad, S. V. Zaitsevzotov and F. Levy, *Solid State Commun.*, 1989, **71**, 895-898.
- P. Monceau, N. P. Ong, A. M. Portis, A. Meerschaut and J. Rouxel, *Phys. Rev. Lett.*, 1976, **37**, 602-606.
- 70 42. J. Chaussy, P. Haen, J. C. Lasjaunias, P. Monceau, G. Waysand, A. Waintal, A. Meerschaut, P. Molinie and J. Rouxel, *Solid State Commun.*, 1976, **20**, 759-763.
- T. Sambongi, K. Tsutsumi, Y. Shiozaki, M. Yamamoto, K. Yamaya and Y. Abe, *Solid State Commun.*, 1977, 22, 729-731.
- 75 44. C. Roucau, R. Ayroles, P. Monceau, L. Guemas, A. Meerschaut and J. Rouxel, *Phys. Status Solidi A-Appl. Res.*, 1980, **62**, 483-493.
 - T. Sambongi, M. Yamamoto, K. Tsutsumi, Y. Shiozaki, K. Yamaya and Y. Abe, *J. Phys. Soc. Jpn.*, 1977, 42, 1421-1422.
- 46. P. Haen, F. Lapierre, P. Monceau, M. Nunez Regueiro and J.
 ⁸⁰ Richard, *Solid State Commun.*, 1978, **26**, 725-730.
- 47. M. Yamamoto, J. Phys. Soc. Jpn., 1978, 45, 431-438.
- 48. R. R. Chianelli and M. B. Dines, Inorg. Chem., 1975, 14, 2417-2421.
- 49. M. Zanini, J. Electrochem. Soc., 1985, 132, 588-593.
- 50. K. Yamaya, T. H. Geballe, J. V. Acrivos and J. Code, *Physica B+C*, 1981, **105**, 444-447.
 - K. Inagaki, T. Toshima, S. Tanda, K. Yamaya and S. Uji, *Appl. Phys. Lett.*, 2005, 86, 073101.
 - 52. Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578.
- 90 53. K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng and H.-L. Zhang, Angew. Chem., Int. Ed., 2011, 50, 10839-10842.
 - F. Hennrich, R. Krupke, K. Arnold, J. A. Rojas Stütz, S. Lebedkin, T. Koch, T. Schimmel and M. M. Kappes, *J. Phys. Chem. B*, 2007, 111, 1932-1937.
- 95 55. G. Pagani, M. J. Green, P. Poulin and M. Pasquali, *Proceedings of the National Academy of Sciences*, 2012, **109**, 11599-11604.
 - 56., W. Kraus, G. Nolze, PowderCell 2.4, Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, Berlin, 2000.
- 100 57. C. Sourisseau, R. Cavagnat, M. Fouassier and P. Maraval, J. Raman Spectrosc., 1990, 21, 337-349.

Liquid-phase exfoliation of niobium trisulfide and niobium triselenide

Vladimir E. Fedorov,*^{*a, b*} Sofya B. Artemkina,^{*a,b*} Ekaterina D. Grayfer,^{*a*} Nikolay G. Naumov,^{*a,b*} Yuri V. Mironov,^{*a*} Alexander I. Bulavchenko,^{*a*} Vladimir I. Zaikovskii,^{*b*} Irina V. Antonova,^{*c*} Alexander I. Komonov,^{*c*} and Maxim V. Medvedev^{*d*}

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences,3, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation

^bNovosibirsk State University, 2, Pirogova street, Novosibirsk, 630090, Russian Federation

^cRzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences,

13, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation

^dSamsung Advanced Institute of Technology, Suwon, South Korea

*Corresponding author. Tel. +7383-330-92-53; E-mail: fed@niic.nsc.ru

Table of contents entry

Bulk niobium trichalcogenides NbS_3 and $NbSe_3$ were stably dispersed in a number of common organic solvents by ultrasonic treatment to yield colloids containing thin well-crystallized nanoribbons of NbS_3 and $NbSe_3$.

