Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Journal Name

ARTICLE

An exceptionally stable 3D Gd^{III}-organic framework towards magnetocaloric refrigerant

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/xoxxooooox

DOI: 10.1039/x0xx00000x

www.rsc.org/

Shaowei Zhang, Eryue Duan and Peng Cheng* A unexpected 3D Gd^{III}-organic framework containing random Gd^{III}-hydroxy "ladders",

 $\{[Gd(OH)(H_2O)(abtc)_{0.5}]:H_2O\}_n$ (1) $(H_4abtc = 3,3',5,5'-azobenzene-tetracarboxylic acid), has$ been synthesized by an easy solvothermal method with high yield, which is the first lanthanide-based complex including the H_4 abtc ligand. It is noteworthy that the H_4 abtc used in 1 is the largest ligand compared with all previous reported 3D magnetic refrigerants to date, however, the cryogenic magnetic refrigeration property suggests that 1 possesses a large magnetocaloric effect (MCE) value. More importantly, the superiorly stability of 1 towards air, water, solvents and particularly acid or alkaline conditions, leads it as a promising candidate applied for magnetic refrigerant.

Introduction

The unremitting investigations of novel coordination polymers regarded as magnetocaloric effect (MCE) materials have emerged a rejuvenated and increased attention in recent five years,¹ because not only their structures and properties are controllable, but also they are environmentally friendly and energy-efficiently outperform well-established magnetic refrigerants in ultralow temperature region, as replacements for the rare and expensive He-3.² Several factors are demanded for a molecular refrigerant: large spin ground state S, low-lying excited spin states, negligible magnetic anisotropy, dominant ferromagnetic interaction, and high magnetic density,¹⁻³ based on which Gd^{III} as well as high spin Mn^{II} and Fe^{III} ions is ideal candidate to construct large MCE materials. Since the wellknown $\{Mn_{12}\}\$ cage with MCE was discovered,⁴ a family of excellent works were documented, breaking the record of $-\Delta S_{\rm m}$ frequently.¹⁻⁸ However, most of previous reports focused on the various discrete clusters⁵ as well as several 1D⁶ and 2D⁷ examples, the MCE explorations of 3D frameworks have been rarely documented.⁸

Herein, we illustrated the synthesis and fully characterization of a unexpected 3D Gd^{III}-organic framework containing rare Gd^{III}-hydroxy "ladders", {[Gd(OH)(H₂O)(abtc)_{0.5}]·H₂O}_n (1), which is the first lanthanide-based complex including 3,3',5,5'azobenzene-tetracarboxylic acid (H₄abtc) ligand, to the best of our knowledge. Complex 1 exhibits a good MCE supported by the magnetic studies and heat capacity measurements, and demonstrates remarkable air, water and chemical stabilities.

Especially, we investigate the first MCE example with high stability towards a vast pH range.

Results and discussion

Structural Descriptions

Complex 1 was obtained with 88% yield by the solvothermal reaction of GdCl₃·6H₂O, H₄abtc, NaOH and H₂O₂ in the mixed solvent of DMA/H₂O. Single crystal X-ray diffraction analysis reveals that 1 crystallizes in the triclinic space group P-1. Each asymmetric unit consists of one Gd^{III} ion, one μ_3 -OH group, half an H₄abtc ligand, one coordinated water, and one lattice water (Fig. 1a). The free program SHAPE 2.0⁹ suggests that the proximate ideal geometry of the eight-coordinated Gd is square antiprism (SAPR) (Table 1), which is defined by four O from the H₄abtc ligand, three μ_3 -OH groups and a water molecule with Gd-O distances of 2.336(4) - 2.504(4) Å (2.410 Å in average) (Fig. 1b). In the coordination geometry of Gd1^{III} ion, two bottom planes of the square antiprism are constructed by O1, O4, O5, O6 and O2, O3, O4A, O4B with standard deviations of 0.0806 and 0.0139 Å, respectively. The dihedral angle of the two surfaces is 2.2°. The distances between Gd1^{III} and two surfaces are 1.404 and 1.192 Å, respectively. Adjacent Gd^{III} ions are bridged by μ_3 -OH groups to form a 1D Gd^{III}hydroxy "ladder" with Gd ... Gd distances ranging from 3.776 to 4.505 Å (Fig. 1c). Adjacent "ladders" are further connected by H₄abtc ligands to generate the 3D framework (Fig. 1d).

Journal Name

Fig. 1 (a) Ball and stick representation of the asymmetric unit of 1; (b) The coordination environment of the Gd^{III} ion; (c) The 1D Gd^{III} -hydroxy "ladder" chain; (d) The 3D framework of 1.

Table 1 SHAPE Analysis of Gd ^{III} ion in 1.			
Label	Shape	Symmetry	Distortion
OP-8	Octagon	D_{8h}	29.249
HPY-8	Heptagonal pyramid	C_{7v}	22.165
HBPY-8	Hexagonal bipyramid	D_{6h}	16.706
CU-8	Cube	$O_{ m h}$	10.469
SAPR-8	Square antiprism	$D_{ m 4d}$	0.330
TDD-8	Triangular dodecahedron	D_{2d}	2.427
JGBF-8	Johnson gyrobifastigium J26	D_{2d}	16.849
JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	28.815
JBTPR-8	Biaugmented trigonal prism J50	C_{2v}	2.759
BTPR-8	Biaugmented trigonal prism	C_{2v}	1.680
JSD-8	Snub diphenoid J84	D_{2d}	5.395
TT-8	Triakis tetrahedron	$T_{\rm d}$	11.023
ETBPY-8	Elongated trigonal bipyramid	D_{3h}	24.233

Air and Chemical stabilities

When exposing 1 in the open air, the framework is steady for at least three months, as determined by PXRD patterns (Fig. 2a). 1 exhibits excellent chemical stability in common solvents as well: after immersing 1 in corresponding solvents, such as H_2O , CH_3OH , CH_3CH_2OH , CH_3CN , CH_2Cl_2 , DMF, DMA, DMSO, THF, acetone, and *n*-hexane for more than one week, PXRD

Fig. 2 (a) PXRD patterns of simulated from the X-ray single structure of 1, as-synthesized 1, and 1 samples exposed in air for at least three months and soaked in boiling water for more than a week; (b) PXRD patterns of simulated from the X-ray single structure of 1, as-synthesized 1, and 1 samples soaked in H₂O, CH₃OH, CH₃CH, CH₃CH, CH₂Cl₂, DMF, DMA, DMSO, THF, acetone, and *n*-hexane for more than a week; (c) PXRD patterns of simulated from the X-ray single structure of 1, as-synthesized 1, and 1 samples immersed in the aqueous solutions ranging from pH = 1 to pH = 13 for more than a week.

patterns are still in accordance with the simulated patterns (Fig. 2b), while PXRD pattern suggests that the framework of 1 is stable after being soaked in boiling water for even one week (Fig. 2a). Especially, we studied concentratedly the stability of 1 with the variation of pH value in a large range. The results

present that the framework of **1** can sustain in the aqueous solutions ranging from pH = 1 to pH = 13 for more than a week (Fig. 2c). In order to further confirm the stabilities of **1**, we took four typical solutions after immersed **1** for a week (CH₃OH, boiling water, pH = 1 and pH = 13 aqueous solutions) to detect the amount of Gd^{III} ions in these solutions by ICP measurements, the ICP results demonstrated that the amount of Gd^{III} ions in these solutions to the rigid H₄abtc ligand, which has a longer organic backbone with four carboxyl groups, and can be easily partially or completely deprotonated to adopt various metal-oxygen coordination modes to enhance the framework stability and overall rigidity of the framework.

Magnetic properties

Variable-temperature magnetic susceptibility measurement of **1** was executed in the range of 1.8 - 300 K at 1000 Oe. The $\chi_M T$ value is 7.90 cm³·K·mol⁻¹ at ambient temperature, being extremely approximate the theoretical value of one free Gd^{III} ion (7.88 cm³·K·mol⁻¹, ${}^8S_{7/2}$, g = 2).² As the temperature is decreased, $\chi_m T$ almost keeps constant until to *ca*. 100 K, then decreases sharply to a maximum value of 3.58 cm³·K·mol⁻¹ at 1.8 K (Fig. 3), implying the antiferromagnetic interaction among adjacent Gd^{III} ions.

Fig. 3 Temperature dependence of magnetic susceptibility in the forms of $\chi_M T$ and $\chi_M vs T$ for **1** at 1000 Oe between 1.8 and 300 K. The red solid lines represent the best fitting results. Inset: Temperature dependence of the magnetic susceptibility in the form of $\chi_M^{-1} vs T$ for **1** at an applied field of 1000 Oe between 1.8 and 300 K. The solid line was generated from the best fit by the Curie-Weiss expression.

From the crystal structure, neighbouring Gd^{III} ions are linked by μ_3 -OH groups to produce a 1D "ladder", and the distances of adjacent Gd^{III} ions ranging from 3.776 to 4.505 Å, much shorter than the distance between adjacent 1D "ladders" (longer than 7.8 Å). As a result, the magnetic interaction among adjacent 1D "ladders" can be ignored and simplifies as the 1D chain model. The expression inferred by Fisher¹⁰ (eq 1) can be used for quantitatively analysis the interaction among adjacent Gd^{III} ions.

$$\chi_{\text{chain}} = \frac{Ng^2\beta^2}{3kT} \frac{S(S+1)(1+u)}{1-u}$$
(1)

$$u = \operatorname{coth}(JS(S+1) / kT) - kT / (JS(S+1))$$

In eq (1), N, β , k, and g have their usual meanings, and J is the coupling constant between adjacent Gd^{III} ions. The best least-squares fit parameters are g = 2.01, J = -0.23 cm⁻¹, and $R = \sum [(\chi_M T)_{obsd} - (\chi_M T)_{calcd}]^2 / \sum [(\chi_M T)_{obsd}]^2 = 9.02 \times 10^{-4}$. The result declares antiferromagnetic interaction in **1**. In addition, the curve of χ_M^{-1} vs T in 1.8 – 300 K obey the Curie–Weiss law with C = 7.96 cm³·K·mol⁻¹ and $\theta = -1.30$ K (inset of Fig. 3), further supporting the antiferromagnetic interaction between adjacent Gd^{III} ions exists in **1**.

The field-dependent magnetization data of **1** is examined at a field of 5 – 70 kOe in the range 2 – 10 K (Fig. 4a), presenting a steady increase with increasing *H* and the saturation value of 6.98 $N\mu_{\rm B}$ at 70 kOe and 2 K, which is close to the expected value of 7 $N\mu_{\rm B}$ for a Gd^{III} (S = 7/2, g = 2) ion. The magnetic entropy change $\Delta S_{\rm m}$ can be calculated by the Maxwell equation:^{1b}

$$\Delta S_{\rm m}(T) = \int [\partial M(T, H)/\partial T]_{\rm H} dH$$
 (2)

Journal of Materials Chemistry A Accepted Manuscrip

Fig. 4 (a) Field dependencies of isothermal normalized magnetizations for **1** at T = 2 - 10 K and 5 - 70 kOe; (b) Temperature dependence of $\Delta S_{\rm m}$ obtained from magnetization (*) and heat capacity (•) corresponding to selected ΔH for **1**.

Theoretically, the entropy value of per Gd^{III} ion calculated as $R\ln(2S+1)$ is 17.29 J·mol⁻¹·K⁻¹. Therefore, the theoretical entropy change value of **1** is 44.6 J·kg⁻¹·K⁻¹. The $-\Delta S_m$ value counted by magnetizations is 36.6 J·kg⁻¹·K⁻¹ at 2.5 K for $\Delta H =$ 70 kOe, corresponding to 97.5 mJ·cm⁻¹·K⁻¹ ($D_c = 2.665$ g·m⁻³) (Fig. 4b and Fig. S1). The experimental value is smaller than the expected one ascribing to the presence of antiferromagnetic interactions among Gd^{III} ions.⁸

Page 4 of 6

The heat capacity (C) for 1 was measured from zero fields up to 90 kOe, which exhibit typical temperature- and fielddependencies with the Shottky-type magnetic contribution in the low-temperature region and the lattice contribution dominating the high-temperature region (Fig. 5a). According the inverse integration method applied by Tong et al., ^{1c} we obtained a relatively large Debye¹¹ temperature (θ_D) as 354(5) K, indicating a rigid crystal structure that is beneficial for larger ΔT_{ad} . Meanwhile, we calculated the $-\Delta S_m$ and ΔT_{ad} by neglecting the magnetic contribution that quickly converging toward zero by T^2 law above the experimental region,¹² which has been proven effective and successful.^{1c,13} The results are in nice consistent with those calculated from the magnetization (Fig. 4b), with just a tiny and expectable underestimation only for the larger ΔH . The maximum $-\Delta S_m$ for $\Delta H = 90$ kOe turns out to be 37.5 J·kg⁻¹·K⁻¹ at 2.6 K, and the maximum ΔT_{ad} is 17.1 K (Fig. 5b), which are relatively large among the molecular magnetic coolants.1c

Fig. 5 (a) Temperature dependence of the heat capacity normalized to the gas constant in selected fields for 1. The dotted line represents the lattice contribution; (b) Temperature dependence of ΔT_{ad} corresponding to selected ΔH for 1.

It is noteworthy that the ligand used in **1** is the largest one compared with all previous reported 3D magnetic refrigerants to date (Table S1), however, the cryogenic magnetic refrigeration property suggests that **1** possesses a large MCE value, clearly larger than most of reported 3D Gd^{III}-containing magnetic refrigerants^{2,8} although the big H₄abtc ligand has a significant negative contribution to the MCE value.

Furthermore, the $-\Delta S_{\rm m}$ values per unit mass still reach the values of 15.0 and 23.4 J·kg⁻¹·K⁻¹ at 2.0 K for $\Delta H = 20$ and 30 kOe, respectively, which is very close to the commercial GGG whose $-\Delta S_{\rm m}$ value of 24 J·kg⁻¹·K⁻¹ (173 mJ·cm⁻¹·K⁻¹) for $\Delta H = 30$ kOe.¹⁴

Experimental Section

General Methods and Materials

The H₄abtc ligand was prepared according to the previous literature developed by Ameerunisha et al. for 4,4'-azobenzoic acid.15 and further determined by 1H-NMR. Other chemical reagents were all purchased and used as they were. Elemental analyses (C, H and N) were measured on a Perkin-Elmer 2400-II CHNS/O analyzer. Inductively coupled plasma (ICP) analyses were performed on a Thermo IRIS Advantage spectrometer. Thermogravimetric analyses (TGA) were obtained under a N2 atmosphere on a Labsys NETZSCH TG 209 Setaram apparatus with the heating rate of 10 °C·min⁻¹ from 25 to 800 °C. PXRD were measured on a Rigaku Ultima IV instrument with Cu K α radiation ($\lambda = 1.54056$ Å), with a scan speed of 10° min⁻¹ in the range $2\theta = 3 - 60^{\circ}$. The temperature-variable insitu PXRD pattern was examined on the Pt sample platform under N₂ atmosphere with the heating rate of 10 °C min⁻¹ from 25 to 650 °C, with a scan speed of 5° min⁻¹ in the range $2\theta = 3 - 1$ 60°. Magnetic data were obtained using a Quantum Design SOUID VSM magnetometer. Diamagnetic corrections were made with both Pascal's constants and sample holder. Heat capacity measurements were studied with compressed pellets on a Quantum Design PPMS using the standard relaxation technique. The ¹H-NMR spectrum was tested on a Mercury Vx-300 NMR spectrometer.

Synthesis of {[Gd(OH)(H₂O)(abtc)_{0.5}]·H₂O}_n (1): A mixture of GdCl₃·6H₂O (0.0743 g, 0.20 mmol), H₄abtc (0.0358 g, 0.10 mmol), 4 mol·L⁻¹ NaOH (10 μ L), H₂O₂ (500 μ L), DMA (2 mL) and H₂O (4 mL) was magnetic stirred for 10 min at room temperature. The resulting mixture was transferred into a 25 mL Telfon-lined stainless steel autoclave and kept at 160 °C for 72 h, and then slowly cooled to ambient temperature in 48 h. Yellow strip crystals were harvested. Yield: *ca.* 88% (based on H₄abtc). The amount of solvent molecules contained in the crystal was determined by elemental analyses and TGA result. Elemental analyses calcd. (%) for C₈H₈NO₇Gd: C 24.80, H 2.08, N 3.62. Found: C 24.91, H 2.17, N 3.65.

Crystal data for 1: C₈H₈NO₇Gd, M_r = 387.40 g·mol⁻¹, triclinic space group *P*-1, *a* = 4.5054(3) Å, *b* = 10.3354(7) Å, *c* = 10.8017(9) Å, α = 77.933(6)°, β = 79.230(6)°, γ = 83.148(5)°, *V* = 481.52(6) Å³, *T* = 128(1) K, *Z* = 2, *D*_c = 2.665 g·m⁻³, μ = 6.913 mm⁻¹, *F*(000) = 364, *R*_{int} = 0.0424, 2808 reflections, 1698 with *I* > 2 σ (*I*) for 158 parameters, GOF = 1.041, *R*₁ = 0.0267, *wR*₂ = 0.0572 [*I* > 2 σ (*I*)] and *R*₁ = 0.0288, *wR*₂ = 0.0593 (all data).

X-ray Crystallography

Crystallographic data of **1** was collected on an Oxford SuperNova diffractometer with a graphite monochromatic Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 128 K. Routine Lorentz polarization and empirical absorption corrections were used. All the structures were solved by direct methods and refined by full–matrix least-squares methods on F^2 with the SHELXTL-97 program package.¹⁶ Anisotropic thermal parameters were assigned to all non-hydrogen atoms. Positions of H atoms attached to C and N atoms were geometrically added. The final formula was determined through single-crystal structures,

element analyses and TGA. CCDC no. 1023444 for **1**. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Conclusions

Journal Name

In conclusion, a 3D Gd^{III}-organic framework including scarce Gd^{III}-hydroxy "ladders" has been successfully prepared and structurally characterized, which represents the first lanthanide-based coordination polymer containing the H₄abtc ligand. Although the ligand used in **1** is the largest one for all known 3D magnetic refrigerants to date, it still exhibits a large MCE value of 36.6 J·kg⁻¹·K⁻¹, which satisfactorily supplements the family of 3D Gd^{III}-containing magnetic refrigerants. The superiorly stability of **1** towards air, water, solvents and particularly acid or alkaline conditions, leads it as a promising candidate applied for magnetic refrigerant.

Acknowledgements

This work was supported by the MOST ("973 program" 2012CB821702), the NSFC (21331003, 21421001), the MOE (IRT-13022 and 13R30), 111 project (B12015) and the NSF of Tianjin (13JCZDJC32200). The authors are very grateful to Prof. Ming-Liang Tong and Yan-Cong Chen at Sun Yat-Sen University for heat capacity measurements and discussions.

Notes and references

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China. E-mail: pcheng@nankai.edu.cn; Fax: (+86) 22-23502458.

Electronic Supplementary Information (ESI) available: The TG analyses and temperature-variable *in situ* PXRD sections, as well as crystallographic data in CIF see DOI: 10.1039/b000000x/

- (a) Y. Z. Zheng, G. J. Zhou, Z. P. Zheng and R. E. P. Winpenny, *Chem. Soc. Rev.*, 2014, **43**, 1462; (b) M. Evangelisti and E. K. Brechin, *Dalton Trans.*, 2010, **39**, 4672; (c) J. L. Liu, Y. C. Chen, F. S. Guo and M. L. Tong, *Coord. Chem. Rev.*, 2014, **281**, 26.
- 2 (a) Y. L. Hou, G. Xiong, P. F. Shi, R. R. Cheng, J. Z. Cui and B. Zhao, *Chem. Commun.*, 2013, 49, 6066; (b) P. F. Shi, Y. Z. Zheng, X. Q. Zhao, G. Xiong, B. Zhao, F. F. Wan and P. Cheng, *Chem. Eur. J.*, 2012, 18, 15086.
- M. Evangelisti, O. Roubeau, E. Palacios, A. Camón, T. N. Hooper, E. K. Brechin and J. J. Alonso, *Angew. Chem. Int. Ed.*, 2011, 50, 6606.
- 4 F. Torres, J. M. Hernández, X. Bohigas and J. Tejada, *Appl. Phys. Lett.*, 2000, **77**, 3248.
- 5 For example, see: (a) F. S. Guo, Y. C. Chen, L. L. Mao, W. Q. Liu, J. D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský and M. L. Tong, *Chem. Eur. J.*, 2013, **19**, 14876; (b) L. X. Chang, G. Xiong, L. Wang, P. Cheng and B. Zhao, *Chem. Commun.*, 2013, **49**, 1055; (c) J. W. Sharples, Y. Z. Zheng, F. Tuna, E. J. L. McInnes and D. Collison, *Chem. Commun.*, 2011, **47**, 7650.
- 6 For example, see: F. S. Guo, J. D. Leng, J. L. Liu, Z. S. Meng and M. L. Tong, *Inorg. Chem.*, 2012, **51**, 405.
- 7 (a) M. Y. Wu, F. L. Jiang, X. J. Kong, D. Q. Yuan, L. S. Long, S. A. Al-Thabaiti and M. C. Hong, *Chem. Sci.*, 2013, 4, 3104; (b) S.

Biswas, S. Goswami, A. Adhikary and S. Konar, *Dalton Trans.*, 2013, 42, 13331.

- For example, see: (a) Y. C. Chen, L. Qin, Z. S. Meng, D. F. Yang, C. Wu, Z. D. Fu, Y. Z. Zheng, J. L. Liu, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský and M. L. Tong, *J. Mater. Chem. A.*, 2014, 2, 9851; (b) G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, *Adv. Mater.*, 2013, 25, 4653; (c) Y. C. Chen, F. S. Guo, Y. Z. Zheng, J. L. Liu, J. D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský and M. L. Tong, *Chem. Eur. J.*, 2013, 19, 13504; (d) Y. M. Bing, N. Xu, W. Shi, K. Liu and P. Cheng, *Chem. Asian. J.*, 2013, 8, 1412; (e) S. W. Zhang, W. Shi, L. L. Li, E. Y. Duan and P. Cheng, *Inorg. Chem.*, 2014, 53, 10340; (f) J. M. Jia, S. J. Liu, Y. Cui, S. D. Han, T. L. Hu and X. H. Bu, *Cryst. Growth Des.*, 2013, 13, 4631; (g) S. D. Han, X. H. Miao, S. J. Liu and X. H. Bu, *Chem. Asian. J.*, 2014, 9, 3116; (h) S. D. Han, X. H. Miao, S. J. Liu and X. H. Bu, *Inorg. Chem. Front.*, 2014, 1, 549.
- 9 SHAPE, version 2.0; continuous shape measures calculation; Electronic Structure Group, Universiat de Barcelona: Barcelona, Spain, 2010.
- 10 M. E. Fisher, Am. J. Phys., 1964, 32, 343.
- (a) M. Affronte, J. C. Lasjaunias and A. Cornia, *Eur. Phys. J. B*, 2000,
 15, 633; (b) M. Evangelisti, F. Luis, L. J. de Jongh and M. Affronte,
 J. Mater. Chem., 2006, **16**, 2534.
- (a) R. L. Carlin, *Magnetochemistry*, Springer-Verlag, Berlin, 1986, Ch. 3; (b) V. K. Pecharsky and K. A. Gschneidner Jr, *J. Magn. Magn. Mater.* 1999, **200**, 44.
- 13 Y. Meng, Y. C. Chen, Z. M. Zhang, Z. J. Lin and M. L. Tong, *Inorg. Chem.*, 2014, 53, 9052.
- B. Baudun, R. Lagnier and B. Salce, J. Magn. Magn. Mater., 1982, 27, 315.
- 15 S. Ameerunisha, and P. S. Zacharias, J. Chem. Soc. Perkin Trans., 1995, 2, 1679.
- 16 (a) G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997; (b) G.
 M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

An exceptionally stable 3D Gd^{III}-organic framework towards magnetocaloric refrigerant

Shaowei Zhang, Eryue Duan and Peng Cheng*

The first example of 3D Gd^{II} -H₄abtc framework was successfully prepared, exhibiting a large cryogenic magnetocaloric effect and exceptionally air and chemical stabilities, especially in water and under acidic/alkaline conditions.