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Abstract 

This work outlines a newly developed method that allows electrospun cellulose fibers to be coated with 

nanoparticles during dry-jet wet electrospinning.  Cellulose fibers were wet electrospun from a room 

temperature ionic liquid solvent into a coagulation bath containing an aqueous suspension of 

magnesium hydroxide nanoparticles to prepare composites of nanofibers coated with functional 

nanoparticles.  Flame retardant cellulose–magnesium hydroxide coated composite fibers were prepared 

to demonstrate this novel electrospinning method.  The placement of the nanoparticles exclusively on 

the surface of the cellulose fibers dramatically impacted the functionality of the fibers.  Electrospun 

cellulose fibers exhibited an onset of combustion in air at 239 °C and a maximum mass loss at 302 °C.  

Cellulose fibers with Mg(OH)2 nanoparticles (<50 nm avg. diameter) inside them exhibited an onset of 

combustion at 267 °C and a maximum mass loss at 315 °C.  Cellulose fibers with the same nanoparticles 

uniformly coated on their surfaces exhibited an onset of combustion at 276 °C and a maximum mass loss 

at 318 °C.  When larger Mg(OH)2 nanoparticles (>100 nm avg. diameter) were used, the onset of 

combustion was 185 °C and the maximum mass loss was at 216 °C when nanoparticles were inside the 

fibers, and the onset of combustion was 263 °C and the maximum mass loss was at 317 °C for Mg(OH)2 

nanoparticle coated cellulose fibers.  Simple flame tests showed a similar trend, with nanoparticle-

coated fibers being fire resistant and fibers with nanoparticles inside burned rapidly upon exposure to 

an open flame.  

1. Introduction 

Electrospinning was first reported in 1934,
1
 and eventually experienced a rapid increase in development 

in the 1990’s, which continues today.
2,3

 A major technological advance for electrospinning came with 

the discovery and the expansion of a class of solvents known as room temperature ionic liquids 

(RTILs).
4,5

 These novel solvents are liquid salts that can be custom-designed to exhibit a large number of 
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chemical, physical, and electrical properties.
6,7,8,9

 RTILs make it possible to electrospin certain polymers 

that are insoluble in conventional solvents.  The most prominent example is the wet electrospinning of 

cellulose into a coagulation bath using dialkylimidazolium-based RTILs.
6, 10 , 11

 Unlike traditional 

electrospinning, this wet electrospinning of cellulose from RTIL results in cellulose fibers that slowly 

solidify in a coagulation bath in which RTIL is replaced by a co-solvent such as water, acetone, or alcohol, 

resulting in a hydrogel.  This co-solvent is then removed from these hydrogel fibers by either standard 

desiccation or freeze-drying.  While this method for the wet electrospinning cellulose nanofibers from 

RTILs has been widely reported, the exploitation of the gelled intermediate state of the fibers prior to 

hydrogel formation, present immediately after wet electrospinning into the coagulation bath, has not 

been described. 

Here we report a novel technique for the synthesis of nanofiber composites in which functional 

nanoparticles (NPs) are embedded into the surface of wet electrospun cellulose fibers.  Cellulose 

dissolved in the RTIL 1-ethyl-1-methylimidazolium acetate ([EMIM][Ac]) was electrospun into an 

aqueous coagulation bath that contained a suspension of two types of fire-retardant magnesium 

hydroxide NPs.  This resulted in effective surface coating of fibers with nanoparticles, producing 

significantly different properties than fibers electrospun from a solution of [EMIM][Ac]/cellulose 

containing Mg(OH)2 NPs.  

2. Experimental Methods 

2.1. Materials 

Cellulose pulp (degree of polymerization approx. 1100) was obtained from Weyerhaeuser Co. (2449 

Stagecoach Rd, Oglethorpe, GA 31068). The RTIL 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]), 

was obtained from Sigma-Aldrich (St. Louis, Missouri, USA). Magnesium hydroxide (Mg(OH)2) NPs 

(average particle size <50 nm as determined by BET (performed by manufacturer)) were purchased 
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from Sigma-Aldrich (St. Louis, Missouri, USA). Milk of magnesia (CVS brand, 80 mg/mL Mg(OH)2 in 

water) was purchased from a local CVS pharmacy (average particle size >100 nm having an average 

agglomerate size of ~2 μm as determined by electron microscopy).  All solvents were purchased 

from Fisher Scientific (Pittsburgh, Pennsylvania) and used without further purification. 

 

2.2.  Preparation of electrospinning solution 

Finely divided cellulose pulp (310 mg) was added to [EMIM][Ac] (19.7 g) to prepare a 1.55 wt% 

cellulose solution in RTIL. The mixture was mechanically stirred using a magnetic stir bar in a 

temperature controlled oil bath at 80°C for 8 h until a homogeneous solution was formed.  

Cellulose-Mg(OH)2 solutions were prepared, following a similar method as used to prepare the 

cellulose solution in RTIL, with the addition of Mg(OH)2 NPs. Specifically, Mg(OH)2 NPs were added 

to [EMIM][Ac] and stirred for 10 min to yield a uniform dispersion. The cellulose pulp was then 

added, and the solution was then stirred at 80°C for 8 h until the cellulose dissolved completely.  

Cellulose-milk of magnesia solutions were prepared following the same method, however the milk 

of magnesia was freeze-dried prior to addition to the RTIL, which resulted in a certain degree of 

nanoparticle agglomeration.  Both Mg(OH)2 solutions (0.5 wt%) were further homogenized with 

ultrasonication in a Bransonics bath sonicator for 30 min at room temperature. 

2.3. Electrospinning procedure 

A previously reported dry-jet wet electrospinning technique was modified to produce micron-scale 

cellulose fibers as shown in Figure 1.
6,10

 The RTIL-cellulose solutions both with and without Mg(OH)2 

NPs were placed into a 5 mL syringe and connected to the spinneret (MECC, Ogori, Fukuoka, Japan) 

using PTFE tubing. The spinneret was fitted with a stainless steel needle with an internal diameter of 

0.94 mm. The needle was connected to a high voltage power supply (CZE1000R, Spellman, 
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Hauppauge, New York, USA), which is capable of generating a DC voltage up to 30 kV. Electrospun 

cellulose fibers were collected in a deionized aqueous coagulation bath to remove [EMIM][Ac] and 

solidify the fibers.  In some cases the bath contained a suspension of Mg(OH)2 particles in order to 

coat the surface of the cellulose fibers as they formed during the coagulation/solvent exchange.  For 

the Mg(OH)2 NP bath, approximately 300 mg of Mg(OH)2 NPs were added to 100 mL deionized water 

to form a 3 mg/mL Mg(OH)2 NP coagulation bath. In the case of the milk of magnesia solution, a 

coagulation bath of 100 mL was used with a Mg(OH)2 concentration of 20 mg/mL. A small sheet of 

aluminum foil (20 μm thick) was electrically grounded and placed as the current collector on the 

bottom of the coagulation bath (inside of vessel). The coagulation bath was placed on top of a 

bench-top orbital shaker in order to both aid in the coagulation process by gently moving the 

solution and to maintain the uniform Mg(OH)2 suspension during the electrospinning process. The 

distance between the needle tip and the surface of the water in the coagulation bath remained 

constant at 10 cm. The electrospinning solution was fed at a constant rate using a mechanical 

syringe pump (NE-1000, New Era Pump System Inc., Wantagh, New York, USA) at 60 μL/min. The 

applied voltage was optimized to obtain sufficient spinnability of continuous fibers, ranging from 15-

20 kV. Fibers collected in the coagulation bath formed an entangled web of flexible fibers, some of 

which had Mg(OH)2 inside them, and some of which were coated with Mg(OH)2 NPs. These fibers 

were recovered and washed with distilled water five times to remove traces of [EMIM][Ac] and 

excess Mg(OH)2 NPs not fully embedded in the fiber surfaces. The resulting fiber mats were freeze-

dried to form a loose structure similar to a cotton ball (see Supporting Information).  
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Figure 1. The electrospinning setup for wet electrospinning of cellulose.  The coagulation bath was placed on an 

orbital shaker table to aid in solvent exchange and to maintain the Mg(OH)2 nanoparticle suspension when 

added. 

 

2.3. Electron Microscopy 

Samples were imaged using a field emission scanning electron microscope (FE-SEM) Zeiss SUPRA-55 

(Oberkochen, Germany). All samples were sputter-coated with 1 nm of gold/palladium (Denton 

Vacuum Desk IV, Moorestown, NJ) prior to imaging. Images were obtained at a working distance of 

2.8-4.1mm using an acceleration voltage of 1 kV. 

2.4. X-ray Spectroscopy 

The presence of Mg(OH)2 NPs on the surface of coated fibers was confirmed with a Bruker D8-

discover X-ray diffractometer using graphite monochromated CuKα radiation. 

2.5. Thermal Analysis  
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Thermogravimetric analysis (TGA) was performed using a computer-controlled TA Instruments TGA 

Q50 (New Castle, Delaware, USA) under an ambient air atmosphere at a heating rate of 10°C per 

min. 

 

3. Results  

Using a modified dry-jet wet electrospinning method (Figure 1) cellulose fibers were electrospun into a 

coagulation bath containing distilled/deionized water both with and without the addition of Mg(OH)2 

NPs for external fiber coating.  For comparison, cellulose fibers that contained Mg(OH)2 NPs inside of the 

cellulose fiber were also prepared.  This resulted in neat cellulose fibers, cellulose fibers with Mg(OH)2 

inside them, and cellulose fibers coated with Mg(OH)2 (Figure 2). Electrospinning was carried out at an 

acceleration potential of 15-20 kV and a flow rate of 60 μL/min at a fixed distance of 10 cm between 

needle tip and the surface of the aqueous coagulation bath, which contained Mg(OH)2 NPs in the case of 

coated fibers.  

The cellulose and cellulose-Mg(OH)2 NPs composite fibers were collected, washed with distilled water to 

remove loosely bound magnesium hydroxide in the case of coated fibers, and freeze-dried to obtain 

“cotton ball” fiber meshes (see supplementary information) for characterization. SEM was carried out to 

characterize the fibers produced by this method (Figure 3 and supplementary information).  
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Figure 2. Schematic of fiber cross-sections showing distributions of Mg(OH)2 NPs.  Large micron size clusters can 

be found within the fibers which are electrospun from a mixture of [EMIM][Ac]/cellulose/Mg(OH)2 (center).  

Such large clusters quickly precipitate and also do not readily attach to the fiber surface in fibers electrospun 

from [EMIM][Ac]/cellulose into a coagulation bath containing Mg(OH)2 NPs (right). 
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Figure 3. Electron micrographs of cellulose-magnesium hydroxide fiber composites.  A, B) Fibers electrospun 

from an [EMIM][Ac]/cellulose/Mg(OH)2 NPs mixture into a water coagulation bath showing a small number of 

Mg(OH)2 NPs on surface and internal clusters exposed at defect sites and cracks along the fibers (arrows); C,D) 

Fibers electrospun from an [EMIM][Ac]/cellulose solution into a water/Mg(OH)2 NP coagulation bath showing a 

large number of Mg(OH)2 nanoparticles on their surface; E, F) Fibers electrospun from an [EMIM][Ac]/cellulose 

solution into water/milk of magnesia coagulation bath showing a reduced quantity of Mg(OH)2 NPs on their 

surface, due to the larger NPs being removed during the washing steps. 

 

Electrospinning from a mixed solution of [EMIM][Ac]/cellulose/Mg(OH)2 NPs resulted in fibers that had a 

relatively small number of 5 nm Mg(OH)2 NPs on their surfaces, which had migrated to the surface 

during electrospinning. Most of the NPs, however, are distributed throughout the interior of the fibers 

and can be seen where NP clusters at surface cracks and defects along the fiber (Figure 3A, B).  Micron 

scale aggregates of particles, some of which are formed during the drying of the milk of magnesia 
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suspension prior to blending with the [EMIM][Ac]/cellulose solution, were detrimental to fiber strength 

and the spinnability of the solution.  In contrast, fibers produced by electrospinning an 

[EMIM][Ac]/cellulose solution into an aqueous Mg(OH)2 NP suspension resulted in a complete coverage  

of the fiber surfaces with 5 nm Mg(OH)2 NPs (Figure 3C ,D). The NPs physically adhere to the cellulose 

fibers when they enter the bath.  The fibers are in a tacky intermediate state between an ionic liquid 

solution and a cellulose hydrogel.  It is this initial tackiness of the RTIL that allows the particles to 

adhere, and as the RTIL is replaced with water the particles remain physically trapped at the surface of 

the fibers by the immobilized cellulose chains.   The coating produced had no noticeable impact on fiber 

strength or spinnability.  Similar results were obtained when electrospinning an [EMIM][Ac]/cellulose 

solution into a water/milk of magnesia solution.  Aqueous coagulation baths were prepared that 

contained 3 mg/mL of Mg(OH)2 NPs and 20 mg/mL of milk of magnesia.  The milk of magnesia 

suspension had many large particles (<100 nm) and so a higher concentration was chosen to ensure 

sufficient nanoscale particles were available to coat the fiber surfaces. In both cases, X-ray diffraction 

(XRD) spectral data (Figure 4) confirmed the presence of the Mg(OH)2 NPs on the surface of the coated 

fibers. 
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Figure 4. X-ray diffraction spectra for electrospun cellulose fibers (top), Mg(OH)2 NPs (bottom), and Mg(OH)2 NPs 

coated cellulose composite fibers (middle). 

 

TGA (Figure 5, Table 1) affords data both on the thermal stability of the fibers and on the approximate 

mass percent of the Mg(OH)2 NPs incorporated into the cellulose nanocomposites (based on the residue 

that remains at 600 °C).  The onset temperature of cellulose combustion in air increased, relative to neat 

cellulose, for both samples having <50 nm Mg(OH)2 NPs on the inside or on the outside of the fiber 

(Figure 5, left). The same trend was observed for the temperature at which the maximum mass loss was 

observed (Table 1, left).  The sample with >100 nm Mg(OH)2 NPs added did not follow the same trend, 

with the fibers with the larger Mg(OH)2 NPs inside them made from an [EMIM][Ac]/cellulose/Mg(OH)2 

mixture beginning combustion at a significantly lower temperature (Figure 5, right). 

 

Figure 5. TGA of electrospun cellulose nanofiber composites.  Smaller Mg(OH)2 nanoparticles (left) delayed 

combustion both inside and as a coating.  Larger Mg(OH)2 nanoparticles (right) accelerated combustion when 

placed inside the fibers, and delayed combustion when coated on the surface of the fibers.   
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Table 1. First derivative of mass loss data for smaller Mg(OH)2 particles (left) and larger Mg(OH)2 particles (right).  

 

Flame testing was carried out on the samples with <50 nm Mg(OH)2 NPs by placing a compacted 

electrospun fiber sample horizontally in a steel clamp.  Samples were weighed out such that they each 

contained 100 mg of cellulose (i.e., 100 mg sample for the neat cellulose fibers, 116 mg for the Mg(OH)2  

NPs inside sample, and 145 mg for the Mg(OH)2 NPs coated sample).  The tip of each sample was 

exposed to the open flame of an ethanol lamp until sustained burning was achieved. This direct contact 

with the open flame was less than 1 sec for the fibers of neat cellulose and with Mg(OH)2 NPs (avg. 

diameter <50 nm) inside (Figure 7A and B). In the case of the Mg(OH)2 NP coated fibers it was not 

possible to maintain a flame and repeated exposure (> 2 sec total for the picture shown in Figure 6C) to 

the alcohol lamp flame was required to partially burn the sample (Figure 6C). In total the NP coated 

sample endured more than 12 sec of direct exposure to the flame without fully burning. 

 

Figure 6. Flame testing of nano fiber composites. A) Pure cellulose, Mg(OH)2 NPs inside (<50 nm avg. diameter), 

and  Mg(OH)2 (<50 nm avg. diameter) NPs coated electrospun fibers.  
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4. Discussion 

Electrospinning of polymer fibers blended with functional nanoparticles has been widely reported in the 

literature.
 12,13,14

 The majority of these reports create these composite materials by simply mixing 

nanoparticles into the polymer solution prior to electrospinning.  Some reports employ a more 

sophisticated coaxial spinning technique that allows for a core-sheath fiber to be created which 

concentrates the nanomaterials in the core or in the sheath layer of the electrospun fibers.
10

 To the best 

of the authors’ knowledge, no prior reports have described a one-step method for producing 

nanoparticle-coated electrospun fibers. The technique reported here was developed to allow for the 

formation of electrospun fibers with functional nanomaterials exclusively on their surfaces.  The 

hypothesis of this work is that functional nanomaterials located exclusively on the surface of 

electrospun fibers will result in unique materials properties.  This was confirmed by the observation that 

the Mg(OH)2 NP coated cellulose fibers were consistently more resistant to combustion. In the case of 

the larger Mg(OH)2 NPs studied (>100 nm avg. diameter nanoparticles with 2 μm avg. diameter 

agglomerates) from the milk of magnesia solution, mixing into the cellulose solution prior to 

electrospinning resulted in a significant reduction of the thermal stability of the cellulose fibers (Figure 

5).  This is due to the fact that when mixed into the polymer solution prior to spinning, large micron-

scale agglomerates of nanoparticles are included and this leads to large voids in the fibers produced.  

These agglomerates also caused interruptions during the electrospinning process by forming blockages 

in the syringe and spinneret.  When the same particles are included in the coagulation bath, these large 

micron-scale agglomerates of nanoparticles have the tendency to precipitate.  Even the large 

agglomerations of NPs that do not precipitate, it was observed that these particles are apparently too 

large to be incorporated into the surfaces of the coagulating cellulose fibers (Figure 3).  This coagulation 
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occurs rather quickly once the fibers enter the coagulation bath, with the cellulose polymer chains losing 

mobility as the RTIL is leached out.  This halts the process of nanoparticles embedding into their surfaces.   

As with any composite filler, the physical voids created within the fibers by the presence of the Mg(OH)2 

NPs weaken the fiber strength.  These voids also allow for more rapid combustion by increasing the 

internal surface area of the cellulose fibers.  Additionally, upon exposure to elevated temperatures, the 

Mg(OH)2 releases water vapor during the formation of MgO.  This water vapor acts in concert with the 

increased surface area to result in a sudden onset of rapid burning of the electrospun cellulose fibers 

(Figure 6B).  This is in contrast to the Mg(OH)2 NP coated cellulose fibers that do not support an open 

flame and resisted burning during sustained exposure to the flame of an alcohol lamp.  The Mg(OH)2 NP 

coated cellulose fibers had no internal voids and the water vapor released during the formation of MgO 

simply escaped into the atmosphere and did not create internal pressure within the fiber (Figure 6, right) 

as it had when inside of the fibers. This model system has clearly demonstrated that the location of 

functional nanomaterials exclusively on the surfaces of electrospun fibers resulted in unique materials 

properties. 

5. Concusions 

The dry-jet wet electrospinning of cellulose from an RTIL-based solution into a coagulation bath 

containing a suspension of nanoparticles resulted in NP coated cellulose fibers.  These NP coated 

cellulose fibers exhibited compositions and materials properties distinct from the fibers produced from a 

mixture of cellulose and NPs in an RTIL solution.  Increased functionality can be obtained from fibers 

electrospun by this technique with the added benefit of more reliable spinning conditions.  The surface 

coating of electrospun fibers prior to coagulation could be extended to the use of an aerosol containing 

the desired nanomaterial coating so long as this aerosol cloud did not interfere with the accelerating 

potential.  Future work will focus on optimizing coating electrospun cellulose fibers with aerosolized 
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nanomaterials.  Moreover, future studies will also examine nanoparticles having a wide variety of 

properties including electrically conducting nanoparticles and anti-microbial nanoparticles.  
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University along with the Young Researchers Foundation of the key lab of ATMMT, Zhejiang Sci-Tech 
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