This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Graphene-like MoS₂/graphene Nanocomposite as High-performance Anode for Lithium Ion Batteries

Yongchang Liu, Yanping Zhao, Lifang Jiao* and Jun Chen

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Graphene-like MoS₂/graphene Nanocomposite as High-performance Anode for Lithium Ion Batteries

Yongchang Liu, Yanping Zhao, Lifang Jiao* and Jun Chen

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

In this article, we report on the preparation of graphene-like MoS₂/graphene nanocomposite by the hydrolysis of lithiated MoS₂ (LiMoS₂) and its application as anode material of lithium ion batteries. When the mass ratio of graphene/LiMoS₂ is 15/100, the obtained composite (MoS₂/GNS-15) displays a flower-like architecture composed of exfoliated nanosheets. The structure analyses further demonstrate that graphene-like MoS₂ is supported on the surface of graphene nanosheets (GNS), and some of the interlayer spacings of MoS₂ are enlarged with the intercalation of graphene. The reversible capacity of MoS₂/GNS-15 nanocomposite exhibits -1400 mA h g⁻¹ in the initial cycle and maintains 1351 mA h g⁻¹ after 200 cycles at 100 mA g⁻¹. Furthermore, the capacity can reach 591 mA h g⁻¹ even at a high current density of 1000 mA g⁻¹. The excellent electrochemical performance of MoS₂/GNS-15 is owing to the synergistic effect between high conductive GNS and graphene-like MoS₂. On one hand, GNS matrix can offer two-dimensional conductive networks and effectively suppress the aggregation of layered MoS₂ during lithiation/delithiation process. On the other hand, graphene-like MoS₂ with enlarged gallery can ensure the flooding of electrolyte, provide more active sites and lower the diffusion energy barrier of Li⁺ ions.

Introduction

Lithium ion batteries (LIBs) have been widely used in electronic devices including cell phones, laptop computers and power tools. However, the commercialized graphite as the anode material still suffers from a relatively low capacity (372 mA h g⁻¹). Graphene with a monolayer graphite, which exhibits outstanding electronic behavior, large surface area and high chemical tolerance, has been applied to a wide range of fields. For example, graphene nanosheets (GNS) and their composites have been intensively investigated as alternative anode materials for LIBs with higher capacities.^{5,6}

The versatility and success of graphene also stimulate the research interest into other two-dimensional inorganic nanosheets such as transition metal dichalcogenides (TMDs).⁷ As a typical member of layered TMDs, MoS₂ has a sandwich structure that consists of covalently bond S-Mo-S trilayers separated by a relatively large van der Waals interaction. MoS₂ shows versatile applications in the areas of lubricant, catalytic hydrodesulfuration, hydrogen storage or evolution reactions, and can be used as a host for reversible insertion/extraction of Li⁺/Mg²⁺. When the first lithium ion battery patent with MoS₂ as the anode material was granted in 1980,¹⁶ a number of different morphologies of MoS₂ (including nanoflake, nanoflower, hierarchical sphere, etc.) used in LIBs were subsequently observed.¹⁷⁻¹⁹ The specific capacity could be up to 1000 mA h g⁻¹, but their cycling stability was unsatisfactory. Researches show that carbon is a commonly used conductive additive in electrode materials, the structure of which is stable upon long cycling.^{20,21} Hence the design of composite anodes based on carbonaceous materials is a promising strategy for improving the cyclability.^{22,23} More specifically, recent studies have demonstrated that combining GNS with MoS₂ is a good choice to achieve considerable capacity as well as superior cycling stability, owing to the high electronic conductivity and synergistic effect between the components of the composites.²⁴ As an example, the capacity of MoS₂/GNS composite can reach 1300 mA h g⁻¹ at 100 mA g⁻¹ with tiny fading for 50 cycles.²⁵

The similarity of layered structure between graphite and MoS₂ indicates that MoS₂ can be exfoliated to single-layer or few-layer sheets (named graphene-like structure).²⁶ Indeed, it has been shown that the transition metal disulfide nanosheets with few-layer (in particular single-layer) show distinctively different physical and chemical properties in comparison with the bulk counterparts.²⁷⁻²⁹ When used as electrode materials of LIBs, the exfoliated MoS₂ display open channels for ion diffusion and provide more active sites, thus exhibiting improved electrochemical performance.³⁰⁻³³

Motivated by the above considerations, in this paper, we synthesized a novel kind of graphene-like MoS₂/GNS nanocomposite by the hydrolysis of lithiated MoS₂. Instrumental characterizations demonstrate that exfoliated MoS₂ is supported on the graphene substrate, meanwhile, some of the interlayer spacings of MoS₂ are enlarged with the intercalation of graphene.
It was found that the MoS$_2$/GNS nanocomposite exhibited excellent electrochemical performance in lithium ion batteries, delivering a high reversible capacity of 1300-1400 mA h g$^{-1}$ with good cycling stability at 100 mA g$^{-1}$.

Experimental section

Synthesis of graphene nanosheets (GNS)

Graphene oxide (GO) was synthesized by the chemical oxidation of graphite flakes (Sigma-Aldrich) by a modified Hummers method.30,35 The as-prepared GO was then reduced by thermal exfoliation at 800 °C in a quartz tube under Ar-H$_2$ (9:1 v/v) flow for 30 min to form fluffy GNS (the morphology of as-prepared GNS see ESI, Fig. S1†).

Synthesis of graphene-like MoS$_2$/GNS nanocomposite

In a typical synthesis, commercial bulk MoS$_2$ (J&K) was soaked in 2 equivalents butyllithium (J&K, n-BuLi, 2.4 M in hexane) and kept in argon atmosphere for a week at room temperature. The concentration of n-Buli was adjusted to 1 M with the addition of anhydrous lithium before reaction. The product was filtered off in the dry box, washed with pentane and then dried under reduced pressure. The product stoichiometry is known to be LiMoS$_2$. Sonication of 100 mg LiMoS$_2$ with 15 mL deionized water resulted in the formation of single layers of MoS$_2$. The released hydrogen flow was speculated to push the adjacent MoS$_2$ layers further apart. The reactions are described as follows,30

$$\text{MoS}_2 + n\text{-BuLi} \rightarrow \text{LiMoS}_2 + 1/2\text{C}_2\text{H}_4 \quad \text{(1)}$$

$$\text{LiMoS}_2 + \text{H}_2\text{O} \rightarrow (\text{MoS}_2)_{\text{exfoliated}} + \text{LiOH} + 1/2\text{H}_2 \quad \text{(2)}$$

Scheme 1 Schematic formation process of MoS$_2$/GNS nanocomposite.

Then, the as-synthesized GNS was fully exfoliated and dispersed in ethanol with the help of ultrasonication (GNS/ethanol = 3 mg/mL). The GNS suspension was slowly added to the MoS$_2$ monolayers, the reaction mixture was kept sonication for 2h and then allowed to stir at room temperature for 4 days. The functional oxygen-containing groups on the surface of GNS could stretch into the positively charged area of MoS$_2$ molecular through electrostatic interaction. Hence the exfoliated graphene and MoS$_2$ would attach with each other during this process. Thereafter, two drops of concentrated hydrochloric acid were added, and the reaction mixture was allowed to stir in an airtight flask for another day at 80 °C. The single layers of MoS$_2$ were very sensitive to temperature and would restack turbostratically on the surface of GNS when heating.30 In the meantime, some of the graphene would also be clamped between the restacked MoS$_2$ layers. The resultant black flocculations were collected by centrifugation with deionized water and ethanol for several times, and then dried in a vacuum oven at 80 °C for 12 h. The mass ratio of GNS/LiMoS$_2$ is 15/100 or 30/100, and the corresponding product is denoted as MoS$_2$/GNS-15 or MoS$_2$/GNS-30. As a control the restacked MoS$_2$ without any GNS was also fabricated. The preparation procedure for graphene-like MoS$_2$/GNS nanocomposite is illustrated in Scheme 1.

Materials Characterizations

X-Ray diffraction (XRD) analysis was performed on a Rigaku D/Max-2500 with Cu-Kα radiation (λ= 1.54178 Å). The morphology and microstructure were observed by scanning electron microscopy (SEM, HITACHI S-4800) and transmission electron microscopy (Tecnai G2 F20 TEM). The element content of the samples was analyzed by GENENIS-4000 energy dispersive X-Ray spectroscopy (EDX). Fourier transform infrared (FT-IR) spectra of the samples were collected at room temperature by using a FTIR-650 spectrometer (Tianjin inVia, excitation 514.5 nm) and X-ray photoelectron spectrometer (XPS, PHI 5000 Versaprobe, ULVAC PHI) were also used to characterize the synthesized materials.

Electrochemical Measurements

Electrochemical tests were carried out using a two-electrode cell assembled in an argon-filled glove box with water and oxygen contents below 5 ppm. The working electrodes were fabricated by mixing active materials, acetylene black and polyvinylidene fluoride (PVDF) binder with a weight ratio of 80:15:5 in N-methyl-pyrrolidinone (NMP) solvent to form homogeneous slurry. The mixture was coated on a Cu foil. The coated electrode was dried at 60 °C for 12 h in vacuum oven and then pressed. The active material loading was about 0.9-1.0 mg cm$^{-2}$ after wiping off the mass of graphene. The counter/reference electrode was lithium metal and the electrolyte solution was 1 M LiPF$_6$ in a volume ratio of 1:1:1 mixture of ethylene carbonate (EC), ethylene methyl carbonate (EMC) and dimethyl carbonate (DMC). The separator was Celgard 2320 microporous film. Galvanostatic charge/discharge tests were performed between 0.01 and 3.0 V on a LAND battery-test instrument (CT2001A). Cyclic voltammetries (the potential interval: 0.01-3.0 V) were conducted by a CHI660B electrochemical workstation at a scan rate of 0.2 mV s$^{-1}$.

Results and discussion

Fig. 1 shows the XRD patterns of bulk MoS$_2$, pure restacked MoS$_2$, the MoS$_2$/GNS-15 and MoS$_2$/GNS-30 nanocomposites. All the sharp diffraction peaks of bulk MoS$_2$ can be readily indexed to a hexagonal phase (JCPDS No. 37-1492). The strong (002) peak with a d-spacing of 0.62 nm signifies a well-stacked layered structure along the c axis.24 In comparison, restacked MoS$_2$ shows broadened peaks and a much shortened (002) peak. This indicates that the mean crystal size and the number of layers along the c axis are much smaller than those of raw MoS$_2$ (from
over 70 layers to about 9-10 layers, extracted from the full width at half maximum (FWHM)).30,36 Additionally, the MoS\textsubscript{2}/GNS composites basically retain the position of the diffraction peaks of MoS\textsubscript{2}, while the intensity becomes even weaker. This implies that the incorporation of GNS further restrains the stacking of MoS\textsubscript{2} layers. Moreover, we can hardly detect the (002) diffraction peak of graphene at $2\theta \approx 25^\circ$, denoting that the graphene nanosheets seldom stack together. It may be attributed to the layered MoS\textsubscript{2}, which is anchored on the surface of graphene and inhibits the stacking of GNS. Meanwhile, two new peaks assigned to (001) and (003) planes appear more and more obvious with increasing graphene proportion in the composites. This suggests that some of the graphene is lying in the van der Walls gap of host MoS\textsubscript{2}, leading to an expansion of the interplanar spacing.36,37

![Fig. 1 XRD patterns of bulk MoS\textsubscript{2}, pure restacked MoS\textsubscript{2}, MoS\textsubscript{2}/GNS-15 and MoS\textsubscript{2}/GNS-30 nanocomposites.](image)

Fig. 1 XRD patterns of bulk MoS\textsubscript{2}, pure restacked MoS\textsubscript{2}, MoS\textsubscript{2}/GNS-15 and MoS\textsubscript{2}/GNS-30 nanocomposites.

Fig. 2 shows the SEM and HRTEM images of the bulk MoS\textsubscript{2} and MoS\textsubscript{2}/GNS-15 nanocomposite. The building blocks of bulk MoS\textsubscript{2} are largely micrometer-sized inerratic nanosheets, which are tightly stacked (Fig. 2a). After exfoliation, the morphology of restacked MoS\textsubscript{2} interestingly changed to highly-scattered nanoflakes (see ESI, Fig. S2a+). It is also noted that the size and thickness of the nanosheets were significantly decreased relative to bulk phase. This confirms the fact that restacked MoS\textsubscript{2} has the structure of a single layer or few layers, which was named graphene-like structure by Rao et al.24 Introducing optimum level of GNS is responsible for an order arrangement of the graphene-like nanoflakes, probably due to the flexible graphene which acts as a substrate for layered MoS\textsubscript{2}, would self-assemble into a 3D architecture by partial overlapping or coalescing.24 As shown in Fig. 2b, MoS\textsubscript{2}/GNS-15 nanocomposite exhibits a flower-like architecture constituted by exfoliated nanosheets. However, excess GNS will inevitably block the open-framework structure of the composite. For MoS\textsubscript{2}/GNS-30, the flower-like architecture is overlapped with large areas of graphene (see ESI, Fig. S2b+). HRTEM image displayed in Fig. 2c reveals that bulk MoS\textsubscript{2} is composed of tens of layers tightly stacked together. In contrast, Fig. 2d indicates that MoS\textsubscript{2}/GNS-15 nanocomposite contains highly exfoliated MoS\textsubscript{2} single layer or few layers, which are supported on the surface of graphene. It’s worth noticing that some of the interlayer distances of MoS\textsubscript{2} are enlarged (from 6.2\textsubscript{Å} to \sim10\textsubscript{Å}) with the intercalation of graphene, which is complying with the XRD observation. From the TEM element mapping image shown in Fig. 2e, the uniform distribution of Mo, S, C elements within the nanosheets clarifies the hybrid structure of MoS\textsubscript{2}/GNS-15. In general, graphene-like MoS\textsubscript{2} with enlarged gallery can effectively shorten the migration path of Li+, provide more active sites and lower the diffusion energy barrier of Li+ ions.39,42 The incorporated GNS would also form an interconnected conducting network, which is very important for the less-conducting MoS\textsubscript{2} as electrode materials.43

![Fig. 2 SEM images of (a) bulk MoS\textsubscript{2}, (b) MoS\textsubscript{2}/GNS-15 nanocomposite; HRTEM images of (c) bulk MoS\textsubscript{2}, (d) MoS\textsubscript{2}/GNS-15 nanocomposite; (e) TEM element mapping image of MoS\textsubscript{2}/GNS-15.](image)

EDX analysis reveals that the MoS\textsubscript{2}/GNS composites consist of C, Mo, S and a small number of O. The minimal oxygen element comes from the graphene oxide (GO), which is not reduced completely during the thermal exfoliation process. It is calculated that the atomic ratio of Mo to S approaches the theoretical value of MoS\textsubscript{2} (1:2), confirming the products to be stoichiometric MoS\textsubscript{2}. The content of carbon is 13.9 wt.% and 24.1 wt.% in MoS\textsubscript{2}/GNS-15 and MoS\textsubscript{2}/GNS-30, respectively. In addition, the SEM EDX mapping of MoS\textsubscript{2}/GNS-15 nanocomposite (see ESI, Fig. S3+) further demonstrates that MoS\textsubscript{2} are homogeneously distributed on the graphene substrate.

![Fig. 3 (a) FT-IR spectra of as-prepared GO, GNS and MoS\textsubscript{2}/GNS-15 nanocomposite; (b) Raman spectra of bulk MoS\textsubscript{2}, MoS\textsubscript{2}/GNS-15 and GO;](image)

Fig. 3 (a) FT-IR spectra of as-prepared GO, GNS and MoS\textsubscript{2}/GNS-15 nanocomposite; (b) Raman spectra of bulk MoS\textsubscript{2}, MoS\textsubscript{2}/GNS-15 and GO;
XPS spectra of (c) GO C1s; (d) MoS$_2$/GNS-15 C1s; (e) Mo3d of bulk MoS$_2$ and MoS$_2$/GNS-15.

Fourier transform infrared (FT-IR) spectra of the as-prepared GO, GNS and MoS$_2$/GNS-15 nanocomposite are displayed in Fig. 3a. The characteristic peaks of GO appear at around 1737 cm$^{-1}$ (C=O), 1625 cm$^{-1}$ (C=C), 1400 cm$^{-1}$ (C-O), 1350 cm$^{-1}$ (C-OH), 1150 cm$^{-1}$ (C-O), and 1090 cm$^{-1}$ (C-O), which are in accordance with previous literatures. For GNS and MoS$_2$/GNS-15, these vibrations become much weaker and even hard to be detected, implying that the oxygen-containing groups have been largely removed.

Raman spectroscopy has been extensively used for the characterization of carbonaceous materials with different microstructures. Recently, it has also been used for the identification of single- and few-layer MoS$_2$ sheets. Fig. 3b shows the Raman spectra of bulk MoS$_2$, MoS$_2$/GNS-15 and GO. The two dominant peaks of pristine MoS$_2$ at 379 and 405 cm$^{-1}$ correspond to E$_{2g}^{1}$ and A$_{1g}$ modes of the hexagonal MoS$_2$, respectively. The E$_{2g}^{1}$ mode involves the in-layer displacement of Mo and S atoms, whereas the A$_{1g}$ mode involves the out-of-layer symmetric displacements of S atoms along the c axis. By contrast, for MoS$_2$/GNS-15, the blue shift of A$_{1g}$ and the decrease of the inter-peak separation between E$_{2g}^{1}$ and A$_{1g}$ are particular significant for the decreasing number of MoS$_2$ layers. Additionally, the two modes become broader than those of bulk MoS$_2$, resulting from the phonon confinement of graphene-like structure. Moreover, two other Raman peaks at 1350 and 1600 cm$^{-1}$ can be seen in the spectrum of MoS$_2$/GNS-15, which are related very well to the D and G bands of graphene. In general, the D band is attributed to defects and disorder in the hexagonal graphic layers, while the G band is ascribed to the vibration of sp2 carbon atoms in a 2D hexagonal lattice. The relative intensity ratio I$_D$/I$_G$ is therefore an indication of the graphene quality. The calculated I$_D$/I$_G$ value of the composite has been much increased as compared with that of GO, further proving the formation of exfoliated GNS with some defects and disordered structures.

The degree of GO to GNS conversion can also be verified by the XPS spectra. In brief, the C1s XPS peak-fitting result of GO (Fig. 3c) clearly reveals a considerable degree of oxidation with four resolved peaks, corresponding to sp2-hybridized C=C/C=C and oxygenated functional groups (C-O, C=O and O=C=O). While the C1s peak-fitting result of MoS$_2$/GNS-15 only exhibits C=C/C=C, C=O, C=O and a π-π* peak, and the relative peak areas of C=O and C=C/C=C are much smaller relative to GO. Together with the disappearance of O=C=O peak, it confirms that a reduction process of GO occurred. In Fig. 3d, the Mo3d spectrum of bulk MoS$_2$ shows two peaks at 228.6 and 231.8 eV, which are attributed to the doublet Mo3d$_{5/2}$ and Mo3d$_{3/2}$ of Mo$^{4+}$. While the two peaks of the composite shift to 229.3 and 232.5 eV, respectively, the binding energy has increased by 0.7 eV. It is well known that binding energy increases with the improvement of electronegativity. This result implies that the electronegativity around Mo element of MoS$_2$/GNS-15 is stronger than that of bulk MoS$_2$. This can be ascribed to the electrostatic interaction between tetravalent molybdenum and GNS, suggesting that the MoS$_2$/GNS nanocomposite is not simple physical mixture. Additionally, no peaks of elements other than Mo, S, O are observed in the survey XPS spectrum of MoS$_2$/GNS-15 (see ESI, Fig. S4†). The atomic ratio of Mo/S is approximately 1:2, which further manifests the high purity of MoS$_2$.

Next, we investigate the electrochemical properties of MoS$_2$/GNS composite as anode materials for LIBs. Fig. 4a shows the representative cyclic voltammograms (CVs) of MoS$_2$/GNS-15 electrode. This CV behavior is generally consistent with those reported previously. In the first cathodic sweep, the peak at 0.85 V is attributed to the intercalation of lithium ions into the MoS$_2$ lattice which transforms the triangular prism (coordination of Mo by six S atoms) into an octahedral structure. The other peak at 0.2 V is assigned to the complete reduction process:

$$\text{MoS}_2 + 4\text{Li} \rightarrow \text{Mo} + 2\text{Li}_2\text{S}$$

In the following cathodic sweeps, two new peaks at 1.8 V and 1.0 V appear, perhaps suggesting the presence of a multi-step lithium insertion mechanism. But the peak at 0.2 V is probably concealed by the overlap of electrochemical lithium storage in both MoS$_2$ and GNS. In the anodic sweeps, only one peak at 2.4 V is observed, corresponding to the lithium extraction process and the oxidation of Mo to MoS$_2$. Fig. 4b displays the first three charge-discharge voltage profiles of MoS$_2$/GNS-15 at a current density of 100 mA g$^{-1}$. In agreement with the above CV study, two plateaus at 1.1 V and 0.6 V are observed in the first discharge process. The first plateau at 1.1 V is attributed to the formation of Li$_2$MoS$_2$, and the plateau at 0.6 V corresponds to the conversion reaction process, in which Li$_2$MoS$_2$ is completely decomposed into Mo nanoparticles embedded in a Li$_2$S matrix. In the meantime, a gel-like polymeric layer is formed resulting from electrochemically driven electrolyte degradation. In the second and third discharge curves, MoS$_2$/GNS-15 electrode exhibits two potential plateaus at 1.9 V and 1.2 V, while the potential plateau at 0.6 V in the first discharge disappears. During the charge (delithiation) process, MoS$_2$/GNS-15 shows a conspicuous potential plateau at 2.4 V, which also agrees with the previous CV curves. In addition, during the first charge/discharge process, the lithiation capacity is 1779.8 mAh g$^{-1}$, and the delithiation capacity reaches 1398.7 mAh g$^{-1}$. It is worth noticing that from the second cycle, the discharge and charge curves are well overlapped, indicating the high reversibility and high capacity retention of MoS$_2$/GNS-15 electrode.
because too much graphene will significantly block the channels. This journal is © The Royal Society of Chemistry [year].

45 Further depicts the rate capability and coulombic efficiency of MoS$_2$/GNS-15 electrode. Fig. 4c shows the cycling performance of the as-synthesized samples evaluated at a discharge current density of 100 mA g$^{-1}$. The bulk MoS$_2$ electrode delivers a diminishing discharge capacity from over 500 mA h g$^{-1}$ during initial cycles to 170.9 mA h g$^{-1}$ at the 160th cycle (with the capacity retention of 33.2 %). After exfoliation, the restacked MoS$_2$ shows a much higher capacity of more than 900 mA h g$^{-1}$, but the cyclic stability is still poor, which can only sustain 365.1 mA h g$^{-1}$ after 200 cycles (with the capacity retention of 37.4 %). When incorporating GNS on this basis, the discharge capacity and cyclic stability of MoS$_2$/GNS composites have been largely enhanced. It is remarkable that MoS$_2$/GNS-15 electrode displays an extraordinary capacity of 1483 mA h g$^{-1}$ in the initial few cycles, and the capacity can still maintain 1351.2 mA h g$^{-1}$ in the 200th cycle (with a capacity retention of 91.1 %). The capacity of MoS$_2$/GNS-30 is not as high as that of MoS$_2$/GNS-15, probably because too much graphene will significantly block the channels for Li$^+$ ion diffusion. But the excellent cycling stability is retained. The continuous capacity fading of all electrodes during the initial cycles is due to the side reactions of the electrodes with electrolyte, resulting in a large amount of irreversible trapped lithium. What’s worth mentioning is that the achieved capacity and cyclability of MoS$_2$/GNS-15 are higher than most previously reported MoS$_2$-based anodes.15,31,37 For example, at the same or lower current density, exfoliated MoS$_2$/PEO nanocomposite,29 MoS$_2$/PANI nanowires and MoS$_2$/GNS composite were prepared as electrode materials for LIBs25,50 the corresponding capacities obtained were \sim1100 mA h g$^{-1}$, 952.6 mA h g$^{-1}$ and 1290 mA h g$^{-1}$ after 50 cycles, respectively. We believe that the graphene-like MoS$_2$ supported on the high conductive graphene would increase the contact area with electrolyte, provide more reaction sites and facilitate the transportation of Li$^+$ ions, thus contributing to the great electrochemical performance of MoS$_2$/GNS-15. Fig. 4d further depicts the rate capability and coulombic efficiency of MoS$_2$/GNS-15, it can be seen that the composite also demonstrates good rate performance with a high coulombic efficiency (near 95%). Even at a high current density of 1000 mA g$^{-1}$, the capacity remains at 591 mA h g$^{-1}$, which is still higher than that of bulk MoS$_2$ or free GNS (see ESI, Fig. S5†).

Moreover, the morphology changes of the representative electrodes after discharge/charge cycles were checked by SEM.

Fig. 5a shows that MoS$_2$/GNS-15 nanocomposite still sustains the flower-like architecture after 200 cycles at 100 mA g$^{-1}$. Though MoS$_2$ would decompose during cycling, the GNS substrate could effectively inhibit the aggregation of the generated Mo nanoparticles and amorphous Li$_2$S. In addition, the two-dimensional graphene lay in MoS$_2$ gallery could act as a support framework, which is also beneficial for the preservation of layered structure. The graphene-like structure with large specific surface area can continuously keep the accessibility of the Li$^+$ host, as well as the high utilization rate of active materials. On the contrary, as displayed in Fig. 5b, the original lamellar restacked MoS$_2$ changes to big solid bulks agglomerated by lots of small particles. Such a structure is bound to hinder the infiltration of electrolyte and the insertion-extraction kinetics of Li$^+$. So it is not difficult to understand the poor cycling stability of restacked MoS$_2$.

Fig. 6 Electrochemical impedance spectra of the bulk MoS$_2$, restacked MoS$_2$, MoS$_2$/GNS-15 electrodes.

The electrochemical impedance spectra (EIS) of bulk MoS$_2$, restacked MoS$_2$ and MoS$_2$/GNS-15 electrodes are compared in Fig. 6. The resistance of restacked MoS$_2$ is much lower than that of bulk MoS$_2$, implying graphene-like structure can facilitate the transportation of Li$^+$ ions. Furthermore, the even lower impedance of MoS$_2$/GNS-15 confirms that the incorporation of graphene effectively enhances the conductivity of MoS$_2$. The excellent electrochemical performance of MoS$_2$/GNS-15 for reversible Li$^+$ storage can be ascribed to the synergetic effect between high conductive GNS and graphene-like MoS$_2$. An interpretation follows. First, the incorporation of GNS matrix not only offers two-dimensional conductive networks and effective buffering for volume expansion, but also avoids the aggregation of layered MoS$_2$ during lithiation/delithiation process.51 These are helpful for high cycling stability. Second, the specific graphene-like MoS$_2$ with enlarged interlayer spacing is readily accessible to the electrolyte, and can facilitate the reversible Li$^+$ insertion-extraction kinetics, thus increasing the utilization rate of active materials.

Conclusions

In summary, graphene-like MoS$_2$/graphene nanocomposite was successfully fabricated by a lithiation-assisted exfoliation method. When the mass ratio of GNS/LiMoS$_2$ is 15/100, the obtained MoS$_2$/GNS-15 displays a flower-like architecture constituted by exfoliated nanosheets. Instrumental characterizations demonstrate that the graphene-like MoS$_2$ is
supported on the surface of GNS, and some of the interlayer spacings of MoS₂ are enlarged with the intercalation of graphene. When used as anode for lithium ion batteries, MoS₂/GNS-15 nanocomposite exhibits much higher specific capacity as well as superior cycling performance than bulk MoS₂. It can deliver an extraordinary reversible capacity of ~1400 mAh g⁻¹ in the initial cycle and sustain 1351 mAh g⁻¹ after 200 cycles at 100 mA g⁻¹. Therefore, the present results turn out that this novel MoS₂/GNS nanocomposite hold promise as anode materials for high-performance LIBs.

Acknowledgements

This work was financially supported by the programs of National 973 (2011CB935900), NSFC (51231003) and MOE (B12015, 113016A and IRT-13R30).

Notes and references

Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P.R. China, and National Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China.

Jiaolfi@nankai.edu.cn.

