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Abstract

We present detailed results from molecular dynamics (MD) simu-
lations of phase separation in ternary (ABC) fluid mixtures for d = 2
and d = 3 systems. Our MD simulations naturally incorporate hydro-
dynamic effects. The domain growth law is ℓ(t) ∼ tφ with dynamic
growth exponent φ. Our data clearly indicates that a ternary fluid
mixture reaches a dynamical scaling regime at late times with a grad-
ual crossover from φ = 1/3 → 1/2 → 2/3 in d = 2 and φ = 1/3 → 1
in d = 3 resulting from the hydrodynamic effect in the system. These
MD simulations do not yet access the inertial hydrodynamic regime
(with ℓ(t) ∼ t2/3) of phase separation in ternary fluid mixtures in
d = 3.
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1 Introduction

A mixture of incompatible fluids, which is homogeneous at high temperature
phase separate into domains when quenched below its critical temperature.
A good amount of research interests have focused on the kinetics of phase
separation of homogeneous multicomponent mixtures due to its scientific and
technological importance. After the quench, the final equilibrium state is one
in which the pure phases are separated by a single connected interface; how-
ever, in the thermodynamic limit, this equilibrium state is never achieved. In
view of this, the kinetics of the phase separation process gains importance.
Studies in this far-from-equilibrium evolution have primarily focused on bi-
nary (AB) fluid mixtures where an evolving system segregates into A- and
B-rich domains. These domains coarsen with time because it is energetically
favorable to eliminate domain interfaces. While phase separation dynamics
in AB mixture has been studied extensively theoretically [1, 2, 3] and exper-
imentally [4, 5, 6, 7, 8, 9], the growth dynamics in ternary mixtures are still
poorly understood. It is because, in ternary mixture, phase-ordering compe-
tition significantly increases the complexity of the problem. However, some
experimental techniques have been attempted to control phase-separation
dynamics during the macrophase separation process [10, 11].

It is now well-established that the growth of domains during the phase
separation is a scaling phenomenon, e.g., the two-point equal-time correla-

tion function C(r, t) and its Fourier transform, the structure factor S(k, t),
characterizing the domain morphology and growth, exhibits the dynamical
scaling form [12, 13]:

C(r, t) = g[r/ℓ(t)],

S(k, t) = ℓ(t)df [kℓ(t)]. (1)

Here, g(x) and f(p) are the scaling functions; r is the separation between
two spatial points; k is the magnitude of the wave vector; and d is the
system dimensionality. Dynamical scaling is characterized by the single time-
dependent length scale ℓ(t). Typically, length scale ℓ(t) is considered as the
average domain size which follows a simple power-law dependence on time:
ℓ(t) ∼ tφ, where φ represents the exponent characteristic of the universality
class to which the system belongs [1, 2, 3].

The coarsening mechanisms can be either diffusive (e.g., binary alloys)
or hydrodynamic (e.g., binary fluids), and the growth law depends on the
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relevant coarsening mechanism [2]. If growth is driven by diffusion, we have
ℓ(t) ∼ t1/3 for dimensionality d ≥ 2, which is referred to as the Lifshitz-
Slyozov (LS) growth law [14]. If the primary growth mechanism is hydrody-
namic, φ takes a range of different values−depending on the time regime and
the dimensionality (φ ∼ 1/3 → 1/2 → 2/3 in d = 2 and φ ∼ 1/3 → 1 → 2/3
in d = 3) [15]. The diffusive regime has been observed in many experiments
and simulations [16, 17, 18]. For d = 3, the viscous hydrodynamic regime
(φ = 1) has also been observed in many simulations. These include studies of
coarse-grained models like Model H or its variants [19, 20, 21]. However, it
has proven harder to observe the linear growth regime with microscopic-level
[molecular dynamics (MD)] simulations where hydrodynamic effects are nat-
urally included. An unambiguous confirmation of this regime has only been
provided by MD simulations of Ahmad et al. [22] for simple binary fluids,
and more recently by Singh et al. [23] for binary polymeric fluid mixtures.

Finally, the inertial regime in d = 3 with ℓ(t) ∼ t2/3 has only been ob-
served numerically in lattice Boltzmann simulations [24, 25], which are anal-
ogous to coarse-grained phenomenological models. To date, MD simulations
have not accessed the inertial growth regime as this is computationally very
demanding for d = 3 systems [22]. There has also been considerable dis-
cussion in the literature about growth exponents for d = 2 phase-separating
fluid mixtures [26, 27, 28, 29]. The consensus appears to be that there is
a crossover from φ = 1/3 (diffusive regime) to 1/2 (viscous hydrodynamic
regime) to 2/3 (inertial hydrodynamic regime).

To place our work in the proper context, let us briefly review some closely
related studies on ternary (ABC) fluid mixtures. Laradji et al. (LMT) [30]
have undertaken an MD study of segregation kinetics of a symmetric ternary
fluid mixture in d = 2. LMT found that the hydrodynamic flow does not
control the phase-separation process even at “late” stages of the evolution,
as it does for the critically quenched binary fluid mixture. Their results
suggest that a ternary fluid mixture at late stages follows the growth law
ℓ ∼ t1/3, in agreement with the classical theory by Lifshitz and Slyozov.
LMT simulation can not genuinely be termed a “late-stage” study as they
only access the diffusive or Lifshitz-Slyozov (LS) (φ = 1/3) regime. In a more
recent work, Lakshmi et. al. (LK) [31] presented results from hydrodynamic
lattice-gas simulations of the binary and ternary fluid mixtures in d = 2.
In the symmetric ternary mixture with equal surface tension between differ-
ent interfaces and equal volume fractions, LK observed the diffusive growth
regime (ℓ ∼ t1/3) at earlier times. At late times, they observed a crossover to
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ℓ ∼ t1/2 growth regime. They have also reported that the growth exponent
changes to 2/3 by reducing the volume fraction of one of the components.

In another class of works, Tafa et. al. (TPK) [32] has undertaken a Monte
Carlo (MC) study of phase-separation kinetics in ternary mixtures in d = 2.
Though the system is purely diffusive, it is worth to mention here. They have
considered an asymmetric ternary mixture, where the composition of one of
the components (C, termed as vacancy V ) is very small. Depending on the
possible interactions (between A, B, and C particles) TPK has discussed
three distinct evolution morphologies−two phase (AV -rich and BV -rich) co-
existence; three-phase coexistence with coating (only AV and BV interfaces);
and three-phase coexistence with blobs (all possible interfaces).

Though all the techniques mentioned in the previous paragraph for ternary
fluid mixtures that are studied in d = 2, our understanding in d = 3 sys-
tems are rather untouched. In this paper, we undertake a comprehensive
MD simulation study of phase-separation kinetics in ternary fluid mixtures
in d = 2 and d = 3. In our MD simulations, we consider both symmetric
and asymmetric mixtures with equal interaction between all possible inter-
faces. Along with this, we will also compare it with the well studied case
of phase-separation kinetics in binary fluid mixture. In particular, we will
focus on the range of possible morphologies as measured by the correlation
function and structure factor of the segregating mixtures depending on the
compositions of A, B, and C particles, and the corresponding dynamical be-
haviors as characterized by various standard tools. Our MD results provide
the first unambiguous confirmation of a crossover from the diffusive to the
viscous hydrodynamic regime for ternary fluid mixtures in d = 3. Also, for
d = 2 systems, this is the first such observation, as far as MD results are
concerned.

This paper is organized as follows. In Sec. 2, we describe the details of
the model and simulation methods. We present comprehensive MD results
for both structure and dynamics in d = 2 and d = 3 in Sec. 3. Finally, Sec. 4
concludes this paper with a summary and discussion.

2 Model and Simulation Methods

Let us start with a description of our MD simulation for the study of phase
separation in ternary fluids. We consider Lennard-Jones (LJ) particles of
diameter σ placed in a continuous space in a box of size (Lsσ)

d subject
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to periodic boundary conditions. The potential acting between any pair of
particles at distance rij = |~ri−~rj| is the truncated and shifted Lennard-Jones
potential V (rij) with a cut-off radius, rc = 2.5σ. It is defined by [33, 34]

V (rij) =







uLJ(rij)− uLJ(rc)− (rij − rc)

(

duLJ
drij

)

rij=rc

, rij ≤ rc;

0, rij > rc,

(2)

where uLJ is the standard LJ potential:

uLJ(r) = 4ǫαβ

[

(

σ

rij

)12

−

(

σ

rij

)6
]

. (3)

In Eq. (3), ǫαβ is the interaction strength between α and β [∈ (A,B,C)]
particles. The subtraction of uLJ(rc) and a linear term ∝ (rij − rc) from the
LJ potential in the right hand side of Eq. (2), ensures that both the potential
and the forces are continuous for all values of rij. This is required when one
considers a dynamic behavior as force discontinuity results in a drift of the
total energy in a microcanonical simulation.

The LJ energy parameters are chosen as

ǫAA = ǫBB = ǫCC = ǫ,

ǫAB = ǫBC = ǫCA = ǫ/2, (4)

so that phase separation is favored energetically. All particles are assigned
equal masses:

mA = mB = mC = m, (5)

and the reduced temperature T ∗ is chosen as

T ∗ = kBT/ǫ. (6)

We set m, σ, ǫ, and kB to unity. We consider the total number of particles
N = NA +NB +NC confined in a box of size (Lsσ)

d such that the reduced
density

ρ∗ = ρσd = Nσd/(Lsσ)
d. (7)

We used high-density continuum model of LJ particles with ρ∗ = 1 in d = 3;
and ρ∗ = 0.8 in d = 2. For these parameters, the LJ system is then in its
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liquid phase in the temperature regime of interest. In our simulations, we
quench the system at T = 0.5 for d = 2; and at T = 1.0 for d = 3. As we
show subsequently, this quench temperature is well below the corresponding
critical temperature for phase separation. We use the standard velocity Verlet

algorithm to perform the MD runs. The integration time step is set to
∆t = 0.001t0, with the LJ time unit

t0 =
(

mσ2/ǫ
)1/2

= 1, (8)

which provides integration errors within acceptable limits [33, 34].
The Nosé-Hoover thermostat (NHT) [35, 36, 37] is used to control the

temperature T . This is known to preserve the hydrodynamics [38, 39] well,
and is relatively simple to implement. Of course, more advanced thermostats
have recently become available with better hydrodynamics-preserving capa-
bility [40, 41]. However, the NHT is adequate for our simulation. Here, the
system Hamiltonian is extended by a variable, representing the thermostat,
which has a fictitious mass Q [35, 36]. Newton’s equations of motion are
then generalized to include a friction term:

d~vi
dt

=
d2~ri
dt2

= ~fi − γ (t)~vi, (9)

where ~fi is the force term. The friction coefficient γ(t) fluctuates in time
around zero, obeying the equation

dγ

dt
=

1

Q

(

N
∑

i=1

~vi
2 − 3NT

)

. (10)

The magnitude of Q determines the coupling between the reservoir and the
system and thereby influences the temperature fluctuations. A very large
value of Q (loose coupling) may cause a poor temperature control: NHT
with Q → ∞ (|γ(t)| = 0) generates a microcanonical ensemble [36]. On the
other hand, too small values of Q (tight coupling) may cause high-frequency
temperature oscillations; in that case the temperature control will not be
efficient. We find that Q = 80 is sufficient to generate a canonical ensemble
in our simulation.
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3 Numerical Results

3.1 Characterization of morphologies

In this section, we present results for both structure and dynamics of phase-
separating ternary fluid mixtures. The evolution morphologies are charac-
terized by the two-point (~r = ~r1−~r2) equal-time correlation function and its
Fourier transform, the structure factor. Here, we have two kinds of correla-
tion functions. The first one is defined as follows:

C (~r, t) = 〈ψ(~r1, t)ψ(~r2, t)〉 − 〈ψ(~r1, t)〉 〈ψ(~r2, t)〉 , (11)

where ψ(~r1, t) is the order parameter at a discrete site ~r1 at time t. The an-
gular brackets indicate an ensemble average. This correlation function refers
to the domain morphology of A- and B-particles. The second correlation
function of ψ(~r1, t)

2 is also defined in a similar fashion as follows [32]:

D (~r, t) =
〈

ψ(~r1, t)
2ψ(~r2, t)

2
〉

−
〈

ψ(~r1, t)
2
〉 〈

ψ(~r2, t)
2
〉

, (12)

and refers to the domain morphology of C-particles. We also studied the
structure factor, which is the Fourier transform of C(~r, t):

Sc(~k, t) =

∫

d~r ei
~k·~rC(~r, t), (13)

where ~k is the scattering wave-vector. Similarly, the Fourier transform of
D(~r, t) is denoted by SD(~k, t). Since the system is isotropic, we can improve
statistics by spherically averaging the correlation function and the structure
factor. The corresponding quantities are denoted as C(r, t), Sc(k, t), D(r, t),
and SD(k, t), respectively.

The fundamental assumption of scaling states that there exists a single
length scale ℓ(t). This results in a scaling behavior shown in Eq. (1). The
characteristic domain size ℓ(t) is obtained as the distance over which the
correlation function decays to some fraction of its maximum value [C(r, t)=1,
andD(r, t)=1 at r = 0]. We find that the first zero of C(r, t) andD(r, t) give a
good measure of the average domain size ℓC(t) and ℓD(t), respectively. There
are several other suitable definitions for computing ℓ(t), e.g., half-crossing of
the correlation function, inverse of the first moment of the structure factor. In
the scaling regime, all these definitions differ only by constant multiplicative
factors [16].
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3.2 Ternary Mixtures in d = 2

In this section, we re-examine the previously studied case of ternary fluid
coarsening following a critical quench by LMT [30]. Our simulations are
carried out for a total number of N = 52428 particles of type A, B, and C,
randomly distribute in a box of size (Lsσ)

2 = (256σ)2 such that the density
ρ∗ = 0.8. The periodic boundary conditions are applied in all directions
and the results are obtained by averaging over ten independent runs. The
homogeneous initial configuration is prepared at a high temperature T = 10
for 5 × 105 MD steps. At time t = 0, we quench the system from the
high-temperature homogeneous phase to a temperature T = 0.5 and then
monitored the evolution of the system at various times.

In Fig. 1, we present evolution snapshots of the ternary fluid mixtures
obtained from our MD simulations at t = 3000, 12000. Figures 1(a)-(b) show
the evolution pictures for symmetric (1:1:1) and asymmetric (2:2:1) mixtures,
respectively. Immediately after the quench, one sees a clear evolution of three
kinds of domains, namely, A, B, and C rich with all three kinds of interfaces
(AB, BC, and CA) present. In the evolution pictures, A’s are marked in
blue; B’s are marked in red and C’s are marked in yellow. In Fig. 1(a), all
particles are in equal proportions, we term this as the “blob” morphology
[32]. In Fig. 1(b), we show the evolution with reduced C-particles (with
corresponding increase in A- and B- particles) and observe the beginning of
formation of bicontinuous domain structures between A- and B-rich domains.
Figure 1(c) shows the evolution snapshots of a binary fluid mixture (1:1:0)
at different times. As expected for a symmetric (critical) composition, a
bicontinuous domain structure is seen.

Figure 2 shows a comparison of the scaling functions for the evolutions
shown in Fig. 1 at t = 12000. For analysis of the results, the order parameter
ψ(~r, t) is obtained by considering non-overlapping boxes of size (2σ)2. The
continuum fluid configurations are now mapped onto a square lattice of size
(128σ)2. We count the number of A, B, and C particles in each box. A
box effectively occupied by an A particle is assigned the order parameter
ψ(~r, t) = +1, that occupied by a B particle is assigned ψ(~r, t) = −1, and
that occupied by a C particle is assigned ψ(~r, t) = 0 i.e., ψ(~r, t) ∈ (±1, 0).
For boxes with equal number of particles, we assign ψ = +1 or ψ = −1
or ψ = 0 with equal probability. Similarly, for binary mixture, we assign
ψ(~r, t) = +1 and -1 for A and B particles, respectively [23, 32]. In Fig. 2(a),
we plot data for C(r, t) vs. r/ℓC , where ℓC is defined as the first zero of C(r, t).

8

Page 8 of 24Soft Matter



The symbols refer to the scaled correlation function for ternary mixtures and
the solid line refers to the binary mixture (also computed numerically). The
reasonable data collapse demonstrates that the evolving systems belong to
the same dynamical universality class. It is also evident from the fact that
the order parameter ψ(~r, t) = 0 does not contribute in the calculation of the
correlation function. Therefore, the scaling behavior of C(r, t) for a ternary
mixture should be comparable to that of a binary mixture. In Fig. 2(b),
we show the scaled D(r, t) at t = 12000 for two compositions of ternary
mixtures as denoted by the indicated symbols. Here, the definition of D(r, t)
is equivalent to that for a binary mixture with off-critical composition and
it is well known that the correlation function varies continuously with the
degree of off-criticality [1, 42]. For a binary mixture D(r, t) = 0 ∀ r. The
scaled correlation function clearly depends upon the compositions of A, B
and C particles.

Next, we focus on the time dependence of the domain size. In Fig. 3, we
show a plot of ℓC(t) vs. t on a log-log scale for the evolution shown in Fig. 1.
The dashed lines show the expected growth exponents in various growth
regimes for d = 2 fluids. Our data for binary mixture (solid line) clearly shows
all growth regimes as discussed earlier. After an early transient regime, the
data sets for ternary mixtures (represented by corresponding open symbols)
follow the diffusive growth law (or Lifshitz-Slyozov growth): ℓC(t) ∼ t1/3.
This growth regime appears to be very short-lived and a gradual crossover
to a viscous hydrodynamic regime (φ = 1/2) appears as early as t & 600,
extending over a large fraction of the time window. Our results contradict the
finding of LMT [30], the only MD simulation till date for the phase separation
kinetics in a symmetric (1:1:1) ternary mixture. The possible reason that
LMT could not see the crossover from t1/3 → t1/2 is that their simulation
access only the diffusive regime. In such a case, due to a lack of connectivity
between domains, it might reasonably eliminate the hydrodynamic transport.
At late times (t > 5000), our data clearly approaching φ = 2/3 exponent, an
inertial hydrodynamic regime on the time-scale of our simulation. However,
as C-particle composition is increased, evolution time-scale become slower.

3.3 Ternary Mixtures in d = 3

We consider a total number of N = 110592 particles confined in a cubic box
of size (Lsσ)

3 = (48σ)3 such that ρ∗ = 1 with periodic boundary conditions
in all directions. The homogeneous initial configurations are prepared by
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equilibrating the system at T = 10. At t = 0, the system is quenched at
T = 1.

Figure 4(a)-(c) show typical evolution morphologies from a homogenous
initial condition. We show the evolution pictures at t = 1000, and 5000. Fig-
ure 4(a) corresponds to a quench for a symmetric (1:1:1) ternary mixture.
One can see a clear evolution of A, B, and C rich domains (termed as a
“blob” morphology). The evolution in Fig. 4(b) corresponds to an asymmet-
ric (2:2:1) ternary mixture. Here, we observe few imprints of bicontinuous
domains between A- and B-rich phases. Figure 4(c) shows the evolution of
a binary mixture (1:1:0) with critical composition.

Next, we focus on the various statistical properties of the evolution de-
picted in Fig. 4. First, we discuss the blob morphology then compare with
other morphologies, mainly highlighting differences from the blob morphol-
ogy. In d = 3 simulation, the order parameter ψ(~r, t) is obtained by fol-
lowing the same approach as for d = 2 system. Here, we consider the non-
overlapping boxes of size (1.5σ)3. The system is now mapped onto a simple
cubic lattice of size (32σ)3. All the results presented here are obtained by av-
eraging over ten independent runs. In Fig. 5, we show the dynamical scaling
of C(r, t) and D(r, t) for the evolution shown in Fig. 4(a). Figure 5(a) super-
poses data for C(r, t) as a function of the scaled distance r/ℓC at three times,
as indicated. The data from different times collapses onto a single master
curve reasonably well, showing that the scaling regime has been reached.
Figure 5(b) is the corresponding scaling plot of D(r, t) vs. r/ℓD. The good
data collapse in Fig. 5(b) also confirms the dynamical scaling. Figure 5 shows
that C(r, t) and D(r, t) do not differ appreciably from each-other due to the
equal composition of A, B, and C particles. More substantial differences
are seen when particles are present in different proportions. The correlation
function data for the morphologies shown in Figs. 4(b) and 4(c) also exhibit
a dynamical scaling. For brevity, we do not present this data here.

We now discuss whether the evolution morphology depends on the com-
position ratios of the particles. Figure 6 shows a comparison of the scaled
correlation functions and the corresponding structure factors for three dif-
ferent compositions at t = 5000, when the system is already in the scaling
regime. In Fig. 6(a), we plot C(r, t) vs. r/ℓC for ternary mixtures, denoted
by the indicated symbols. For a reference, the scaled correlation function
for a binary mixture, denoted by a solid line is also included. We observe
that the data sets (for ψ-field) collapse nicely onto a master function and
therefore, suggest that they belong to the same dynamical universality class.
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A log-log plot of Sc(k, t)ℓ
−3
C vs. kℓC is shown in Fig. 6(b), also demonstrat-

ing dynamical scaling. For large values of k, Sc(k, t) follows the well-known
Porod’s law, Sc(k, t) ∼ k(d+1), which results from scattering off sharp inter-
faces [43, 44]. In Fig. 6(c), we present the scaling behavior of D(r, t) vs.
r/ℓD and Figure 6(d) shows the corresponding time-dependent behavior of
structure factor: SD(k, t)ℓ

−3
D vs. kℓD. The scaling functions clearly depend

upon the composition ratios of A, B and C particles.
In Fig. 7, we turn our attention to the time-dependence of domain size

for the evolution shown in Figs. 4. In Fig. 7, we plot ℓC(t) vs. t on a log-log
scale for ternary mixtures as indicated by open symbols. For reference, we
also plot ℓC(t) vs. t for a binary mixture, indicated by a solid line. After an
initial transient, the growth law is consistent with the diffusive regime, i.e.,
ℓC(t) ∼ t1/3. At later times, hydrodynamic effects become important and
domain growth gradually evolves towards the viscous hydrodynamic regime
(φ = 1). For the symmetric (1:1:1) mixture, the evolution time-scale appears
a bit slow due to lack of connectivity between domains which might affect the
hydrodynamic transport. For the asymmetric mixtures (A and B particles
are increased at the cost of C), the connectivity between A and B domains
are increased; now, the hydrodynamic transport becomes more effective and
so the evolution time-scale becomes faster.

Our simulation data sets clearly show a gradual crossover from t1/3 → t1

for ternary mixtures, but we have not accessed the t2/3-regime on the time-
scale of our simulation. This is not surprising as the inertial regime has not
even been observed in MD simulations of binary fluids. Ahmad et al. [22]
have estimated that significantly larger numerical effort is required to access
the t2/3-growth regime in phase-separating simple binary fluids. However, our
simulation results strongly support the contention that the hydrodynamic
flow should control the phase-separation process in ternary fluids at late
stages.

4 Summary and Discussion

Let us conclude this paper with a summary and discussion of our results.
We present results from a molecular dynamics (MD) simulation for the evo-
lution of phase-separating ternary immiscible mixtures. The simulations are
carried out in d = 2 and d = 3 systems. The Lennard-Jones (LJ) potential
(truncated and shifted) is applied between any pair of particles. Our MD
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approach has an advantage that it naturally incorporates the hydrodynamic
effects. The Nosé-Hoover thermostat (NHT) is used to generate a canonical
ensemble and is well-known to preserve hydrodynamic effects.

We discuss the various morphologies of phase-separating ternary fluid
mixtures by changing the compositions of particles. The scaling forms of
C(r, t) and Sc(k, t) appear to be independent of the particle composition for
d = 2 as well as d = 3 systems. However, D(r, t) and SD(k, t) clearly depend
on the particle compositions. It is found that the early-time domain growth
law is always consistent with the Lifshitz-Slyozov (LS) growth law. Our re-
sults clearly suggest that it is the hydrodynamic flow which dominates the
late-time dynamics of ternary mixtures. In d = 2, we observe a crossover
from ℓC ∼ t1/3 → t1/2 → t2/3. In d = 3, we observe a crossover from a
diffusive regime to a viscous hydrodynamic regime (ℓC ∼ t1/3 → t1). This
is the first such significant observation in ternary fluid mixtures. For d = 3
fluids, we also expect an asymptotic inertial regime with ℓC ∼ t2/3. How-
ever, this requires considerably larger computational effort [22]. We hope the
present study will stimulate further MD simulations and experiments on this
problem.
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Figure 1: The evolution snapshots for ternary mixtures in d = 2 for (a)
A:B:C=1:1:1, and (b) A:B:C=2:2:1, and (c) A:B:C=1:1:0 at t = 3000,
12000. The snapshots are obtained from the molecular dynamics (MD) sim-
ulations described in the text. Regions with A-atoms are marked blue, B-
atoms are marked red and C-atoms are marked yellow.

16

Page 16 of 24Soft Matter



Figure 2: (a) Superposition of numerical data for C(r, t) vs. r/ℓC for the
evolution shown in Fig. 1 at t = 12000−denoted by the specified symbol
type. The solid line refers to the data for binary mixture (A:B:C=1:1:0).
The correlation function data is obtained as an average over ten independent
runs. (b) Superposition of data for D(r, t) vs. r/ℓD, corresponding to the
data sets of ternary mixtures in (a).
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Figure 3: Plot of the characteristic length scale ℓC(t) vs. t on a log-log scale
for the evolutions shown in Fig. 1. The Solid line represents simulation data
for binary mixture whereas open symbols represent corresponding ternary
mixture data. for The dashed lines of slope 1/3, 1/2 and 2/3 correspond to
expected growth regimes for d = 2 fluids.
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Figure 4: Evolution pictures of phase-separation in ternary mixtures in d =
3 for (a) A:B:C=1:1:1, and (b) A:B:C=2:2:1, and (c) A:B:C=1:1:0. The
snapshots are taken at t = 1000 and 5000, respectively. The numerical
details of our simulations are described in the text.
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Figure 5: (a) Scaling plot of C(r, t) vs. r/ℓC for A:B:C=1:1:1. The data sets
(for t = 1000, 3000, 5000) collapse onto a single master curve. (b) Scaling
plot of D(r, t) vs. r/ℓD for the same times as in (a).
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Figure 6: (a) Comparison of C(r, t) vs. r/ℓC at t = 5000 for the evolutions
shown in Fig. 4 (indicated by the symbols). The solid line shows the scaled
correlation function for binary mixture. (b) Shows the plot of Sc(k, t)ℓ

−3
C vs.

kℓC for the same data sets as in (a). The large-k region (tail) of the structure
factor obeys the Porod law, S(k, t) ∼ k−4 for k → ∞. (c) Superposition of
data for D(r, t) vs. r/ℓD, and (d) SD(k, t)ℓ

−3
D vs. kℓD for the morphologies

in Fig. 4 at t = 5000.
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Figure 7: (a) Log-log plot of the time-dependence of the characteristic length
scale ℓC(t) for the evolutions shown in Fig. 4. Solid line and open symbols
represent the data sets for binary mixture and ternary mixtures respectively.
The error bars on the data points are smaller than the symbol sizes. The
lines of slope 1/3 and 1 correspond to expected growth regimes for d = 3
fluids.
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Our molecular dynamics simulation results strongly support the contention that the hydrodynamic flow 
should control the phase-separation process in ternary fluid (ABC) mixtures at late stages.  
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the hydrodynamic flow should control the phase-separation process in ternary

fluid (ABC) mixtures at late stages.
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