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Rounding of the localization transition in model porous media
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Received: November 19, 2014

The generic mechanisms of anomalous transport in porous media are investigated by computer simulations of two-dimensional model
systems. In order to bridge the gap between the strongly idealized Lorentz model and realistic models of porous media, two models of
increasing complexity are considered: a cherry-pit model with hard-core correlations as well as a soft-potential model. An ideal gas of
tracer particles inserted into these structures is found to exhibit anomalous transport which extends up to several decades in time. Also,
the self-diffusion of the tracers becomes suppressed upon increasing the density of the systems. These phenomena are attributed to an
underlying percolation transition. In the soft potential model the transition is rounded, since each tracer encounters its own critical density
according to its energy. Therefore, the rounding of the transition is a generic occurrence in realistic, soft systems.

1 Introduction

Molecular transport in strongly heterogeneous media is fundamen-
tal for a wide range of disciplines such as molecular sieving, 1 catal-
ysis 1–4 and ion-conductors,5,6 but also for protein motion in the
interior of “crowded” cells. 7–10 Common to all of these systems
is the occurrence of a quasi-immobilized host structure which re-
stricts transport to ramified paths through the medium.

The generic features of transport in heterogeneous media 2,11 can
be elucidated by studying simplified model systems such as the
Lorentz model.8 In its simplest variant,12,13 a point tracer explores
the space between randomly distributed hard-disk obstacles, which
may overlap and are uncorrelated. Recently, Skinner et al. 14 pre-
sented a colloidal realization of a two-dimensional Lorentz model,
which differs from the original model with respect to the matrix
structure and the interactions. In detail, the experiment uses a
slightly size-disparate binary mixture of superparamagnetic col-
loidal spheres. The larger particle species is immobilized by the
cover slides, while the smaller one serves as tracers. If an external
magnetic field is applied, magnetic dipoles are induced which lead
to a soft repulsion between the particles; the range of the tracer-
matrix interaction thus can be tuned by the strength of the magnetic
field.

A striking observation in these models is a localization transition
with respect to the diffusive motion of the tracer particle. In the
hard-core model, long-range transport ceases to exist as a critical
obstacle density is approached.15–20 Concomitantly, transport be-
comes anomalous as manifested in a non-linear, power-law growth
of the mean-squared displacement, δr2(t) ∼ t2/z with a universal
dynamic exponent z. In the case of soft interactions, the experimen-
tal and simulation results 14 indicate that the transition is rounded,
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i.e., the critical singularities are seemingly avoided. Evidence for
anomalous transport has been found also in a variety of systems
with a strong dynamic asymmetry, e.g. in computer simulations for
alkali-doped silica melts21 or polymer blends with monomer-size
disparity.22,23 Recent work24–27 suggests that this holds generi-
cally in size-disparate mixtures. Although it seems plausible to
expect an analogy between these more realistic models with soft
interactions and the theoretical idealization, 28 a direct and quanti-
tative link is missing.

The goal of this work is to provide intermediate steps from the
hard-disk idealization to more realistic systems, thereby testing the
key ingredients leading to anomalous transport. For hard tracer-
matrix interactions, many facets of the localization transition are
well understood. 8,19,29 Most importantly, the localization transi-
tion is due to an underlying continuum percolation transition of
the accessible void space,17 which is accompanied by a series of
scaling laws familiar from the theory of critical phenomena of con-
tinuous phase transitions.4 Above a critical obstacle density, the
network of the void space falls apart into a hierarchy of finite-sized
pores. At criticality, the void space is a self-similar fractal in the
statistical sense, which entails subdiffusion for tracers exploring
these structures. 4,30 Correlations in the host matrix modify the ge-
ometry of the void space with potential implications on the critical
behavior. Moreover, soft interactions smear out the boundaries of
the accessible space and change the topology of the percolation
network by introducing a potential energy landscape with finite
barriers between the pores.

To investigate these issues, we compare simulations of two dif-
ferent models, which represent modifications to the original Lorentz
model. We focus on two-dimensional systems which are amenable
to colloid experiments. First, we introduce spatial correlations in
the host matrix by using an extended tracer in frozen-in config-
urations of equilibrated hard disks. The resulting host structure is
equivalent to the cherry-pit model.31 Second, we relax the assump-
tion of hard-core repulsion between both obstacles and tracers by
introducing soft interactions. Now, the host structures are gener-
ated from snapshots of an equilibrated fluid of soft particles. By
this, the transition becomes rounded and we demonstrate that the
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Fig. 1: a-c) Illustrations of the relevant models. a) Lorentz model: over-
lapping obstacles (grey) and point tracer (red). b) Cherry-pit model: ob-
stacles (dark grey) and extended tracer (red). The area inaccessible to the
tracer center is marked in light grey. c) WCA-system: soft obstacles (grey)
and soft tracer (red). d) Static structure factor of the matrix in the cherry-
pit model. For comparison, the matrix structure factor of the WCA-disk
system (dashed line) with the effective diameter σBH

core is included.

rounding originates naturally from the energy distribution of the
tracers. We find that an effective interaction distance can be as-
signed to each tracer according to its energy, thereby providing a
mapping to the hard-core case.

2 Cherry-pit model

Host structures In the cherry-pit model, the matrix of obsta-
cles is formed by equilibrium configurations of N non-overlapping
disks of diameter σcore, packing fraction η= (N/L2)πσ2

core/4, and
the centers are confined to a square of edge length L. The remain-
ing space is explored by a “ballistic” tracer undergoing specular
scattering from the obstacles, yielding trajectories RRR(t) which are
piece-wise straight lines. The tracer particles are disks of finite
diameter σT, contrarily to the original overlapping Lorentz model
(fig. 1a,b). For comparison to the latter, we introduce the inter-
action distance σ := (σcore +σT)/2, with which a dimensionless
control parameter, the reduced number density n∗ := (N/L2)σ2,
can be defined. The velocity of the tracer is of fixed magnitude
v and defines a time scale to = σ/v. Transport is controlled by
variation of n∗ at fixed η.

The matrix configurations are generated by canonical Monte Carlo
simulations, where the particles are initially placed onto a hexago-
nal grid. We consider systems of N = 10,044 or N = 516,468 disks
in a square box with varying size assuming periodic boundary con-
ditions in the two spatial directions. For the equilibration of the
systems we combine displacement moves with cluster moves pro-
posed by Dress and Krauth 32 . In the displacement moves, a ran-
dom particle i with position rrri is displaced to a new position rrri +δδδ,

where the vector δδδ is randomly chosen such that |δδδ| < σcore. This
move is accepted according to a standard Metropolis criterion.33

Cluster moves are applied periodically after 10 displacement
moves. To this end, a pivot is selected as a random point in the
system. By starting with one randomly selected disk and recur-
sively searching for disks overlapping with the disks’ mirror im-
age with respect to the pivot, we identify a pair of disk clusters
(C1,C2), C1 6= C2, defined as two sets of disks satisfying the fol-
lowing condition: When all disks in C1 are reflected at the pivot,
each of them overlaps with at least one disk in C2, but none over-
laps with disks not in C2, and vice versa. If clusters are larger than
15 disks, the cluster move is rejected. In this manner, the clusters
can be exchanged with their reflected counterparts. In the follow-
ing, the Monte Carlo time is given in terms of cycles, where each
cycle consists of N displacement moves and N/10 cluster moves.

Systems with packing fractions ranging from η = 0.02 to 0.90
for the small systems and η = 0.02 to 0.65 for the large systems
were generated. At each value of η, the configurations were first
equilibrated for at least 1,000 cycles for low packing fractions and
up to 50,000 cycles for high packing fractions to ensure proper
equilibration, particularly for η . 0.7, i.e. for packing fractions
lower than the location of the fluid-to-solid transition in hard disks.34,35

To check whether the system was sufficiently equilibrated we mon-
itored the structure factor and the pair correlation function and
compared it to the Percus–Yevick approximation.36,37 Addition-
ally, for systems η < 0.7, we required that particles are displaced by
L/2 on average. For each equilibrated configuration, a production
run was performed to yield 20 independent configurations, each of
them separated by the respective equilibration time. These con-
figurations served as matrix configurations for the tracer particle
dynamics.

The structural correlations contained in the obstacle matrix are
a function of the packing fraction η and are measured by the static
structure factor of the obstacles,

S (q) =
1
N

〈
N

∑
j,k=1

exp[−iqqq · (rrr j− rrrk)]

〉
, (1)

as a function of the wave number q = |qqq|, see fig. 1d. The angled
brackets represent an ensemble average over the disorder, and {rrr j}
denote the positions of obstacle centers, j = 1, . . . ,N. At low pack-
ing fractions the system exhibits the structure of a dilute liquid,
as indicated by the low amplitude of the first diffraction peak, e.g.
S (qmax)≈ 1.3 at η= 0.26. As the packing fractions increases, the
peak grows in amplitude, e.g. S (qmax) ≈ 2.7 at η = 0.6, and S (q)
exhibits pronounced short-range order, indicating the structure of
a dense liquid. Also included in fig. 1d is the structure factor for
the WCA system (dashed line) which agrees well with that of the
cherry-pit model at η= 0.26 (see Sec. 3).

Percolation threshold For the study of the localization tran-
sition, it is crucial to precisely know the percolation threshold of
the void space accessible to the tracer particle. For a given ob-
stacle configuration, we have determined the threshold value n∗c =
Nσ2

c/L
2 of the reduced number density by varying the distance σ

of the tracer–obstacle interaction. First, we have computed the
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Fig. 2: Critical reduced density n∗c for the cherry-pit model as a function
of the packing fraction η of the obstacle cores for two different system sizes,
104 and ≈ 5 · 105 obstacles. The overlapping Lorentz model corresponds
to η = 0. For comparison: WCA system at the effective packing fraction
η= 0.225 and n∗c ≈ 0.272.

edges of a Voronoi tesselation of the matrix using the free voro++
software library.38 After removal of the edges with a distance smaller
than σ to an obstacle center, the obtained network represents the
volume accessible to the tracer particle. 39 Upon increasing σ, this
connectivity network is diluted until the critical valueσc is reached,
where the residual network barely spans the entire simulation box.

While there is a unique critical density n∗c for infinitely large
systems L→ ∞, at finite system sizes L the percolation thresholds
of the individual obstacle configurations follow a distribution with
a finite width. For decreasing system size, the mean of the dis-
tribution is shifted towards a slightly higher critical density n∗c(L)
according to n∗c(L)−n∗c ∼ L−1/ν. 19 Additionally, the width of the
distribution, which can be measured with the standard deviation
δn∗c(L) for example, scales as δn∗c(L)∼ L−1/ν.

Over the full range of packing fractions 0 < η < ηhcp from the
ideal gas to close packing, we have numerically determined the
critical reduced density n∗c(η) for two different system sizes, shown
in fig. 2. The critical density is calculated from the mean of the
percolation distance σc of the obstacle configurations. The error
bars are calculated with the help of the relative standard deviation
of the critical distance ∆(η) := δσc(η)/σc(η) and thus give an es-
timate of the width of the distribution of the percolation thresh-
olds. This gives an estimate for the percolation density, n∗c(η) =
(Nσ2

c(η)/L
2) · [1±∆(η)]2. We confirmed exemplarily for the case

η= 0.26 that the relative standard deviation ∆(η) is indeed a good
approximation to the distribution width δn∗c(η,L) of the critical dis-
tance, as we observed that increasing the number of independent
configurations up to 300 did not modify ∆(η) within the specified
precision.

The overlapping Lorentz model corresponds to η = 0, here the
percolation threshold is known accurately: 40 n∗c(0) = 0.3590810±
0.0000006 for the infinitely large system. For packing fractions
η . 0.45, the percolation threshold decreases from this value and
can be fitted with a shifted exponential function f (η)= aexp(−bη)+
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Fig. 3: Mean-squared displacements in the cherry-pit model. Reduced
density n∗ is varied around the critical density n∗ = n∗c(1 + k∆)2, k =
0,±2−1, . . .± 26 in geometric progression. Obstacle packing fractions (a)
η = 0.26, n∗c = 0.262 with standard deviation of the percolation threshold
∆ = 2 ·10−3 and (b) η= 0.6, n∗c = 0.2442 and ∆ = 7 ·10−4. Data below n∗c
fan out towards the upper left, the ones above n∗c towards the lower right.
The solid line indicates a power-law ∝ t2/z with the dynamic exponent of
the Lorentz model z = 3.036. The horizontal dashed line indicates the size
of the simulation box.

c. For 0.45 . η . 0.9, the percolation threshold is growing, with
a “shoulder” around η ≈ 0.7 indicating the 2D melting transition.
At ηhcp = (π/6)

√
3≈ 0.9, the system displays a hexagonal closed-

packed structure and therefore n∗c =
√

3/6≈ 0.289.
For the following study of the tracer dynamics and how it is af-

fected by the structural correlations contained in the matrix, we
consider in detail η = 0.26 and η = 0.60 with percolation thresh-
olds n∗c = 0.262 · (1± 2 · 10−3)2 and n∗c = 0.2442 · (1± 7 · 10−4)2

respectively. At η = 0.26, the structure factor closely resembles
that of the WCA system discussed later on (fig. 1d).

Tracer dynamics The mean-squared displacements (MSDs) δr2(t) :=〈
|RRR(t)−RRR(0)|2

〉
were obtained as time- and ensemble-average over

20 obstacle configurations containing N = 516,468 obstacles each
in production runs up to times 109to. Each obstacle configuration
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was probed by at least 8 tracers, while 32 tracers were used close
to n∗c . For each tracer a random point in the void space was cho-
sen as the initial position. Moving time averages were calculated
efficiently with an “order-n” algorithm.41,42

The MSD are shown in fig. 3 for reduced densities close to the
critical one such that the interaction distance σ is changed in ge-
ometric progression with the standard deviation ∆ as basic scale.
For both values of η, the localization transition is evident and qual-
itatively similar to the overlapping 2D Lorentz model:18,20,43 For
times t longer than a certain crossover time scale tx, the MSD ei-
ther grows diffusively, δr2(t)' 4Dt for n∗ < n∗c with diffusion co-
efficient D, or saturates, δr2(t) ' `2 for n∗ > n∗c with localization
length `. The transport is highly heterogeneous in space: a fraction
of tracers is confined to finite pores, which exist at all densities
and have a broad distribution of sizes near n∗c , but only tracers on
the spanning cluster contribute to long-range transport (for a snap-
shot of the Lorentz gas with finite pores, see fig. 1 of Ref.17). For
n∗ > n∗c , the spanning cluster disappears and all tracers are con-
fined. This implies that the localization length ` is the root-mean-
square size of the finite clusters. As the critical point is approached,
n∗ → n∗c , a sub-diffusive regime emerges in a growing time win-
dow,

δr2(t)∼ t2/z , to� t� tx . (2)

The exponent z is believed to be universal for particle transport
on 2D percolation clusters44,45 and may be considered the fun-
damental dynamic exponent of the problem. It was estimated to
z = 3.036± 0.001 from studies of the conductivity of random re-
sistor networks,46 random walkers on percolation lattices 30 and in
the overlapping 2D Lorentz model. 20,47 The value was confirmed
only recently also for the overlapping 2D Lorentz model with bal-
listic tracers. 43 Our data for the MSD in the cherry-pit model sug-
gest anomalous transport with effective exponents slightly lower
than the universal one (fig. 3).

A more thorough test of the value of the anomalous exponent
can be achieved with the local exponent γ(t) of the MSD defined
as

γ(t) :=
dlog(((δr2(t))))

dlog(t)
. (3)

At short times, the exponent γ(t) decays quickly from its initial
value 2 for ballistic motion due to the scattering from the obstacles.
At the lowest densities, γ(t) rapidly converges to 1 corresponding
to the linear increase of the MSD. At high densities the local expo-
nents converge to 0, reflecting the localization. Values correspond-
ing to anomalous diffusion are found close to the transition, yet the
exponent found here seems to underestimate the universal value,
obeyed by a random walker on percolation lattices.30 However, the
dynamics is extremely sensitive to the density near the percolation
threshold. Probably, we slightly overestimate the critical density
n∗c(L), as obtained from the static determination of the percolation
threshold (see discussion above). In view of a small overestimation
of n∗c(L), our data is consistent with the expected exponent z, since
the local exponent becomes compatible with the universal value of
z at the lower end of the error margin for the percolation threshold,
see blue lines for k =−20 in fig. 4.
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Fig. 4: Local exponents of the mean-squared displacements of fig. 3 of
the cherry-pit model for the obstacle packing fractions (a) η= 0.26 and (b)
η= 0.6. Reduced density increases from top to bottom. The horizontal line
indicates the anomalous exponent 2/z with z = 3.036 of the Lorentz model.
The shaded areas correspond to one standard deviation ∆ in the interaction
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Open symbols mark data points which were obtained at densities where the
MSD had not quite become diffusive and thus potentially overestimate D.
Inset: Rectification plot of the same data testing eq. (4) with conductivity
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In the approach to the percolation threshold, long-time diffusion
decreases such that it vanishes at the critical point. Scaling argu-
ments 4,48 predict a power-law singularity,

D(ε ↑ 0)∼ (−ε)µ , ε := (n∗−n∗c)/n
∗
c , (4)

with the exponent fixed by µ = (z− 2)(ν− β/2). The universal
exponents ν and β characterize the underlying geometry of the
spanning cluster, namely its correlation length ξ ∼ |ε|−ν (the scale
up to which it is self-similar) and its weight P∞ ∼ |ε|β. For two-
dimensional standard percolation, ν = 4/3 and β = 5/36 hold ex-
actly, 4 and one computes µ= 1.309±0.002 from the above value
of z.

The diffusion coefficients obtained from the long-time behav-
ior of the MSDs are reduced for larger tracers (at fixed η, σcore),
and the suppression of diffusion is compatible with the percola-
tion threshold as determined above, see fig. 5. Plotting D1/µ vs.
n∗ (see inset) rectifies the critical law, eq. (4), and would yield a
straight line if the power law was an accurate description over the
full range n∗ < n∗c . From the data one infers that the scaling law
becomes valid for ε . 0.05, which is similar to the situation in the
overlapping case.43

3 WCA-disk systems

Host structure Next, we move towards possible experimen-
tal realizations and relax the idealization of a hard-core exclusion
between the particles, considering soft interactions. To serve as
frozen host structures, we take snapshots of an equilibrated liquid
of polydisperse particles at moderate densities. The particles inter-
act via a Weeks–Chandler–Andersen (WCA) potential,49 which is
a truncated and shifted Lennard-Jones potential such that the inter-
action is purely repulsive,

Vαβ(r) =

4εWCA
core

[(σαβ
r
)12−

(σαβ
r
)6 + 1

4

]
, r < rcut,

0, r > rcut,
(5)

with a cutoff rcut := 21/6σαβ. To avoid crystallization, a polydis-
perse mixture is necessary. To this end, the diameters of the N par-
ticles are chosen to be additive, σαβ := (σα+σβ)/2, and are taken
equidistantly from an interval, σα = (0.85 + 0.3α/N)σWCA

core with
α,β = 1, . . . ,N. The units of length and energy are fixed by σWCA

core
and εWCA

core , respectively. The temperature is set to kBT/εWCA
core =

1.0. To improve numerical stability the potential is multiplied with
a smoothing function Ψ(r) := (r−rcut)4/[h4 +(r−rcut)4] with the
width h = 0.005σWCA

core . This smoothing function provides conti-
nuity of the force at the cutoff rcut. As a result, we have not en-
countered any problems with a drift of the total energy in all the
microcanonical runs of the WCA systems.

The particle configurations are equilibrated using a simplified
Andersen thermostat50 by randomly drawing their velocities from
a Maxwell distribution every 100 steps with thermal velocity vth :=
(kBT/m)1/2. We use the Lennard-Jones time to := σWCA

core /vth =
[m(σWCA

core )2/εWCA
core ]1/2 as basic unit of time. Newton’s equations

of motion are integrated numerically with the velocity-Verlet algo-
rithm51 using a numerical timestep of ∆t = 7.2 ·10−4to.

We generated 100 statistically independent host structures for
particle numbers N = 500, 1000, 2000, 4000, and 16000 at fixed
number density n := N/L2 = 0.278(σWCA

core )−2, corresponding to
system sizes L/σWCA

core = 42.4, 60, 84.8, 120, and 240.
With each generated structure we associate a percolation thresh-

old relying on a Voronoi tesselation of the particle positions of
the host structure, in the same way as for the cherry-pit systems,
see section 2. Averaging over all 100 snapshots at the largest sys-
tem size yields a critical effective interaction distance σc/σ

WCA
core =

0.990± 0.009 or equivalently, a critical reduced obstacle density
n∗c := nσ2

c = 0.272±0.005.
It is instructive to structurally compare the WCA system to the

cherry-pit model, employing an effective hard-core diameter. Here
we use the Barker–Henderson diameter σBH

core, originally developed
in the context of thermodynamic perturbation theory,52–54

σBH
core =

∫
∞

o
(1− e−βVαβ(r)) dr. (6)

Numerical evaluation of the integral forσαβ =σWCA
core yieldsσBH

core≈
1.02σWCA

core , corresponding to an effective packing fraction of η :=
nπ(σBH

core)
2/4 = 0.225. At this packing fraction, the cherry-pit model

exhibits a similar percolation threshold, see fig. 2.
The structure factor of the WCA system is included in fig. 1,

with the wave numbers measured in units of 1/σBH
core. It compares

well to the one of the slightly denser cherry-pit system at η= 0.26.
The positions of the first diffraction peak coincide, while the am-
plitude in the WCA system is slightly lower by ≈ 9%. Thus, the
percolation threshold, the effective reduced density, and the struc-
ture factor of the WCA-system matrix can be mapped consistently
onto the cherry-pit model.

The frozen matrices are explored by an ideal gas of tracers. The
tracers interact with all matrix particles identically via the smoothly
truncated WCA potential, eq. (5), with coefficients εWCA := 0.1εWCA

core
and σαβ := σWCA. The interaction range σWCA is used as the
control parameter and defines a reduced number density n∗WCA :=
n(σWCA)2. In the experiment by Skinner et al. 14 , the tuning of
the analogous tracer–matrix interaction is achieved by varying the
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Fig. 6: Energy distribution p(E) in the WCA-disk system for a canonical
ensemble of tracers for a range of reduced densities n∗. Inset: the same data
in semilogarithmic presentation.

external magnetic field. The tracer particles are inserted and equili-
brated in the host structure by grand-canonical Monte-Carlo moves
in combination with successive umbrella sampling.55 Subsequently,
the tracers are equilibrated using the simplified Andersen thermo-
stat. Since the equilibration is performed in the canonical ensemble
the average energy of each system is fluctuating. For the micro-
nanonical production runs the systems are brought to the same av-
erage energy at the end of the equilibration period by rescaling all
tracer velocities in the same system with the same constant, leaving
the relative distribution of energies unchanged.

Newton’s equations of motion are integrated numerically with
the velocity-Verlet algorithm with the same timestep as for the host
particles. Between 50 and 10,000 tracers for each host structure
configuration are used to obtain ensemble averages for runs of up
to nearly 106to. For the calculation of time averages, typically 10
moving time origins per run were used and were spaced equidis-
tantly over the whole simulation time.

The probability distribution of the energy per tracer p(E), as de-
fined by p(E) = Z(β)−1 exp[−βE]D(E) with the density of states
D(E) and the partition function Z(β), can be directly calculated
from the simulation data as the histogram of the tracer energy.
For the binning of the energies, a bin width of ∆E/εWCA

core = 0.1
was chosen. The distribution p(E) has a peak at small energies,
see fig. 6, and decays exponentially at large energies, see inset.
The energy distribution is nearly unchanged for all densities n∗WCA.
Merely slight variations in the peak height are observed, which are
probably due to fluctuations in the potential energy frozen into the
matrix.

Tracer dynamics The system undergoes a localization transi-
tion similarly to the overlapping Lorentz model and the cherry-pit
model: At long times, the MSD becomes diffusive for n∗WCA 6 0.4
and saturates for n∗WCA > 0.4, see solid lines in fig. 7. This implies
a transition point (n∗WCA)c ≈ 0.4. At intermediate densities, the
MSD is subdiffusive at intermediate times but it never matches the
critical subdiffusion of the Lorentz model, with exponent 2/z with
z = 3.036. This was already discussed shortly by some of us in Ref.
14. This is even more apparent by direct inspection of the local ex-
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Fig. 7: Mean-squared displacements of the WCA system for a canoni-
cal ensemble of tracers (solid lines) and tracers with exactly one energy
(dashed lines) for a range of n∗WCA. The straight line ∼ t2/z with the dy-
namic exponent z = 3.036 of the Lorentz model serves as guide to the eye.
(Data published previously in Ref. 14)

10−1 100 101 102 103 104 105 106

Time t vth/σWCA

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

le
xp

on
en

tγ
(t) 2/3.036

n∗WCA =
0.22
0.31
0.32
0.33
0.35
0.4
0.45
0.56

Fig. 8: Local exponent of the mean-squared displacements of the WCA
system for the same data as in fig. 7, i.e. for a canonical ensemble of trac-
ers (solid lines) and tracers with exactly one energy (dashed lines). The
horizontal line indicates the anomalous exponent 2/z with z = 3.036 of the
Lorentz model.
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Fig. 9: Diffusion coefficient D of the WCA system for a canonical ensem-
ble of tracers and the single-energy case as function of the reduced obstacle
density n∗WCA. Connected symbols are obtained directly from the mean-
squared displacements, isolated errorbars at higher densities from finite-
size scaling, see text. The solid black line ∝ (−ε)µ with the conductivity
exponent µ= 1.309 of the Lorentz model serves as guide to the eye. Inset:
Rectification plot of the same data.
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WCA potential

eff. hard disks

σeff
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Fig. 10: a) Schematic representation of the finite size scaling of the dif-
fusion coefficient D at some finite but small distance ε to the localization
transition. Dots represent data obtained from simulations (not actually sim-
ulated here) plotted as a function of L−µ/ν. The true scaling (red line) is
some unknown function fulfilling L−µ/ν at small L. Fitting to this small-L
part provides a lower bound for D as L→∞. b) Illustration of a channel be-
tween two obstacles at distance 2σeff with the potential energy in greyscale.
Obstacle centers are marked by dots, the equipotential line of the WCA po-
tential at the energy E = 2Vαβ(σeff) where the channel closes is given in
black, and the corresponding effective hard disks are given by red circles.

ponent γ(t), see solid lines in fig. 8. Instead of the Lorentz model
exponent, the local exponent exhibits γ(t) ≈ 0.55 at n∗WCA = 0.35
over almost three orders of magnitude in time.

The situation changes qualitatively if all tracers are set to ex-
actly the same energy, which restores the critical behavior. 14 Then,
the system undergoes a localization transition at n∗WCA ≈ 0.320,
where the MSD exhibits subdiffusion with the expected exponent,
see dashed lines in fig. 7 and fig. 8.

The difference between these two systems is also strikingly ap-
parent in the long-time diffusion coefficient, shown in fig. 9. At
large densities, the diffusion coefficient could not be directly mea-
sured from the MSD but was determined via finite-size scaling.
For small separations ε from the critical point, the diffusion coeffi-
cient D is expected to vanish as D ∼ (−ε)µ for ε → 0. If the size
of the simulation box L is smaller than the correlation length ξ of
the system, then this scaling is replaced by the finite-size scaling

D∼ L−µ/ν for L� ξ. 19 For constant ε and incrementally increas-
ing L, the diffusion coefficient will first follow the finite-size scal-
ing D∼ L−µ/ν before converging to the true value at large-enough
L� ξ. This behavior is approximately fulfilled by the fitting func-
tion D = aL−µ/ν+Dlower. Therefore, even if the simulated systems
are not large enough to allow determining the true value of D, a fit
to the small-L data will return a true lower bound Dlower, see fig. 10
for an illustration. A true upper bound for D is given by the value
obtained in the largest simulated system. With this procedure we
calculated the bounds shown as vertical bars in fig. 9.

While the data of the canonical ensemble of tracers is not com-
patible with the critical behavior of the Lorentz model, D∼ (−ε)µ,
the single-energy case is. The difference between the two cases
is even starker in the rectification plot given in the inset of fig. 9,
where data following the critical power-law will fall on a straight
line. While this holds for the single-energy case near the transition,
where the critical asymptote becomes valid for roughly ε . 0.1
as in the cherry-pit model, the canonical ensemble case shows a
strong rounding.

Clearly, the canonical ensemble does not exhibit the critical dy-
namics of the Lorentz model, while the single-energy case does.
This can be explained by an averaging of the dynamics in the case
of the canonical ensemble. In contrast to the cherry-pit model, the
WCA system contains finite energy barriers. As a consequence,
the available void space and its topology are a function of tracer
energy, i.e. barriers which can be surmounted by fast tracers may
not be passable for slower tracers. It will be shown in the following
how this notion can be quantified with the help of a mapping of the
system onto hard disks.

Hard-disk mapping The hard-disk mapping will yield an ef-
fective hard-disk interaction diameter σeff for each tracer as a func-
tion of n∗WCA and its energy E and will thus show that the dynamics
in the WCA-disk system can be understood as an average over a
distribution of effective Lorentz models.

What is needed is a mapping of the WCA-disk system onto
an equivalent system with (overlapping) hard-disk obstacles and
a point-like tracer. In order for it to be useful, the mapping must
conserve the topology of the void space: open channels have to stay
open and closed channels have to remain closed under the mapping.
Otherwise, the percolation transition of the void space would not be
correctly mapped. While mappings such as the Barker–Henderson
mapping, which was used to estimate the packing fraction of the
matrix, or a mapping using the Andersen-Weeks-Chandler approx-
imation56 can be very successful for the mapping of glassy sys-
tems, for example, they do not guarantee conservation of topology.
Greater care is necessary, here.

In two dimensions, a channel in the void space is defined by
two obstacles. The potential landscape in such a channel has the
shape of a saddle. A tracer is able to pass the channel if its energy
matches or surpasses the potential energy on the saddle point of
the channel, i.e. at the point exactly between the obstacles. In the
presented mapping, the effective hard-core interaction distanceσeff
between a given tracer and the obstacles is then calculated as the
closest distance between two obstacles forming a channel through
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which the tracer is barely able to pass.
For obstacles at a distance 2r, the potential energy in the center

of the channel is given by 2Vαβ(r), eq. (5) (the smoothing function
Ψ(r) can be neglected), and a tracer of energy E cannot pass the
channel if E < 2Vαβ(r). Thus the topology of the accessible space
is preserved if the soft obstacles are mapped to hard disks of radius
σeff (assuming a point tracer) with the condition E = 2Vαβ(σeff),
see fig. 10b. Explicitly,

E = 8εWCA

[(
σWCA

σeff

)12
−
(
σWCA

σeff

)6
+

1
4

]
, (7)

which has two positive solutions for σeff. Only one of them re-
spects the cutoff of the potential σeff 6 rcut,

σeff =
[

1
2

+(E/8εWCA)1/2
]−1/6

σWCA. (8)

The reduced effective density of the matrix then reads

n∗eff(E) := nσ2
eff = n∗WCA

[
1
2

+(E/8εWCA)1/2
]−1/3

. (9)

For the mapping to be successful, it has to correctly map the
critical point as determined by the single-energy dynamics onto
the percolation point of the matrix. From the dynamics, the critical
point can be read off as n∗WCA ≈ 0.320 where the simulation was
performed at the tracer energy E/εWCA

core = 1.143. Via the hard-disk
mapping this corresponds to an effective hard-disk critical radius
of (σeff)c/σ

WCA
core = 0.982 and a critical hard-disc reduced density

(n∗eff)c = 0.268. This fully agrees with the percolation threshold
determined above via Voronoi tesselation.

Energy-resolved dynamics The mapping clearly exposes that
tracers with different energies experience matrices with different
densities n∗. Thus, it is useful to consider the tracer dynamics as
a function of tracer energy. To this end, the total energy of each
tracer was calculated at the beginning of the simulation and tracers
with similar energies were grouped into bins of width ∆E/εWCA

core =
0.1. The MSD was then calculated for each tracer and averaged
over each energy bin. Since the particles of each bin have ap-
proximately the same energy E and same interaction range σWCA,
their state can be uniquely expressed by the interaction diameter
σeff = σeff

(
σWCA,E

)
.

The energy distribution of the tracers p(E) corresponds to a dis-
tribution of effective densities p(n∗eff), which can be directly calcu-
lated via

p(n∗eff) =−p
(
E(n∗eff)

) dE
dn∗eff

, for E > 0, (10)

and p(n∗eff) = 0, else. Note, that E(n∗eff) is given by the inversion
of eq. (9) and that dE/dn∗eff is negative.

In fig. 11b, the distributions p(n∗eff) are shown for a range of
n∗WCA, with p(E) directly taken from the simulation, see fig. 6. The
diffusion coefficients calculated from the energy-resolved MSDs
for the same systems are shown in fig. 11a. To account for the
trivial scaling with the microscopic time scale of the particles to =
σeff/v with the velocity v of the particles, the diffusion coefficients

10−3
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100

D/
σ

eff
v

n∗WCA = 0.26 0.31
0.35

0.40

∼ (−ε)µ

Single energy

a

0.16 0.18 0.20 0.22 0.24 0.26 0.28
Effective reduced obstacle density n∗eff

0
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15
20

p(n
∗ eff

)

n∗WCA = 0.26 0.31 0.35 0.40

b

Fig. 11: a) Master plot of diffusion coefficients D in the WCA-disk sys-
tem for a canonical ensemble of tracers resolved by their energy E. The
white line shows D for the single energy case of fig. 9. The red line indi-
cates the critical asymptote from fig. 9. b) Distribution of effective reduced
obstacle density in the same systems.

have to be plotted rescaled as D/(σeffv). The velocity v for each
energy was extracted from the short-time behavior of the MSD,
δr2(t; E) = v2t2. Without any further rescaling, the diffusion coef-
ficient as a function of n∗eff falls onto a single master curve, which is
in agreement with the single-energy data. As the percolation tran-
sition at n∗c = 0.268 is approached, the master curve approaches
the critical behavior expected for the Lorentz model, D ∼ (−ε)µ.
This demonstrates clearly that the hard-disk mapping is success-
ful and that the long-time dynamics of single WCA-particles are
compatible with the Lorentz model dynamics.

Furthermore, it is possible to demonstrate that not only the dif-
fusion coefficient but also the full dynamics satisfies the critical
scaling of the Lorentz model when mapped onto hard-disks. For
the Lorentz model, the MSD is expected to follow an asymptotic
scaling which incorporates the regimes of regular and anomalous
diffusion, as well as the localized regime into a single functional
form,

δr2(t) = t2/zδR2
±(t/tx) , to� t, (11)

with tx ∼ `z ∼ |ε|−z(ν−β/2) diverging at the transition. 8 The scaling
function δR2

− holds on the delocalized side of the transition, and
δR2

+ on the localized side. At long times, tx� t, regular diffusion
is recovered by δR2

−(t/tx)∼ (t/tx)1−2/z, while on the localized side
δR2
−(t/tx)∼ (t/tx)2/z holds. For to� t� tx, both scaling functions

tend to the same constant, representing the regime of anomalous
diffusion.

Both scaling functions are displayed in fig. 12, where the energy-
resolved MSD at n∗WCA = 0.35 is divided by the critical asymptote
t2/z and time is rescaled appropriately. For this, the separation pa-
rameter ε was calculated from the effective interaction distance,
ε = (n∗eff− n∗c)/n

∗
c with n∗c = 0.268. The collapse of the data onto

the scaling functions is roughly as successful as in the overlapping
Lorentz model17 and can in principle be further improved by con-
sidering corrections to scaling.30
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Fig. 12: Master plot of energy-resolved mean-squared displacement in
the WCA-disk system for a canonical ensemble of tracers at n∗WCA = 0.35.
The MSD is divided by the critical asymptote ∼ t2/z and shown as a func-
tion of rescaled time using the separation parameter ε := (n∗eff−n∗c)/n

∗
c with

n∗c = 0.268. The energy E of the MSDs increases from bottom to top and
the MSDs with smallest and largest energy are annotated.

Percolating fraction To quantify the rounding of the transi-
tion, it is instructive to calculate the fraction of tracers with an
energy sufficiently high to allow for long-range transport. At a
given n∗WCA, this fraction corresponds to the percolation probabil-
ity, pperc, of the effective hard-disk system. Provided that n∗WCA
is large enough that some tracers are on the localized side of the
transition, pperc is obtained as the integral over all subcritical states
of p(n∗eff),

pperc :=
∫ n∗c

0
p(n∗eff)dn∗eff =

∫ E(0)

E(n∗c)
p(E)dE, (12)

and pperc = 1, otherwise. At large densities n∗WCA, only tracers
with the largest energies are delocalized. Then, it is reasonable
to assume that p(E) ≈ Aβexp(−βE), e.g. from inspection of the
inset of fig. 6, with A & 1 (If the approximation were meant to hold
for all E, then due to normalization A = 1 would hold exactly, but
this would underestimate the probability distribution at large E).
Furthermore, E(n∗eff→ 0) = +∞ holds. Thus, one finds

pperc ≈ Aexp
(
−βE(n∗c)

)
= Aexp

{
−8βεWCA

[(
n∗WCA

n∗c

)6
−
(

n∗WCA
n∗c

)3
+

1
4

]}
. (13)

The approximation of the energy distribution by an exponen-
tial overestimates pperc at small densities, but the approximation
should become exact for large n∗WCA. Therefore, pperc > 0 holds
for all finite n∗WCA, but becomes exponentially suppressed at large
densities.

4 Summary and Conclusion

We have performed simulations in two dimensions of particle trans-
port in two models of porous media which represent systematic

steps away from the standard overlapping Lorentz model towards
realistic systems. In the Lorentz model, a percolation transition in
the void space entails a localization transition in the dynamics with
anomalous transport being a key signature. Our systems allow test-
ing which properties of porous media are necessary for anomalous
transport and a localization transition.

In the cherry-pit model, the host matrix contains structural cor-
relations which modify the structure of the void space. In the
WCA model, interactions between tracer particles and the host par-
ticles are modeled with a purely repulsive and soft potential. This
changes the topology of void space by introducing a potential en-
ergy landscape with finite barriers. The dynamics have been an-
alyzed in terms of the mean-squared displacement and quantities
derived from it.

In the cherry-pit model, we have determined the percolation
threshold as a function of the obstacle packing fraction, which is a
measure of structural correlations contained in the host matrix. For
both a weakly and a strongly correlated system, the localization
transition is observed coinciding with the percolation threshold and
the dynamics is found to be compatible with the critical predictions
for the Lorentz model. However, the convergence to the universal
predictions is poor, with a possible origin being corrections to scal-
ing.

In the WCA model with a canonical ensemble of non-interacting
tracer particles, a localization transition is observed, but the critical
predictions do not apply, i.e. the transition is rounded. The behav-
ior is similar to what has been observed in a quasi-twodimensional
experiment recently. 14 The situation is clarified by a mapping of
the WCA matrix onto hard-disks which reveals that the dynamics
of each tracer can be fully mapped onto the Lorentz model as a
function of its diameter and energy. This is confirmed by a scaling
analysis of the dynamics as a function of tracer energy. The dy-
namics of the full system thus represent an energy-average over a
distribution of effective Lorentz models. As a consequence, in sys-
tems with soft potentials like WCA-disks, one can only observe the
idealized Lorentz model scenario in a simulation where the energy
of tracers can be precisely controlled and held constant over the
whole simulation, i.e. only for Newtonian dynamics. In Brownian
dynamics or for interacting tracers, we expect the rounding of the
transition to become more pronounced, as each tracer samples the
full energy distribution over time.

5 Acknowledgement

This work has been supported by the Deutsche Forschungsgemein-
schaft DFG via the Research Unit FOR1394 “Nonlinear Response
to Probe Vitrification”.

References
1 H. Gleiter, Acta Mater., 2000, 48, 1–29.
2 H. Brenner and D. Edwards, Macrotransport Processes, Butterworth-

Heinemann, 1993.
3 O. Bénichou, C. Chevalier, J. Klafter, B. Meyer and R. Voituriez, Nat

Chem, 2010, 2, 472–477.
4 D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals

and Disordered Systems, Cambridge University Press, Cambridge, 1st
edn., 2000.

9

Page 9 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



5 A. Bunde, Solid State Ionics, 1998, 105, 1–13.
6 T. Voigtmann and J. Horbach, Europhys. Lett., 2006, 74, 459–465.
7 M. Weiss, in New Models of the Cell Nucleus: Crowding, Entropic

Forces, Phase Separation, and Fractals, ed. R. Hancock and K. W.
Jeon, Academic Press, 2014, vol. 307, ch. 11, pp. 383–417.

8 F. Höfling and T. Franosch, Rep. Prog. Phys., 2013, 76, 046602.
9 I. M. Sokolov, Soft Matter, 2012, 8, 9043.

10 M. J. Saxton, Biophysical journal, 2012, 103, 2411–22.
11 P. Adler, Porous Media: Geometry and Transports, Butterworth-

Heinemann Limited, 1992.
12 H. Lorentz, Proc. R. Acad. Sci. Amsterdam, 1905, 7, 438–453.
13 H. V. Beijeren, Rev. Mod. Phys., 1982, 54, 195–234.
14 T. O. E. Skinner, S. K. Schnyder, D. G. A. L. Aarts, J. Horbach and

R. P. A. Dullens, Phys. Rev. Lett., 2013, 111, 128301.
15 W. Götze, E. Leutheusser and S. Yip, Phys. Rev. A, 1981, 23, 2634.
16 W. Götze, E. Leutheusser and S. Yip, Phys. Rev. A, 1982, 25, 533–539.
17 F. Höfling, T. Franosch and E. Frey, Phys. Rev. Lett., 2006, 96, 165901.
18 F. Höfling and T. Franosch, Phys. Rev. Lett., 2007, 98, 4–7.
19 F. Höfling, T. Munk, E. Frey and T. Franosch, J. Chem. Phys., 2008,

128, 164517.
20 T. Bauer, F. Höfling, T. Munk, E. Frey and T. Franosch, Eur. Phys. J.-

Spec. Top., 2010, 189, 103–118.
21 J. Horbach, W. Kob and K. Binder, Phys. Rev. Lett., 2002, 88, 125502.
22 A. J. Moreno and J. Colmenero, J. Phys. Condens. Matter, 2007, 19,

466112.
23 A. Moreno and J. Colmenero, Phys. Rev. Lett., 2008, 100, 126001.
24 A. J. Moreno and J. Colmenero, Phys. Rev. E, 2006, 74, year.
25 A. J. Moreno and J. Colmenero, J. Chem. Phys., 2006, 125, 164507.
26 Th. Voigtmann and J. Horbach, Phys. Rev. Lett., 2009, 103, 205901.
27 Th. Voigtmann, Europhys. Lett., 2011, 96, 36006.
28 J. Horbach, Th. Voigtmann, T. Franosch and F. Höfling, Eur. Phys. J.

Spec. Top., 2010, 189, 141–145.
29 M. Spanner, S. K. Schnyder, F. Höfling, Th. Voigtmann and T. Fra-

nosch, Soft Matter, 2013, 9, 1604.
30 A. Kammerer, F. Höfling and T. Franosch, Europhys. Lett., 2008, 84,

66002.
31 S. Torquato, Random Heterogeneous Materials, Springer-Verlag, 2002.
32 C. Dress and W. Krauth, J. Phys. A: Math. Theor., 1995, 597, L597–

L601.
33 N. Metropolis, A. Rosenbluth, M. Rosenbluth and A. Teller, J. Chem.

Phys., 1953, 21, 1087–1092.
34 E. P. Bernard and W. Krauth, Phys. Rev. Lett., 2011, 107, 155704.
35 S. C. Kapfer and W. Krauth, Soft-disk melting: From liquid-hexatic

coexistence to continuous transitions, arXiv: 1406.7224v1 [cond-
mat.stat-mech].

36 J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1–13.
37 M. Adda-Bedia, E. Katzav and D. Vella, J. Chem. Phys, 2008, 128,

184508.
38 C. H. Rycroft, Chaos, 2009, 19, 041111.
39 A. R. Kerstein, J. Phys. A, 1983, 16, 3071–3075.
40 J. A. Quintanilla and R. M. Ziff, Phys. Rev. E, 2007, 76, 051115.
41 D. Frenkel and B. Smit, Understanding Molecular Simulation. From

Algorithms to Applications,, Academic Press, London, 2nd edn., 2002.
42 P. H. Colberg and F. Höfling, Comput. Phys. Commun., 2011, 182,

1120–1129.
43 F. Höfling, Localisation and critical dynamics in the ballistic two-

dimensional Lorentz model, 2014, in preparation.
44 B. I. Halperin, S. Feng and P. N. Sen, Phys. Rev. Lett., 1985, 54, 2391–

2394.
45 J. Machta, R. A. Guyer and S. M. Moore, Phys. Rev. B, 1986, 33, 4818–

4825.
46 P. Grassberger, Physica A, 1999, 262, 251.
47 F. Höfling, K.-U. Bamberg and T. Franosch, Soft Matter, 2011, 7, 1358–

1363.
48 Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett., 1983, 50,

77–80.
49 J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys., 1971,

54, 5237.
50 H. C. Andersen, J. Chem. Phys., 1980, 72, 2384.
51 K. Binder, J. Horbach, W. Kob, W. Paul and F. Varnik, J. Phys. Condens.

Matter, 2004, 16, 429.
52 J. A. Barker and D. Henderson, J. Chem. Phys., 1967, 47, 4714–4721.
53 D. Henderson, Mol. Phys., 1977, 34, 301–315.
54 J. Hansen and I. McDonald, Theory of simple liquids, Academic Press,

London, 3rd edn., 2006.
55 P. Virnau and M. Müller, J. Chem. Phys., 2004, 120, 10925–30.
56 M. Schmiedeberg, T. K. Haxton, S. R. Nagel and A. J. Liu, Europhys.

Lett., 2011, 96, 36010.

10

Page 10 of 10Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


