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Abstract

We proposed several novel methods for calculating the bulk pressure in poly-

mer lattice simulations. Our first method combines chain insertion/deletion with

Wang-Landau – Optimized Ensemble sampling in the space of number of chains n,

which is very efficient and accurate at low to intermediate polymer volume fractions

ϕ (e.g., . 0.7). We then proposed two methods in canonical-ensemble simulations

to efficiently and accurately calculate the bulk pressure at high ϕ where chain inser-

tion/deletion become inefficient. Finally, combining these methods leads to complete

thermodynamics over the entire range of continuous and exact ϕ-values with negli-
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gible finite-size effects. We also analyzed in detail the error caused by the cut-off in

n-space.
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1 Introduction

Lattice Monte Carlo (MC) simulations are in general much faster than those in continuum

and thus widely used in the study of polymeric systems. Calculating pressure in such

simulations, however, is not trivial as the mechanical (virial) route commonly used in con-

tinuum is not applicable. In particular, this problem is the most severe at high densities

(polymer volume fractions) ϕ, such as in concentrated polymer solutions or melts, where

chain insertion/deletion cannot be performed efficiently due to their low acceptance rates,

even with the configurational-bias Monte Carlo technique;1 all methods for pressure

calculation using chain insertion/deletion2–7 are therefore inefficient at such high ϕ, where

the agreement between theories and simulations (thus our understanding) is also the worst.

Four classes of methods have been proposed in the literature. In the rest of this

Section we give a brief overview of these methods, taking the commonly studied

incompressible polymer solution as an example, where each lattice site is occupied by

a total of ρ0 polymer segments and solvent molecules having the same volume (ρ0 = 1

corresponds to the conventional lattice model with the self- and mutual-avoiding walk).

Throughout this work we take the lattice spacing and kBT as the unit of length and

energy, respectively, where kB denotes the Boltzmann constant and T the thermodynamic

temperature.

1.1 Methods based on Grand-Canonical Partition Function

The test-chain insertion thermodynamic integration (µTI) method2 is based on the estima-

tion of chain chemical potential µ ≡ (∂F/∂n)V in canonical-ensemble (nV T ) simulations
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of n chains in volume V , which then gives F (ϕ, V )−F (ϕ = 0, V ) = (ρ0V/N)
∫ ϕ

0
µdϕ; here

F denotes the system Helmholtz free energy, ϕ ≡ nN/ρ0V the polymer volume fraction,

and N the number of segments on each chain. Since the pressure P ≡ −(∂F/∂V )n, one

then obtains the osmotic pressure Π(ϕ) = P (ϕ)−P (ϕ = 0) = (ρ0/N)
[
ϕµ(ϕ)−

∫ ϕ

0
µdϕ

]
=

(ρ0/N)
∫ µ(ϕ)

µ(ϕ=0)
ϕdµ, where the first integral has been evaluated numerically in either nV T 2

or grand-canonical-ensemble (µV T )5 simulations (with ϕ being the ensemble-averaged

polymer volume fraction in the latter).

The compressibility route (denoted by κTTI), on the other hand, uses integration

of the isothermal compressibility κT ≡ −(∂V/∂P )n/V = (∂ϕ/∂P )n/ϕ, leading

to Π(ϕ) =
∫ ϕ

0
(1/κTϕ)dϕ, which has been used in both µV T 3 and nV T 8 simula-

tions (with κT approximated from the total structure factor at small wave-vector

lengths in the latter). Since κT = (N/ρ0ϕ
2)(∂ϕ/∂µ)V and ϕ = (N/ρ0V )(∂ ln Ξ/∂µ)V

in a grand-canonical ensemble, where Ξ denotes its partition function, we have

Π(ϕ) = (ρ0/N)
∫ µ(ϕ)

µ(ϕ=0)
ϕdµ = ln[Ξ(µ(ϕ), V )/Ξ0]/V with Ξ0 ≡ Ξ(µ(ϕ = 0), V ). The

first equality shows the equivalence of µTI and κTTI methods, and the second shows

that both methods are actually based on estimating Ξ. Indeed, the computationally

expensive numerical integration in both methods can be avoided if Ξ(µ(ϕ), V )/Ξ0 is

directly estimated; this was basically how Jiang and Wang4 calculated Π using many

µV T simulations at different µ combined with the self-consistent histogram-reweighting

technique.9
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1.2 Methods based on Canonical Partition Function

The second class of methods are based on estimating the canonical partition function

Z. In particular, the repulsive wall method (RWM) in nV T simulations proposed by

Dickman10 calculates, by design, the normal pressure Pn of a confined film of lateral area

A (under the periodic boundary conditions) and thickness D between two impenetrable

walls placed (without loss of generality) at x = 0 and D + 1, respectively,

Pn(Lx)≈
1

A
ln

Z(Lx)

Z(Lx − 1)
(1)

=
1

A
ln

Z ′(λ = 1)

Z ′(λ = 0)
− ln(ρ0!)

=
1

A

∫ 1

0

dλ
⟨Nc⟩λ
λ

− ln(ρ0!), (2)

where

Z =
1

n!

∑
R

exp[−H(R)]

W (R)
(3)

is the canonical partition function of the confined incompressible polymer solution, R

denotes a configuration of all chains, H is the system Hamiltonian due to both chain

connectivity and non-bonded interactions (including the incompressibility constraint),

W =
∏

r[ρ0 − ρ(r)]! with ρ(r) being the number of polymer segments at lattice site r

in R,11 Z ′(λ) = (1/n!)
∑

R exp[−H(R)]λNc(R)/W (R) is the canonical partition function

of the same confined system but with a repulsive potential Uc = − lnλ acting on each

segment at x = Lx (i.e., the repulsive wall) and the contact number Nc being the

total number of such segments, and ⟨⟩λ is the ensemble average given by Z ′(λ). To

avoid the expensive numerical integration over the coupling parameter λ, Jimenez and

Rajagopalan combined this method with Bennet’s acceptance-ratio method,12 and we

recently combined it with Wang-Landau – Optimized Ensemble (WL-OE) sampling13
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to estimate the density of states of Nc and also replaced the first-order backward finite

difference in Eq. (1) by the second-order centered finite difference for higher accuracy.14

nV T simulations avoid chain insertion/deletion and can therefore be used to calcu-

late pressure at high ϕ. When RWM is used to calculate the bulk pressure P in nV T

simulations,10 however, the system is confined between two impenetrable surfaces and

Pn(Lx) = P (ϕm) is assumed, where ϕm is taken as the polymer volume fraction in the

middle of the confined film and has some statistical error due to the system fluctuations

(note that, at high ϕ, small variation in ϕ leads to large change in P ; see Fig. 8 below).

What is more problematic is that, due to the confinement effects of the walls, large

Lx is required for ϕm to be close to the corresponding bulk value at the same µ as in

the confined film.3 Indeed, Stukan et al. showed that the pressure correction due to

the confinement effects is inversely proportional to Lx and is visible even at Lx = 160

(for a chain length of N = 20 and an average polymer volume fraction of 0.5) in nV T

simulations.3 While they also showed that the confinement effects are much smaller if

RWM is used in µV T simulations,3 this unfortunately limits its applicability to high ϕ.

1.3 Constant-Pressure (or Volume-Changing) Methods

The third class of methods uses MC trial moves to change V at given P . Nies and Cifra

performed isothermal-isobaric-ensemble (nPT ) simulations of polymer solutions confined

between two impenetrable walls, one of which was built/destroyed by one lattice site in

each trial move to change V occupied by the solution.15 Similar to RWM,10 this method

has confinement effects when used for bulk systems. Such confinement effects are avoided

6
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by Mackie et al., who inserted/deleted a randomly selected lattice layer of a bulk solution

in each trial move by cutting all chains that cross the layer and then regrowing them.6,7

Since the acceptance rates of such trial moves would normally be very low, they used

configurational bias1 in their nPT 6 and Gibbs-ensemble7 simulations, with a high coordi-

nation number lattice, BFM3,16 also used in their Gibbs-ensemble simulations to further

increase the acceptance rates. Similar to other methods using chain insertion/deletion,2–5

however, their method cannot be used at high ϕ where such trial moves cannot be per-

formed efficiently.

1.4 The Hydrostatic Equilibrium Method

Finally, based on the local density approximation (LDA),17 Addison et al.18 proposed the

hydrostatic equilibrium method (HEM) in nV T simulations. Here the system is confined

between two walls as in RWM and is subject to a slowly varying external field U(x) = λx

with the dimensionless parameter λ > 0. LDA then gives dP/dx = −λρ0ϕ(x), and one

can obtain Π(x) by choosing x0 to be large enough such that ϕ(x0) = 0.18 This method

has the distinct advantage that Π over a range of ϕ can be obtained in a single simulation

run, but its use of U(x) requires large D and has certain limitations as examined by

Ivanov et al.;5 they compared µTI method in µV T simulations, RWM in both nV T and

µV T simulations, and HEM for bulk pressure calculation, and concluded that HEM is

far more efficient than RWM but comparable to the µTI method.5

In this work we propose several novel methods that lead to efficient and accurate

calculations of bulk pressure in lattice MC simulations over the entire range of ϕ. These

7
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methods are described in Sec. 2, and their performance are reported in Sec. 3. Sec. 4 is

devoted to summary.

2 Our Methods

2.1 The Z Method

We first introduce a method combining chain insertion/deletion with WL-OE sampling13

in n-space to calculate the bulk pressure, which not only avoids the expensive numerical

integration required in µTI method and the large system size required in HEM, but also

has the same advantage as HEM, thus much more efficient than all the existing meth-

ods.2–8,10,15,18 This method is based on the direct estimation of the canonical partition

function Z(n, V ) of a bulk system (given by Eq. (3)) for a range of n in a single simulation,

thus referred to as the Z method here. Since P (µ)V = ln
∑nm

n=0 exp(µn)Z(n, V ) with the

maximum number of chains in the system nm → ∞ in the thermodynamic limit, we then

have

Π(µ) =
1

V
ln

nm∑
n=0

exp(µn)z(n, V ) (4)

with z(n, V ) ≡ Z(n, V )/Z0 and Z0 ≡ Z(n = 0, V ) = (ρ0!)
−V . On the other hand, with

ϕ(µ) =
N

ρ0V

∑nm

n=0 n exp(µn)z(n, V )∑nm

n=0 exp(µn)z(n, V )
, (5)

Π(ϕ) is finally obtained over a range of ϕ. We note that the direct estimation of Z(n, V )

for a range of n using WL sampling was proposed by Ganzenmüllera and Camp, who

applied it to determine the phase equilibrium of complex small molecules in continuum

(off-lattice) simulations.19 Our use of WL-OE sampling overcomes the error saturation

problem of WL sampling20 and greatly improves the sampling efficiency and accuracy.13

8
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2.1.1 Wang-Landau – Optimized Ensemble (WL-OE) Sampling

For given N , ρ0 and V , our WL-OE sampling consists of two parts: first WL sampling is

used to estimate Z crudely, then OE sampling to estimate Z accurately. At the beginning

of WL sampling, an array g(n) is set to unity and a histogram h(n), which records the

number of visits to any configuration having n chains (referred to as the “n-state”) in

the simulation, is set to 0 for all n ∈ [0, nm]. We use two types of trial moves in our

simulations. The first is nV T trial moves of random segment hopping and chain reptation

with probabilities of 0.2 and 0.8, respectively, which keep n unchanged and have the

acceptance criterion

Pacc(R → R′) = min

[
1,

W

W ′ exp(−∆H)

]
(6)

with ∆H being the difference in H between the trial configuration R′ (having W ′) and

the current configuration R (having W ). The second is chain insertion and deletion,

which change n. Here the chain insertion and deletion are randomly chosen with equal

probability and the configurational bias1 is used. The acceptance criterion for inserting

one chain into R (having n chains) to generate R′ is

Pacc(n → n+ 1) = min

[
1,

V g(n)W exp(−∆H)Riz
N−1
L

(n+ 1)g(n+ 1)W ′

]
(7)

if n < nm and 0 otherwise,21 where Ri is the Rosenbluth weight of the inserted chain and

zL the lattice coordination number, and that for deleting one chain from R to generate

R′ is

Pacc(n → n− 1) = min

[
1,

ng(n)W exp(−∆H)

V g(n− 1)W ′Rdz
N−1
L

]
, (8)

where Rd is the Rosenbluth weight of the deleted chain. Note that for simplicity we

are limited here to lattice models with all bonds having the same a priori probability,16

9
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but it is straightforward to generalize our method to other lattice models.16 After each

trial move, g(n) and h(n) of the current state (i.e., R′ if the trial move is accepted and

R otherwise) are updated according to ln g(n) → ln g(n) + ln f and h(n) → h(n) + 1,

respectively, where f is a modification factor with an initial value of f0 = e ≈ 2.718. The

histogram flatness, i.e., h(n) > 0.8
∑nm

m=0 h(m)/(nm + 1) for all n, is checked every 1000

Monte Carlo steps (MCS); here one MCS is defined as nmN nV T trial moves and nm

chain insertion/deletion trial moves. If the histogram is flat, we reset h(n) = 0 for all

n and decrease f according to f →
√
f . Once f < 1.00001, we stop WL sampling and

switch to OE sampling13 to improve the accuracy of g(n).

We start OE sampling with g1(n) = g(n) obtained from the above WL sampling.

In addition, we use two arrays h(n) and h+(n) with initial values of zero for all n, where

h(n) is used as above, and h+(n) for the number of visits to the n-state with the most

recently visited extreme state being n = 0. The same acceptance criteria as given by

Eqs. (6)∼(8) are used. After each trial move, we only update the histogram of the

current state as h(n) → h(n) + 1; if the most recently visited extreme state is 0, we also

update h+(n) → h+(n) + 1. After 50 round-trips, where one round-trip is defined as the

system reaching from the extreme state n = 0 to the other extreme state n = nm and

then back to n = 0, we update g(n) for all n as gj+1(n) = gj(n)
/√

[dh̃j(n)/dn]/hj(n),

where j denotes the simulation step using gj(n), h̃j(n) ≡ h+
j (n)/hj(n), and dh̃j(n)/dn

is calculated using the second-order finite difference with the smallest step size in n

that yields a positive value. We then increase the required number of round-trips in

the simulation step by 1.3 times, reset h(n) and h+(n) to 0 for all n, and continue the

simulation with gj+1(n). At the end of simulation step j, lnZ(n, V ) is estimated as

10
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lnZj(n) = lnZ0 + ln[hj(n)/hj(n = 0)] + ln[gj(n)/gj(n = 0)]. OE sampling is stopped

when √√√√ nm∑
n=1

[
ln

Zj+1(n)

Zj(n)

]2/
nm < 0.05 (9)

is satisfied. Finally, we estimate the error bar reported in our results below as the standard

deviation calculated from three independent WL-OE simulations.

2.2 Two Variants of RWM in nV T Simulations

We then propose two variants of RWM in nV T simulations to efficiently calculate P at

high ϕ, which not only avoid the confinement effects and the numerical integration over

λ in Eq. (2), but also greatly improve the accuracy of the calculated P (ϕ). For a bulk

system (i.e., without the two confining walls but with the periodic boundary conditions

also in the x-direction), the right-hand-side of Eq. (1) gives the bulk pressure P (ϕ) with

ϕ = nN/ρ0A(Lx − 1/2) via the second -order centered finite difference, and Eq. (3) now

gives the canonical partition function of the bulk system; this is the starting point of our

variants. For simplicity, we limit our discussion here to the square lattice in 2D and the

simple cubic lattice in 3D, but it is straightforward to generalize our variants to other

lattice models.16

2.2.1 The Repulsive Plane with Bridging Bonds (RPBB) Method

While the original RWM uses the repulsive wall to bridge two confined systems having Lx

and Lx−1 lattice layers in the x-direction, the first variant we propose is to use a repulsive

plane with bridging bonds (RPBB) to bridge two bulk systems described by Z(Lx) and

Z(Lx − 1). In particular, we introduce an intermediate system, which is the same as that

11
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described by Z(Lx) but with all segments at x = l experiencing a repulsive potential Uc

and Nc being the total number of such segments, where 1 ≤ l ≤ Lx is an arbitrary integer

due to the periodic boundary conditions. Furthermore, a bridging bond between two

lattice sites at x = l− 1 and l+ 1 (under the periodic boundary conditions), respectively,

having the same y- (and in 3D z-) coordinate is allowed with a repulsive potential Ub and

Nb being the total number of such bonds (that is, each lattice site at x = l − 1 and l + 1

has zL + 1 allowed bonds in terms of chain connectivity or nearest neighbors in terms of

non-bonded interactions); note that the bridging bonds do not introduce branching and

chains are still linear in our model. The canonical partition function of this intermediate

system is given by Z ′(Uc, Ub) = (1/n!)
∑

R exp[−H(R) − UcNc(R) − UbNb(R)]/W (R);

note that Z ′(Uc = 0, Ub → ∞) = Z(Lx) and Z ′(Uc → ∞, Ub = 0) = Z(Lx − 1)(ρ0!)
−A.

Re-writing Z ′(Uc, Ub) =
∑

Nc

∑
Nb

Ω(Nc, Nb) exp(−UcNc − UbNb) with the density

of states (DoS) having Nc contacts and Nb bridging bonds given by

Ω(Nc, Nb) =
1

n!

∑
R

δNc,Nc(R)δNb,Nb(R)
exp[−H(R)]

W (R)
, (10)

we have

P (ϕ) =
1

A
ln

∑
Nc

Ω(Nc, Nb = 0)∑
Nb

Ω(Nc = 0, Nb)
− ln(ρ0!). (11)

While this in principle allows us to calculate pressure by estimating the 2D DoS Ω(Nc, Nb),

for large systems it is difficult to obtain Ω(Nc, Nb) accurately. We therefore re-write

Eq. (11) as

P (ϕ) =
1

A
ln

∑
Nc

ω(Nb=0)(Nc)∑
Nb

ω(Nc=0)(Nb)
− ln(ρ0!) (12)

with ω(Nb=0)(Nc) ≡ Ω(Nc, Nb = 0)/Ω(Nc = 0, Nb = 0) and ω(Nc=0)(Nb) ≡ Ω(Nc =

0, Nb)/Ω(Nc = 0, Nb = 0), which requires two independent simulations of bulk systems

12
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described by Z(Lx) and Z(Lx − 1), respectively, to estimate the two 1D normalized DoS

ω(Nb=0)(Nc) and ω(Nc=0)(Nb). Note that Eq. (12) is equivalent to

P (ϕ) =
1

A

[
ln

Z(Lx)

Zc(Lx − 1)
− ln

Z(Lx − 1)

Zc(Lx − 1)

]
, (13)

where Zc(Lx − 1) denotes the canonical partition function of the confined system having

Lx−1 lattice layers in the x-direction between two parallel and impenetrable walls placed

perpendicular to the x-direction.

2.2.2 The Double Repulsive Plane (DRP) Method

The second variant we propose is to use the confined system having Lx − 2 lattice layers

in the x-direction to bridge the two bulk systems, i.e.,

P (ϕ) =
1

A

[
ln

Z(Lx)

Zc(Lx − 2)
− ln

Z(Lx − 1)

Zc(Lx − 2)

]
, (14)

which can be compared with Eq. (13). To estimate the first term in the square brackets

in Eq. (14), we introduce an intermediate system, which is the same as that described

by Z(Lx) but with all segments at x = l and l + 1 (under periodic boundary condi-

tions; referred to as the double repulsive plane, DRP) experiencing a repulsive potential

Uc and Nc,2 being the total number of such segments, where 1 ≤ l ≤ Lx is an arbi-

trary integer. The canonical partition function of this intermediate system can then

be re-written as Z ′(Uc) =
∑

Nc,2
Ω(2)(Nc,2) exp(−UcNc,2) with DoS having Nc,2 contacts

Ω(2)(Nc,2) = (1/n!)
∑

R δNc,2,Nc,2(R) exp[−H(R)]/W (R). Similarly, to estimate the second

term in the square brackets in Eq. (14), we introduce an intermediate system, which is

the same as that described by Z(Lx − 1) but with one repulsive plane, and re-write its

canonical partition function as Z ′(Uc) =
∑

Nc
Ω(Nc) exp(−UcNc). Eq. (14) can finally be

13
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re-written as

P (ϕ) =
1

A
ln

∑
Nc,2

ω(2)(Nc,2)∑
Nc

ω(Nc)
− ln(ρ0!) (15)

with ω(2)(Nc,2) ≡ Ω(2)(Nc,2)/Ω
(2)(Nc,2 = 0) and ω(Nc) ≡ Ω(Nc)/Ω(Nc = 0), which also

requires two independent simulations of bulk systems described by Z(Lx) and Z(Lx − 1),

respectively, to estimate ω(2)(Nc,2) and ω(Nc).

2.2.3 Simulation Details

For given n, N , ρ0, A and ϕ, we use WL-OE sampling13 to estimate the above DoS

in RPBB and DRP methods. The simulation procedure is similar to that described in

Sec. 2.1.1. Taking the estimation of ω(Nc) as an example, we can simply replace z, n, and

nm used in Sec. 2.1.1 by ω, Nc, and Aρ0, respectively. In addition, we use only nV T trial

moves of random segment hopping and chain reptation22 with probabilities of 0.2 and 0.8,

respectively, which have the acceptance criterion

Pacc(R → R′) = min

[
1,

Wg(Nc)

W ′g(N ′
c)
exp(−∆H)

]
(16)

instead of Eq. (6); here ∆H is the difference in H between the trial configuration R′

(having W ′ and N ′
c) and the current configuration R (having W and Nc), and one MCS

is defined as nN trial moves. Finally, at the end of simulation step j in OE sampling, we

estimate ω(Nc) as lnωj(Nc) = ln[hj(Nc)/hj(Nc = 0)] + ln[gj(Nc)/gj(Nc = 0)]. The same

procedure as given here is used to estimate other DoS with Nc replaced accordingly.

2.3 Combining the Z Method with RPBB or DRP Method

We finally propose to combine the Z method, which is very efficient as shown in Sec. 3.1

below, with either RPBB or DRP method. This overcomes not only the limitation that

14
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the Z method cannot be applied at high ϕ, but also the drawback of RPBB and DRP

methods that two simulation runs are required to obtain P at a single ϕ-value. It is easy

to show that

P (ϕ) =
ρ0ϕ

2

N

[
∂[F (ϕ, V )/n]

∂ϕ

]
n

=
ϕ2

V

[
∂[F (ϕ, V )/ϕ]

∂ϕ

]
V

, (17)

which leads to

ln z(n, V ) = −V ϕ

∫ ϕ

ϕ0

P (φ)

φ2
dφ+

n

nm

ln z(nm, V ) +

(
n

nm

− 1

)
lnZ0, (18)

where ϕ0 = nmN/ρ0V . Eq. (18) allows the estimation of z(n, V ) for n > nm, thus giving P

over the entire range of ϕ ∈ [0, ϕ′
m], where ϕ

′
m denotes the largest polymer volume fraction

used in RPBB or DRP method and can be quite close to 1 as shown in Sec. 3.3 below.

In particular, our Z method at V gives z(nm, V ), and either RPBB or DRP method is

used to obtained P (φ) at several φ ∈ [ϕ0, ϕ
′
m]. Cubic spline interpolation can then be

used for the P (φ)/φ2 data to evaluate the integral in Eq. (18) for all n ∈ (nm, n
′
m], where

n′
m ≡ ⌊ϕ′

mρ0V/N⌋ with ⌊a⌋ denoting the largest integer not greater than a. Note that,

because the integral does not involve V , the box size used in RPBB or DRP method can

be different from V .

3 Results and Discussions

To demonstrate our methods, here we apply them to 2D athermal polymer solutions with

N = 20 and ρ0 = 1 (thus P = Π) on the square lattice. We also split Π into the ideal

part Πid = ρ0ϕ/N (which is due to Zid = (V zN−1
L )n/n! with zL = 4) and the excess part

Πex = Π− Πid (which is due to Zex ≡ Z/Zid).
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Figure 1: Logarithmic plot of ∆F ex(n, V )/n−µex
1 vs. ϕ−ϕ1 obtained from our Z method

in various square boxes of length L. The leftmost data point at each L corresponds to

n = 2; for L ≥ N , our simulations give ∆F ex(n = 1, V ) = µex
1 within the sampling error.

See main text for details.

3.1 The Z Method

Fig. 1 shows ∆F ex(n, V )/n−µex
1 as a function of ϕ−ϕ1 obtained from our estimated z(n, V )

in various square boxes of length L =
√
V , where ∆F ex(n, V ) ≡ F ex(n, V )−F ex(n = 0, V )

with the excess Helmholtz free energy F ex(n, V ) = − lnZex(n, V ), the exact value of the

excess chemical potential of a single chain µex
1 = − ln(83, 779, 155/zN−2

L ) is obtained via

enumeration of single-chain configurations in a square box of L ≥ N (where the numerator

is the number of allowed configurations of the chain with the position of its first segment

and the orientation of its first bond fixed), and ϕ1 ≡ N/ρ0V . For ϕ . 0.01, our data are

consistent with the expected result of ∆F ex(n, V )/n− µex
1 = (NB/ρ0)(ϕ− ϕ1) explained

below.
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Figure 2: Πex(ϕ) obtained from our Z method in various boxes of length L. The inset

shows a semi-logarithmic plot of d lnΠex/d lnϕ vs. ϕ obtained at L = 80. See main text

for details.

With our estimated z(n, V ), Πex(ϕ) is then obtained from Eqs. (4) and (5) and is

shown in Fig. 2. We first note that the inset of Fig. 2 shows d lnΠex/d lnϕ obtained

at L = 80, which clearly gives Πex = Bϕ2 for ϕ . 0.01; unweighted linear least-squares

regression of our Πex(ϕ) data in this region gives the second virial coefficient (or the

excluded-volume parameter) B = 0.153 ± 0.003. From Πex = −(∂∆F ex/∂V )n, one

finds ∆F ex/n − µex
1 = (N/ρ0)

∫ ϕ

ϕ1
(Πex/ϕ2)dϕ; at small ϕ, Πex = Bϕ2 therefore gives

∆F ex(n, V )/n− µex
1 = (NB/ρ0)(ϕ− ϕ1) shown in Fig. 1.

Fig. 2 shows that our Πex(ϕ) data have negligible finite-size effects (FSE) when

L ≥ N , except near the largest ϕ-value. The largest ϕ-value of each curve in Fig. 2 is

limited by the (finite) value of nm used in the simulation, near which Πex(ϕ) is clearly

not accurate due to the cut-off in n-space. While the upper limit of nm in a box of finite
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V is given by nmax ≡ ρ0V/N (i.e., ϕ = 1), the acceptance rate of chain insertion/deletion

becomes very low at high ϕ (even with the configurational bias1), especially for large N

at ρ0 = 1. Although our acceptance criteria, Eqs. (7) and (8), can expedite the sampling

at high ϕ, setting nm too close to nmax makes the simulation time prohibitively long. Our

Z method is therefore most efficient at low to intermediate ϕ . 0.7. In Sec. 3.2 below, we

analyze in detail the error caused by the cut-off in n-space.

Table 1 compares our Π(ϕ) data obtained at L = 20 and 80 with those in Ref. [10]

obtained using RWM, where a box of 60 × 30 was used, and clearly shows that our

data have no FSE (within our sampling error) and are much more accurate than those

obtained using RWM. Moreover, our Z method gives Π over a range of (continuous and

exact) ϕ in a single simulation run similar to HEM (note that ϕ takes discrete values

at each lattice layer and has statistical error in HEM), in great contrast to at least five

runs (at various λ) used in Ref. [10] to numerically estimate the integral over λ at a

single ϕ-value. Our Z method further avoids the large simulation box required by LDA

in HEM.5,18 It is therefore much more efficient than all the existing methods2–8,10,15,18

for calculating the bulk pressure at low to intermediate ϕ (. 0.7) on a lattice.

Even better, with z(n, V ) estimated, our Z method actually gives complete thermody-

namics of the system as a function of ϕ. In particular, the excess chain chemical potential

µex ≡ (∂F ex/∂n)V can be calculated over the same range of ϕ in two different ways:

(1) µex
nV T (ϕ) = F ex(n, V ) − F ex(n − 1, V ), which is the same as obtained from Widom

insertion in nV T simulations,25 and (2) µex
µV T (ϕ) by solving µ from Eq. (5) and then

subtracting µid = ln(ρ0ϕ/N) − (N − 1) ln zL at given ϕ. The plot of µex
nV T (ϕ) − µex

1 vs.
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Table 1: Comparison of our Π(ϕ) data obtained from the Z method at two L-values with

those from RWM reported in Ref. [10] (where an error bar of 0.0008, 0.0005, 0.0003, and

0.0003, respectively, was given for each ϕ-value from low to high).

ϕ Π (L = 20) Π (L = 80) Π (Ref. [10])

0.2356 0.02564± 0.00001 0.02565± 0.00001 0.0256± 0.0005

0.4580 0.10813± 0.00009 0.10819± 0.00002 0.107± 0.001

0.5896 0.21922± 0.00008 0.21921± 0.00003 0.217± 0.002

0.6336 0.27428± 0.00021 0.27446± 0.00004 0.274± 0.003

ϕ−ϕ1 is similar to Fig. 1 (thus not shown), except that µex
nV T (ϕ)−µex

1 = 2(NB/ρ0)(ϕ−ϕ1)

for ϕ . 0.01. Fig. 3 shows FSE on µex
nV T at ϕ = 0.4; for large L, µex

nV T exhibits a linear

relation with L−2 as predicted in Ref. [26] (similar results are obtained for ∆F ex/n and

not shown), and linear fitting of our data at L = 40, 60 and 80 gives µex
nV T = 4.78± 0.01

in the thermodynamic limit (i.e., L → ∞), which is clearly different from our µex
nV T

obtained at finite L.

On the other hand, the plot of µex
µV T (ϕ) − µex

1 vs. ϕ is similar to Fig. 2 (thus not

shown), except that µex
µV T (ϕ)−µex

1 = 2(NB/ρ0)ϕ for ϕ . 0.01.27 Fig. 3 further shows that

our µex
µV T (ϕ) data have no FSE (within our sampling error) for L & N , and is consistent

with the above value in the thermodynamic limit obtained from the extrapolation of

µex
nV T . The same is found at other ϕ-values. µex

µV T is therefore the preferred way to

calculate µex.
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Figure 3: FSE on µex at ϕ = 0.4 obtained from our Z method. See main text for details.

Similarly, d lnΠex/d lnϕ = (1/κT − ρ0ϕ/N)/Πex shown in the inset of Fig. 2 is

directly calculated from our estimated z(n, V ) as

d lnΠex

d lnϕ
=

ρ0ϕ

NΠex

[
n1/n0

n2/n0 − (n1/n0)2
− 1

]
(19)

with ni ≡
∑nm

n=0 n
i exp(µn)z(n, V ) for i = 0, 1, 2, from which κT over the same range of ϕ

can be obtained and also exhibits negligible FSE when L ≥ N as shown in Fig. 4; note

that limϕ→0 κTϕ/N = 1.

Finally, we note that an analogous method of WL-OE sampling in µ-space could also be

designed, which is based on the direct estimation of Ξ(µ, V ) of a bulk system for a range

of µ in a single simulation; Eqs. (4) and (5) then become Π(µ) = (1/V ) ln[Ξ(µ, V )/Ξ0]

and ϕ(µ) = (N/ρ0V )(∂ ln Ξ/∂µ)V , respectively, also leading to Π(ϕ) over a range of ϕ.

Compared to our Z method, however, this method has the drawback that µ-space is

intrinsically continuous and must be discretized during the simulation, which leads to

numerical error28 in the calculated ϕ.
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Figure 4: FSE on κT at ϕ = 0.4 obtained from our Z method. The inset shows a semi-

logarithmic plot of κT (ϕ) obtained in various boxes of length L. See main text for details.

3.2 Error Analysis due to Cut-Off in n-Space

Here we analyze in detail the error in our Z method caused by the cut-off in n-space (i.e.,

the use of nm < nmax). Denoting the exact value of Π (apart from FSE and sampling

error) by

Π∗(µ) =
1

V
ln

nmax∑
n=0

exp(µn)z(n, V ), (20)

and assuming that the estimated z(n, V ) is not affected by the cut-off (which is justified

by our acceptance criterion Eq. (5)), we find

[Π∗(µ)− Π(µ)]V = ln

{
1 +

∑nmax

n=nm+1 exp(µn)z(n, V )

exp[Π(µ)V ]

}
> 0. (21)

The curve of Πex(ϕ) shown in Fig. 2, however, bends upwards near the largest ϕ-value,

which is actually due to the error in ϕ(µ) caused by the cut-off.

We therefore denote the exact value of ϕ (apart from FSE and sampling error)
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by

ϕ∗(µ) =
N

ρ0V

∑nmax

n=0 n exp(µn)z(n, V )∑nmax

n=0 exp(µn)z(n, V )
. (22)

To show that ϕ∗(µ) > ϕ(µ) (or equivalently [
∑nm

n=0 exp(µn)z(n, V )] [
∑nmax

n=0 n exp(µn)z(n, V )] >

[
∑nm

n=0 n exp(µn)z(n, V )] [
∑nmax

n=0 exp(µn)z(n, V )]), we note that[
nm∑
n=0

eµnz(n, V )

][
nmax∑

n=nm+1

neµnz(n, V )

]
>

[
nm∑
n=0

neµnz(n, V )

][
nmax∑

n=nm+1

eµnz(n, V )

]
. (23)

Estimating the error then amounts to finding an upper bound of Π∗(µ) and ϕ∗(µ), re-

spectively. For this purpose, we note that ln z(n, V ) is a concave function with vary-

ing n (i.e., (∂2 ln z/∂n2)V < 0), as can be seen from Fig. 1 and the inset of Fig. 8

below; its upper bound for n ∈ [nm + 1, nmax] can then be taken as ln z̄(n, V ) =

(∂ ln z/∂n)V |n=nm(n − nm) + ln z(nm, V ), where (∂ ln z/∂n)V |n=nm = (3/2) ln z(nm, V ) −

2 ln z(nm − 1, V ) + (1/2) ln z(nm − 2, V ) is estimated by the second-order finite difference.

The upper bound of Π∗(µ) can therefore be taken as

Π̄(µ) =
1

V
ln

[
nm∑
n=0

exp(µn)z(n, V ) +
nmax∑

n=nm+1

exp(µn)z̄(n, V )

]
, (24)

and that of ϕ∗(µ) can be taken as

ϕ̄(µ) =
N

ρ0V

∑nm

n=0 n exp(µn)z(n, V ) +
∑nmax

n=nm+1 n exp(µn)z̄(n, V )∑nm

n=0 exp(µn)z(n, V ) +
∑nmax

n=nm+1 exp(µn)z̄(n, V )
. (25)

To show that ϕ̄(µ) > ϕ∗(µ), we note that[
nm∑
n=0

neµnz(n, V ) +
nmax∑

n′=nm+1

n′eµn
′
z̄(n′, V )

][
nm∑
n=0

eµnz(n, V ) +
nmax∑

n′=nm+1

eµn
′
z(n′, V )

]

−

[
nm∑
n=0

eµnz(n, V ) +
nmax∑

n′=nm+1

eµn
′
z̄(n′, V )

][
nm∑
n=0

neµnz(n, V ) +
nmax∑

n′=nm+1

n′eµn
′
z(n′, V )

]

=
nm∑
n=0

nmax∑
n′=nm+1

(n′ − n)[z̄(n′, V )− z(n′, V )]z(n, V )eµneµn
′
> 0. (26)
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Figure 5: Comparisons of the estimated relative errors in Π and in ϕ due to the cut-off in

n-space, ∆cΠ(µ) and ∆cϕ(µ), respectively, with those due to the sampling, ∆sΠ(µ) and

∆sϕ(µ), in our Z method for the case of L = 80 shown in Fig. 2.

Fig. 5 compares the estimated relative errors in Π and in ϕ due to the cut-off,

∆cΠ(µ) ≡ Π̄(µ)/Π(µ)− 1 and ∆cϕ(µ) ≡ ϕ̄(µ)/ϕ(µ)− 1, with those due to the sampling,

∆sΠ(µ) and ∆sϕ(µ) (i.e., the ratio between the standard deviation calculated from three

independent WL-OE simulations and their average), respectively, for the case of L = 80

shown in Fig. 2. The µ-value at which ∆cΠ = ∆sΠ, denoted by µΠ, gives the largest µ

where Π is not affected by the cut-off, i.e., Π(µ) = Π∗(µ) for µ < µΠ (within our sampling

error); similarly, we have ϕ(µ) = ϕ∗(µ) for µ < µϕ (within our sampling error). Fig. 5

clearly shows that µϕ < µΠ; the range of ϕ for the case of L = 80 shown in Fig. 2 where

Πex(ϕ) is not affected by the cut-off in n-space is therefore given by µϕ and corresponds

to 0 ≤ ϕ . 0.6631.
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Figure 6: Normalized DoS obtained from our RPBB and DRP methods. See main text

for details.

Finally, we note that this error analysis can also be applied to our combined Z

and RPBB results as shown in Fig. 8 below.

3.3 RPBB and DRP Methods

Figure 6 shows the normalized DoS obtained from our WL-OE sampling with n = 38

and L = 29. We see that all DoS exhibits a maximum. Note that ω(Nb=0)(Nc) is smaller

than ω(Nc) for all Nc > 0 because the latter system has L− 1 instead of L lattice layers

in the x-direction (thus a slightly higher polymer volume fraction). With these DoS,

P (ϕ = 80/87 ≈ 0.9195) is estimated to be 1.3239 ± 0.0011 and 1.3240 ± 0.0007 using

RPBB and DRP methods, respectively, which are consistent with each other as expected.

Figure 7 shows FSE in both methods. Since n must be an integer, we judiciously

choose several {n, L}-values that give ϕ = nN/L(L − 1/2) = 80/87. We see negligible
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Figure 7: The bulk pressure P at ϕ = 80/87 obtained in boxes of length L = 15, 29, 44

and 87.

FSE (within our sampling error) for L & N in both methods. Note that DRP requires

ϕ′
m < (L − 2)/(L − 1/2) and therefore cannot be used for the smallest box in Fig. 7. In

comparison, RPBB requires ϕ′
m < (L− 1)/(L− 1/2) and makes the sampling easier (i.e.,

its DoS have much smaller variation than those in DRP as shown in Fig. 6).

Finally, Table 2 compares P obtained from RWM,10 RPBB and DRP methods, and shows

that our methods give much more accurate results for the bulk pressure with much less

computational effort. Table 2 also lists P obtained from our Z method in Sec. 3.1, which

is very efficient at low to intermediate ϕ but does not work for ϕ & 0.7 (with N = 20 and

ρ0 = 1) where the chain insertion/deletion become inefficient.
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Table 2: Comparison of P obtained from various methods. The data from Ref. [10] are at

ϕm = 0.5896±0.0003 and 0.8951±0.0005, respectively, where a box of 60×30 was used.10

L = 38 and 33 are used at ϕ = 56/95 ≈ 0.5895 and 128/143 ≈ 0.8951, respectively, in our

RPBB and DRP methods. L = 80 and 40 are used, respectively, in our Z method and

RPBB method when combined with the Z method.

P ϕ = 56/95 ϕ = 128/143

Ref. [10] 0.2170± 0.0021 1.110± 0.022

RPBB method 0.2189± 0.0006 1.117± 0.001

DRP method 0.2190± 0.0003 1.116± 0.001

The Z method 0.21921± 0.00003 –

Z+RPBB method 0.21921± 0.00003 1.116± 0.001

3.4 The Z+RPBB Method

As RPBB method works better than DRP method, here we combine the Z method with

RPBB method (denoted by Z+RPBB). The inset of Fig. 8 shows ln z(n, V ) vs. n at

V = 802; for n ≤ nm = 220 it is obtained from our Z method, and for n > nm from our

Z+RPBB method, where we performed several simulations with different n ∈ [54, 72] in

a box of length L = 40 using RPBB method. We see that, while z(n, V ) obtained from

our Z method monotonically increases with increasing n, it exhibits a maximum at larger

n (= 261) as expected.

With z(n, V ) estimated up to n′
m = 291 by our Z+RPBB method, we can obtain complete
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Figure 8: Πex(ϕ) and µex(ϕ) obtained from our Z and Z+RPBB methods, where the two

vertical lines mark the ϕ-value (0.6631 for the Z method and 0.9009 for the Z+RPBB

method) below which the results are not affected by the cut-off in n-space. The inset

shows ln z(n, V ) vs. n at V = 802; see main text for details.

thermodynamics over the entire range of continuous and exact ϕ-values. Fig. 8 shows, for

example, Πex(ϕ) and µex(ϕ) calculated from Eqs. (4) and (5). We see that, for both Πex

and µex, the range extended by our Z+RPBB method is more than that obtained by

our Z method alone. Table 2 further compares P obtained from our Z+RPBB method

with those from other methods, and shows that our Z+RPBB method has advantages

of both the Z and RPBB/DRP methods (i.e., high accuracy and applicability to high

ϕ, respectively). Finally, our Z+RPBB results in the extended high-ϕ region have neg-

ligible FSE, as demonstrated in Sec. 3.1. Our Z+RPBB method therefore provides, for

example, a much better way of calculating µ at high ϕ than any method using chain

insertion/deletion.
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4 Summary

To summarize, we have proposed several novel methods for calculating the bulk pressure

P in polymer lattice Monte Carlo simulations. Firstly, our Z method combines chain

insertion/deletion with Wang-Landau – Optimized Ensemble sampling13 in the space of

number of chains n to directly estimate the canonical partition function Z(n, V ) for a

range of n (where V denotes the system volume), and is very efficient and accurate at

low to intermediate polymer volume fractions ϕ (e.g., . 0.7). It gives not only P but

also complete thermodynamics (e.g., the chain chemical potential and the isothermal

compressibility) over a range of continuous and exact ϕ-values in a single simulation

with negligible finite-size effects. Our Z method avoids the computationally expensive

numerical integration required in the test-chain insertion thermodynamic integration

method,2,5 the compressibility route,3,8 and the repulsive wall method (RWM),10 as well

as the large box size and limitations due to the use of the external field in the hydrostatic

equilibrium method,5,18 thus superior to all the existing methods2–8,10,15,18 for calculating

P at low to intermediate ϕ on a lattice.

Secondly, our repulsive plane with bridging bonds (RPBB) and double repulsive

plane (DRP) methods efficiently and accurately calculate P in canonical-ensemble

simulations at high ϕ where chain insertion/deletion become inefficient. They avoid the

confinement effects, the numerical integration, and the statistical error in the calculated

polymer volume fraction ϕm in the original RWM. Finally, our combined Z and RPBB

or DRP method overcomes not only the limitation that the Z method cannot be applied

at high ϕ, but also the drawback of RPBB and DRP methods that two simulation
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runs are required to obtain P at a single ϕ-value. It gives complete thermodynam-

ics over the entire range of continuous and exact ϕ-values with negligible finite-size effects.

We have also analyzed in detail the error caused by the cut-off in n-space in the

Z and the combined methods. While we have demonstrated the application and

advantages of our methods using 2D athermal polymer solutions with the self- and

mutual-avoiding walk on the square lattice as a simple example, it is straightforward to

apply them to lattice simulations of various polymeric systems.
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