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Recent work [Mahynski et al., Nat. Commun., 2014, 5, 4472] has demonstrated that the addition of long linear homopolymers

thermodynamically biases crystallizing hard-sphere colloids to produce the hexagonal close-packed (HCP) polymorph over the

closely related face-centered cubic (FCC) structure when the polymers and colloids are purely repulsive. In this report, we

investigate the effects of thermal interactions on each crystal polymorph to explore the possibility of stabilizing the FCC crystal

structure over the HCP. We find that the HCP polymorph remains at least as stable as its FCC counterpart across the entire range

of interactions we explored, where interactions were quantified by the reduced second virial coefficient, −1.50 < B∗

2 < 1.01.

This metric conveniently characterizes the crossover from entropically to energetically dominated systems at B∗

2 ≈ 0. While

the HCP relies on its octahedral void arrangement for enhanced stability when B∗

2 > 0, its tetrahedral voids produce a similar

effect when B∗

2 < 0 (i.e. when energetics dominate). Starting from this, we derive a mean-field expression for the free energy

of an infinitely-dilute polymer adsorbed in the crystal phase for nonzero B∗

2 . Our results reveal that co-solute biasing of a

single polymorph can still be observed in experimentally realizable scenarios when the colloids and polymers have attractive

interactions, and provide a possible explanation for the experimental finding that pure FCC crystals are elusive in these binary

mixtures.
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1 Introduction

The face-centered cubic (FCC) and hexagonal close-packed (HCP) crystals are closely related polymorphs which are often

formed simultaneously by crystallizing hard spheres. These polymorphs generally occur together in nature because the free

energy difference between the two is on the order of 0.001kBT per sphere, with entropy marginally favoring the FCC structure.1–3

The similarity in free energy results from the fact that these structures have an identical coordination number (z = 12) and optimal

packing fraction for spheres of π
√
2/6 ≈ 0.74.4 Consequently, it can take months or years for mixed crystals to fully anneal into

the more stable FCC structure.5 In the same vein, crystallization of hard spheres is often difficult to study experimentally because

of experimental factors such as size polydispersity,6,7 gelation and vitrification,7,8 and the stress of terrestrial gravity9 which

present barriers to the production of crystals with any significant long-range order. Such order is a necessity for a wide range

of technological applications including photonic bad gap materials, optical filters, and lasers.10–12 Recently, we demonstrated a

unique approach to selecting only one of the two competing polymorphs by amplifying the difference in free energy between

them by adding a co-solute such as a linear homopolymer.13

Fig. 1 Close-packed crystals have two polymorphs, the face-centered cubic (FCC) and hexagonal close-packed (HCP) structures. In the HCP

crystal, planes of hexagonally packed spheres are stacked in a repeating ABAB pattern such that planes are staggered to form octahedral void

(OV) spaces that stack vertically and share faces with one another. The remaining space is covered by pairs of tetrahedral voids (TV) which

also share faces. However, the FCC crystal has ABC stacking symmetry which eclipses each OV with TVs and neither void type shares any

faces with their same type.

The key feature of our approach is that the co-solute’s free energy is controlled by the distribution of free volume in the

crystal (cf. Fig. 1). In both polymorphs, layers of hexagonally packed spheres are stacked on each other so that a second layer

(B) eclipses half of the trigonal voids formed between tangent triplets of spheres in the layer below (A). In the FCC crystal, the

third layer is rotated 60◦ relative to the first, and thus eclipses the other half of the trigonal voids producing an ABC stacking

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI:

10.1039/b000000x/
a Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA. E-mail: azp@princeton.edu
b Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
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pattern; however, in the HCP crystal, the third and fourth layers simply repeat the first two producing an ABAB stacking pattern.

In both cases, all the free volume in each crystal can be divided into voids shaped like one of two platonic solids, octahedrons

or tetrahedrons, which are formed by treating the centers of mass of the spheres as vertices as illustrated in Fig. 1. Out of the

stacking plane, both octahedral voids (OV) and tetrahedral voids (TV) are situated directly on top of themselves in the HCP

crystal because of the ABAB symmetry, whereas in the FCC crystal each OV is capped by TVs owing to the ABC stacking

pattern.

Thus, when a sufficiently long linear homopolymer is adsorbed in a HCP crystal it can distribute itself across neighboring

OVs, while in the FCC crystal a similarly sized polymer would be forced into an OV-TV pair. Since an OV cavity contains

roughly 6 times the volume as a TV, the pairs of OVs provide significantly more free volume (entropy) for the polymer.13

Thus, for low polymer densities in the athermal case, where entropy alone determines the system’s free energy, the HCP crystal

is always favored over the FCC. This difference occurs when the polymer’s radius of gyration is on the order of the colloid

diameter, defining an entropic length scale in the crystal for the binary mixture, ls. The effect has been generalized to linear block

copolymers to show that engineering the polymer architecture is an effective way to select which polymorph will be the most

thermodynamically stable in different systems, at least when the polymer concentration in the crystal phase is low.13

Our prior findings have significant implications on the study of depletion-induced colloidal crystallization. Depletion is a

phenomenon whereby a mixture containing size asymmetric species separates as a result of entropy.14–16 The aggregation of the

larger species disproportionately increases the amount of free volume in the bulk for the smaller one(s) thereby increasing the

overall entropy of the system. This is often used as a driving force to produce fluid-fluid phase separation and to crystallize

suspensions of colloids.8,15–18 Athermal linear homopolymers are common well-studied depletants.13,19–23 However, additional

factors can be adjusted to fine tune the behavior of such a depletant. For instance, the importance of attractive interactions between

the polymer and colloids is of particular interest since in many experimental situations some amount of attraction between the

polymer and colloids is expected due to dispersion forces. The introduction of a thermal length scale, lu, which characterizes this

interaction is expected to create competition with the entropic one, potentially producing nontrivial results. While a great deal of

effort has been focused on understanding the fluid phase behavior of colloid-polymer mixtures and the dispersion characteristics

in polymer nanocomposites,24–29 to our knowledge a study of the relative stability of the colloidal crystal phases in the presence of

attractive polymers has not yet been undertaken. Here we elucidate the role of thermal interactions between linear homopolymers

and colloids in determining the relative stability of the two close-packed polymorphs to investigate the applicability of the void-

leveraging technique in more realistic and experimentally representative scenarios.

The rest of this article is organized as follows: in Section 2 we describe our model and simulation methodology, in Section 3

we discuss our results pertaining to the relative stability of the two polymorphs, and we conclude in Section 4.
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2 Methods

2.1 Simulations

We employed Monte Carlo (MC) simulations to measure the total excess chemical potential, µex
tot, of a single chain adsorbed

in each crystal morphology.30 A comparison of results obtained in each polymorph has previously shown µex
tot to be a reliable

predictor of the most stable structure in dense binary mixtures of colloids and polymers since it qualitatively mirrors results

obtained from molecular dynamics (MD) simulations of crystallization from these mixtures.13 Presumably, this is because the

polymer density in the crystal is low. When crystals were formed in those MD simulations, the polymer concentration observed

in the crystal phase was quite dilute, consistent with theoretical predictions, and therefore the interaction between different

polymers is negligible; thus, we can reasonably take the behavior of a single adsorbed polymer to be representative of the

ensemble of adsorbed chains. However, these MD simulations are very time consuming, often taking months of wallclock time

to produce conclusive results, even when accelerated on graphics processing units, whereas the MC sampling of the excess

chemical potential requires mere days. This makes it an invaluable approach for screening a wide range of conditions.

Polymers were modeled as fully flexible “Kremer-Grest” linear chains of beads,31 each having a diameter of unity, σm = 1,

and colloids as large spheres of diameter, σc ≥ 6.45. The size ratio σc/σm = 6.45 is the smallest that still allows monomers to

penetrate triplets of tangent colloids in the close-packed crystals. Using a smaller size ratio would trap a polymer in a specific

void inhibiting sampling of other interstices in the crystal. The FCC lattice was generated in a periodic cubic simulation box with

edges of length L = 2
√
2(σc + 0.12), containing a total of 32 colloids. The HCP lattice was generated in a periodic box with

dimensions 〈Lx, Ly, Lz〉 = 〈4(σc + 0.12), 4
√

3/4(σc + 0.12), 4
√

2/3(σc + 0.12)〉, containing a total of 64 colloids. Colloids

were initialized on their respective lattices with an additional spacing of 0.12 between nearest neighbors because we chose the

interaction between them to be a translated purely repulsive Lennard-Jones potential (cf. eq. 4) rather than that of perfectly hard

spheres. This additional gap results in crystals with zero internal energy and configurational pressure, and allows the polymer to

move between different voids more easily. The marginal softness of this potential mimics real colloids, which are usually capped

with surface ligands, better than a simple hard sphere potential. Over the course of a simulation the colloidal positions were held

fixed. Polymers were grown bead-by-bead inside each type of crystal by repeatedly performing test insertions of a new monomer

on the end of the chain at regularly spaced intervals and measuring the energy cost, Uins, of doing so.

The fully inserted portion of a chain was relaxed according to the Metropolis criterion in the canonical (NVT) ensemble.

Relaxation moves allow the chain to fully explore configurational space and include local displacements of monomers, displace-

ments of the entire polymer’s center of mass, and regrowth of the chain from either of its ends by Rosenbluth sampling.32 These

moves typically occurred with a 7:2:1 ratio, respectively. The ensemble averaged Boltzmann factor to insert a new “ghost”

monomer on the end of the chain is used to calculate the incremental excess chemical potential:
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µex
i = −kBT ln〈exp (−Uins/kBT )〉 (1)

At the end of the sampling, one such configuration is selected and the last bead is formally inserted on the end of the chain,

then the process is repeated for the next monomer. It has been shown that it is formally correct to obtain the total chemical

potential of a polymer chain of arbitrary length, M , by summing the previous incremental chemical potentials.30

µex
tot =

M
∑

i=1

µex
i (2)

Bonds are ergodically sampled by choosing a length for the next ghost position according to their energy distribution.

Pbond(r) ∼ 4πr2exp (−Ubond(r)/kBT ) (3)

As such, bonding contributions to the insertion energy are not included in eq. 1, but would otherwise simply result in a

linear translation of the chemical potential akin to simply selecting a different reference state, and thus were disregarded. New

insertions were typically attempted after several thousand relaxation moves. Between 107 and 7.5×107 relaxation moves were

performed for each monomer fully inserted in the system before the chain was appended with a new monomer. All simulations

were repeated between 10 and 60 times to obtain good statistics.

2.2 Simulation Potentials
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Fig. 2 Example pair potential between a colloid and monomer for σc = 6.45, B∗

2 = 0.00 as a function of surface-to-surface separation

distance, rs. The strength of the interaction is adjusted to keep B∗

2 constant as the decay length, κ−1, is also changed.
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Table 1 Interaction types between the monomer segments and colloids used in the majority of our simulations, unless otherwise stated, for

σc = 6.45 with their accompanying parameters.

Type Equation κ−1 ǫ/kBT B∗

2

Lennard-Jones (4) 1.00 1.01

Yukawa (6) 1/5 1.92 0.50

Yukawa (6) 1/5 2.50 0.19

Yukawa (6) 1/5 2.78 0.00

Yukawa (6) 1/5 3.00 -0.19

Yukawa (6) 1/5 4.00 -1.50

The interaction between unbonded (non-neighboring) monomer segments on a polymer chain is given by a translated purely

repulsive Lennard-Jones potential which is truncated and shifted to zero at its minimum:

Ui,j(r) =























∞ r ≤ ∆

4ǫ

(

(

1
r−∆

)12

−
(

1
r−∆

)6
)

+ ǫ ∆ < r ≤ ∆+ rcut

0 r > ∆+ rcut,

(4)

where rcut = 21/6. This potential is also used to describe the interaction between colloids and monomer beads in the purely

repulsive limit. The linear shift is defined as ∆ = (σi + σj)/2 − 1, for any pair of species with diameters σi and σj , such that

the slope of the potential is fixed for all pairs as they begin to overlap regardless of their individual diameters. Bonds between

neighboring monomer segments are represented by supplementing eq. 4 with the finitely extensible nonlinear elastic (FENE)

potential.

Ubond(r) = −1

2
kr20ln

(

1−
(

r

r0

)2
)

(5)

We employed the standard Kremer-Grest model where k = 30.0 and r0 = 1.5 to avoid bond crossing.31 To investigate the

influence of attractive interactions between the monomer segments and colloids we introduced a Yukawa-like potential between

the two as an alternative to eq. 4:

Uc,m(r) =























∞ r ≤ ∆+ 1

− ǫ
r−∆

exp (κ (∆ + 1− r)) ∆ + 1 < r ≤ rcut +∆

0 r > rcut +∆

(6)

This potential is a useful model for both screened electrostatic and simple dispersion interactions. Unless otherwise stated,

we chose κ−1 = 1/5 and rcut = 2 for σc = 6.45 (cf. Fig. 2). These choices result in a potential that is short enough in range to

avoid significant many-body interactions even when a monomer is confined in a TV. The reduced second virial coefficient, B∗

2 ,

was used to characterize the interaction between the monomers and colloids.
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B∗

2 = − 3

(1 + ∆)3

∫ ∆+rcut

0

[exp (−Uc,m(r)/kBT )− 1]r2 dr (7)

We initially explored a range of B∗

2 from −1.50 ≤ B∗

2 ≤ 1.01 for σc = 6.45 at fixed κ−1 where the monomers and colloids

ranged from being strongly attractive to having purely repulsive interactions. Table 1 summarizes the interaction potentials

we investigated and the corresponding ǫ values. For comparison, we subsequently explored the effects of changing both the

range, κ−1 = 1/5, 1/8, 1/13 (rcut = 2.0, 1.8, 1.5, respectively), and strength, ǫ, of thermal interactions independently for

σc = 6.45, 8.00, 9.50, 11.00 (see Supplementary Information for more details†).

3 Results and Discussion

3.1 Effect of attractive interactions

Figure 3(a) depicts the incremental excess chemical potential for each bead grown on a linear chain inside each polymorph for

σc = 6.45. We repeated detailed simulations for σc = 9.50 as well, but found no qualitative differences (cf. SI). Computational

limitations prevented us from obtaining accurate results at larger ratios between the colloid and monomer diameter, so we would

like to emphasize to the reader that our results are strictly valid only in the limit of nanoscale colloids since σm is typically on

the order of 1 nm for many polymers.33 However, we expect our results to be qualitatively representative over a broader range

of colloidal sizes. We focus on three representative cases where B∗

2 = 1.01, 0.00, and −1.50 which summarize the different

qualitative behavior regimes that occur as a result of the introduction of attractive thermal interactions between the monomers

and colloids. The data for B∗

2 = 1.01 were obtained for the case where the monomers and colloids were purely repulsive as

reported in ref. 13 and are described by eq. 4. In this case, the incremental chemical potential of each bead is directly related to

the free volume it can access inside each crystal.

exp

(−µex
i

kBT

)

= Pins ∼
Vfree

Vtot

(8)

In the case of perfectly hard spheres, eq. 8 becomes an equality, and in the case of infinitely small monomers the right hand

side (free volume fraction) becomes 1 − π
√
2/6 ≈ 0.26. For monomers of a finite size, this is an upper bound. Once the first

bead has been successfully inserted, the next bead is placed somewhere in the immediate vicinity with an orientation chosen at

random at a distance proportional to the bonding energy. Because the insertion trial locations of the second bead are conditional

on the location of the first, the free volume fraction available to the second bead is often higher than for the first. This is because

first beads that are successfully placed are often located in large cavities. Thus, in their immediate vicinity, a substantial fraction

of the volume located within one bond length (r0 = 1.5) of the first bead is usually free to accommodate the second, and

its incremental chemical potential is consequently lower. Since this “substantial fraction” is generally in excess of ∼26% the

1–19 | 7

Page 7 of 20 Soft Matter



-2

 0

 2

 4

 6

 0  2  4  6  8  10  12  14  16

µ
e
x
  

i 
 /

k
B

T

M

(a)

B
2

*
 = 

FCC

HCP

1.01 0.00 -1.50

 

 

 

 

 

 

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16

M
T

V

M

(b)

B
2

*
 = 

FCC

HCP

1.01 0.00 -1.50

 

 

 

 

 

 

-1

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12  14  16

∆
µ

e
x

to
t 
/k

B
T

M

(c)
B

2

*
 = 1.01 

B
2

*
 = 0.00 

B
2

*
 = -1.50

-40

-20

 0

 20

 40

 0  2  4  6  8  10  12  14  16

µ
to

t

e
x
 /

k
B

T

M

(d)

B
2

*

Fig. 3 (a) Incremental excess chemical potential of each bead for a chain of length M at B∗

2 = 1.01, 0.00, and -1.50 where σc = 6.45.

Results from inside the FCC polymorph are given in red, the HCP in blue. (b) Average number of monomers in TVs, MTV, for a chain of total

length M in each polymorph for various B∗

2 . Error bars encompassing 95% confidence are smaller than symbol size. (c) Difference in the

total excess chemical potential of a polymer (cf. eq. 2) between the FCC and HCP polymorphs, ∆µex
tot = µex

tot(FCC)− µex
tot(HCP). (d) Total

excess chemical potential for a chain of length M for all B∗

2 reported in Table 1. Solid black lines are mean-field theory results given by

eq. 13, and red and blue curves correspond to the FCC and HCP polymorphs, respectively.

incremental chemical potential of the second bead always appears lower than the first. However, as the chain continues to grow,

monomers progressively fill these cavities increasing µex
i for subsequent beads.

When the monomers are purely repulsive, both with one another and with the colloids in the crystal, the system is dominated

by entropic effects. The chain quickly senses that the OVs are entropically favored over the TVs due to the asymmetry of their

cavity volumes, and almost exclusively occupies an OV when the chain is short (cf. Fig. 3(b)). As the chain grows, its confinement

increases monotonically until it perforates the OV it occupies. This is the point at which differences between the two polymorphs

become apparent. In the HCP crystal, the growing chain can simply spread into one of its two large neighboring OVs, whereas

in the FCC crystal the chain is forced to traverse highly confining TVs before it can reach the next OV. This produces the loop in

Fig. 3(a), the characteristic rise and plateau in the number of monomers occupying TVs, MTV, in Fig. 3(b), and the large positive

difference in the total free energy of the polymer between the two polymorphs in Fig. 3(c).

Once thermal interactions between the monomer beads and colloids are introduced, entropy no longer exclusively determines
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the free energy of the polymer inside each polymorph. Two additional, qualitatively unique, scenarios emerge. First, when the

interaction is sufficient that B∗

2 = 0.00, the shape of the incremental chemical potential curve becomes flat and is essentially

identical for both polymorphs. Indeed, the difference in the total chemical potential between the FCC and HCP states was not

distinguishable to within 95% confidence. Furthermore, the occupancy of the TVs also becomes qualitatively different. As

shown in Fig. 3(b) the two polymorphs are almost identical over the range of chain lengths we investigated, and the curves rise

almost linearly. Second, when the monomer beads and colloids are strongly interacting (B∗

2 = −1.50), the incremental chemical

potential begins to exhibit oscillations as the overall chain length increases. The amplitude of each subsequent oscillation is not

sufficient to destroy the preceding ones, however, and an oscillatory difference in ∆µex
tot emerges remaining positive over the

range of M investigated. This is accompanied by similar oscillations in MTV which appear to be complementary between the

two polymorphs (cf. Fig. 3(b)).

Fig. 4 Characteristic polymer conformations when thermally adsorbed in the HCP (a)-(c), and FCC (d) crystals. The relative size of the

colloids has been reduced for visual clarity. (a) and (b) depict the same polymer (M = 6) viewed from different planes. As suggested by

Fig. 3(b) the polymer is entirely inside a pair of face-sharing TVs (indicated by black lines). (c) As the chain becomes longer (M = 9), it

spreads from one pair of TVs to another, crossing over an OV in doing so. The TVs are traced out in black, while one OV is indicated in red.

The chain depicted enters the OV directly below the one indicated, which is omitted for clarity. (d) In the FCC crystal, pairs of TVs do not

share faces, and thus a chain must enter an OV once it has filled a TV completely. The TV is indicated in yellow, and contributes three of the

six colloids which form the OV; the rest are indicated in red. The OV faces in neighboring stacking planes are traced out with black lines to

give some perspective.

In order to understand the cause of these effects one must reconsider the different void distributions between the polymorphs.

Each scenario is characterized by its own set of conformational “modes” which define a confined polymer’s behavior in these

voids. For instance, when B∗

2 = 1.01 it is the relative placement of the large OVs which determine the difference in polymer

chemical potential between the polymorphs, while the TVs play only an implicit role, serving as barriers which separate their

larger counterparts. Figure 4(a) depicts the HCP crystal observed from the z-plane in which the OVs are the visible cavities.

Hence, the OV-OV connections in the HCP polymorph provide a mode for the adsorbed polymer to be placed along, lowering its

free energy relative to the FCC polymorph which lacks such a mode.
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However, as thermal interactions begin to factor into the free energy of an adsorbed polymer, the TVs no longer play a

passive role. As the monomer segments and colloids begin to interact in an energetically favorably way, the proximity of the

two becomes less of a free energy penalty; in fact, quite the opposite when the interactions become strong enough. TVs have

a surface area to volume ratio almost twice that of OVs. This factor strongly disfavors the TVs in the entropy-dominated case,

where monomers avoid the confining surfaces of the crystal. However, in the case where beads and colloids are attractive, a

larger surface area per void volume allows beads to interact easily with more colloids than can be achieved if the polymer were

located in a more cavernous OV. When thermal interactions dominate, clearly the arrangement of TVs, rather than OVs, becomes

the defining characteristic of each polymorph for an adsorbed polymer.

If one considers this for the case of B∗

2 = −1.50, the relationship between Fig. 3(b) and Fig. 4 becomes apparent. Figures 4(a)

and (b) depict a chain growing in the HCP polymorph under these conditions. While the chain is still sufficiently short (M . 4)

the monomers will fill any single TV they can find. However, as the chain grows, the HCP polymorph provides a lower free

energy environment for the polymer than the FCC, which is accompanied by a change in the number of beads present in the

TVs, as evidenced by Fig. 3. Once again, this is a geometric effect, but is now a consequence of the TVs rather than the OVs.

Unlike the FCC polymorph, in the HCP crystal pairs of TVs share a common face which allows chains which are too large to fit

into a single TV to occupy a pair of them simultaneously. Once again, the HCP provides the polymer with a favorable mode, in

this case a TV-TV connection, which is absent in the FCC crystal. A representative snapshot of this configuration is depicted in

Figs. 4(a)-(b) when M = 6. Figure 3(b) reveals that, in the HCP polymorph, MTV rises linearly until M ≈ 8, whereas in the FCC

this persists for only half this length. After filling the TVs, the curves for both the polymorphs plateau as the polymer is forced

into an OV (cf. Figs. 4(c) and (d)). In the FCC crystal, this begins when M ≈ 4 since TVs only share common faces with OVs

and vice versa. In the HCP morphology, this is delayed until the second TV fills up. Unlike the OVs which stack indefinitely in

the HCP, TVs only share faces between a single pair at a time. This offset of having a pair of TVs initially accessible in only one

polymorph shifts the MTV curve and produces the oscillations in the incremental and overall chemical potential of the polymer.

Remarkably, ∆µex
tot (cf. Fig. 3(c)) remains positive over the range of chain lengths we investigated.

When cross interactions are more moderate, there is competition between entropic and energetic effects. At the Boyle point,

B∗

2 = 0.00 and there is no effective excluded volume between a colloid and a monomer, which calls into question the significance

of the voids. Indeed, the lack of any statistically significant difference in Figs. 3(a) and (c) between the polymorphs for all chain

lengths confirms that differences in void distributions no longer give rise to differences in polymer chemical potential. Note

that the number of monomers occupying the TVs in each polymorph is essentially identical and that the slope in Fig. 3(b) is

approximately linear. The HCP polymorph tends to have slightly more monomers in the TVs since they are clustered together,

so as the chain grows out of, or in the vicinity of, one it tends to find another TV by chance slightly more often than in the FCC.

Note that the slope of MTV vs. M is roughly 1/3, which is not insignificant. In a perfect crystal, there are two TVs and one OV
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per colloid in both polymorphs. Since a tetrahedron has one quarter the total volume of an octahedron with an identical edge

length, the volume fraction encompassed by both TVs is one third of the total in a perfect crystal. A linear slope of this magnitude

implies that, when averaged over all polymer configurations in the ensemble, the monomers have an essentially even distribution

throughout space. The colloids no longer preclude or bias specific polymer configurations in the ensemble that contribute to

this spatial distribution as in the case of B∗

2 = 1.01 and -1.50. Therefore, arranging the colloids in different stacking patterns

should have no effect on an adsorbed polymer’s free energy, which explains the lack of any statistically significant difference in

µex
tot. However, we emphasize that an even-handed sampling of the different crystal voids does not imply the polymer is adopting

instantaneously ideal configurations under confinement. This would suggest that the ensemble-averaged radius of gyration would

scale as 〈R2
g〉1/2 ∼ M1/2. The actual scaling observed suggests that the polymer exists in an extended state as it preferentially

exists near the surfaces of the colloids in the crystal with a scaling exponent that falls between that of a rod, ν = 1, and that of

an unconfined, athermal, three-dimensional chain in a good solvent, ν = 3/5 (cf. Fig. 5). Since the monomer beads are still

fully excluded from one another according to eq. 4, regardless of the colloid-monomer interaction, the good solvent exponent is

the correct lower bound. Due to the relatively low size asymmetry between the colloids and monomers, our polymer chains are

rather short, M . 20; however, an analysis of their scaling behavior reveals reasonable agreement with what would be expected

in the limit of very long chains. Our results qualitatively support our analysis of the polymer’s behavior under confinement, but

we caution the reader that finite-length effects may quantitatively affect the exponents to some degree.

Figure 5 illustrates the ensemble-averaged radius of gyration, 〈R2
g〉1/2, for a chain confined in both polymorphs at different

B∗

2 . For the purely entropic case where B∗

2 = 1.01, the polymers grow inside large OVs until they reach M ≈ 10. At this

point, because the HCP polymorph provides neighboring OVs, the chain can expand directly from one into another whereas the

FCC does not provide such an opportunity, prolonging the chain’s confinement until it can expand through the tightly confining

neighboring TVs which creates the oscillatory patterns depicted.13 Just before reaching this point, the chain’s confinement in

the center of the void implies it should scale with an exponent of ν = 1/3. Indeed, this is recovered until the chain perforates

its OV as illustrated in Fig. 5. However, as energetic effects are introduced, the chain’s conformations change dramatically.

The favorable colloid-monomer interaction stretches and localizes the chain along the surface of the colloids where previously

it was found coiled in the center of one or more voids. This expansion is more dramatic for stronger cross interactions when

the chain is short, but appears to converge as the chain becomes much larger (cf. Fig. 5(b)). For B∗

2 = -1.50 the chain clearly

approaches the scaling limit for a two-dimensional self-avoiding random walk (ν = 3/4),33 which is expected since when

energetic interactions are strong, the polymer is expected to traverse the “surface” area of the voids rather than the volume they

contain. For both B∗

2 = 0.00 and -1.50, chain conformations appear qualitatively identical in both polymorphs, which is not

the case for B∗

2 = 1.01. In the first two cases, the surface localization of the monomers implies they are not as effective at

sensing changes on the larger entropic length scale (ls ∼ σc) when a competing energetic length scale (lu ∼ κ−1) is introduced.
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Fig. 5 (a) Ensemble-averaged radius of gyration for a polymer in a crystal where σc = 6.45 when the colloid-monomer interaction is such

that B∗

2 = 1.01, 0.00, -1.50 and κ−1 = 1/5. Error bars are always smaller than symbol size so are neglected here. (b) Results for B∗

2 = 0.00
and -1.50 which show the change in scaling exponent, ν, as the strength of the thermal interaction increases. Standard error as a result of

fitting is reported for each exponent.

However, we emphasize that as Fig. 3 illustrates, this does not entirely destroy the polymer’s capacity to detect differences in

void symmetries since a polymorphic preference re-emerges at very low B∗

2 due to the TVs.

Remarkably, these results suggest that the FCC polymorph will never be more stable than the HCP when in the presence of

a homopolymer additive, regardless of the polymer-colloid interaction. Although these simulations do not yield bulk phase dia-

grams, we previously demonstrated that this MC approach is representative of results obtained from molecular dynamics when

B∗

2 = 1.01.13 However, as B∗

2 decreases we expect kinetic factors to slow the dynamics of these systems making such approaches

even less feasible. Previous studies on the structure of polymer-nanoparticle mixtures where the polymer and nanoparticle

are thermally interacting have revealed complex many-body interactions leading to a hierarchy of polymer-mediated organiza-

tion.25,27,28,34 This includes contact aggregation, which is favorable for first-order phase separations such as crystallization, but

also reveals the presence of “bound polymer layers” which tend to stabilize mixtures, though they can still be encouraged to

demix at sufficiently low temperatures.28,34 In fact, like the phenomenon whereby individual crystal polymorphs can be resolved

based on chain length, this miscibility window due to adsorbed polymer layers on the surface of the nanoparticles is also depen-

dent on the size of the polymer, and is predicted to narrow as the polymer becomes longer.34 Our study suggests that for states

characterized by close-packed crystal phases in dense polymer-nanoparticle mixtures, the HCP morphology is always more stable

than the FCC. The persistence of the HCP stability in the presence of energetic colloid-monomer interactions may help explain

why the observation of random hexagonal close-packed crystals, rather than pure FCC crystals as predicted for purely colloidal

systems, is so common in experiments on these binary systems.17
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3.2 Mean-field theory for adsorbed, infinitely dilute polymers in polymorphic crystals

From the insight that at B∗

2 = 0.00 the polymorph preference disappears, we developed a simplified two-state model for the free

energy of a confined polymer by assuming each monomer can exist in one of two possible states defined according to which void

type it occupies, ν ∈ {OV, TV}. We assume that the partition function can be expressed using a monomer’s ensemble-averaged

location and energy in the crystal:

qm =
∑

ν

Ω (ν) exp

(

−〈Uν〉
kBT

)

=

(

V

3

)

exp

(

−〈UTV〉
kBT

)

+

(

2V

3

)

exp

(

−〈UOV〉
kBT

)

,

(9)

where Ω (ν) is the degeneracy of each void and 〈Uν〉 is the mean energy averaged over the available local configurational

space a monomer would have when confined in void ν. The entire polymer’s partition function can then be expressed by

imagining that in the case of B∗

2 = 0.00, the monomers behave as if they were placed independently and randomly throughout

space:

Q =
qMm
M !

(10)

Note that for an ideal gas of monomers, 〈Uν〉 = 0 in both void types, so that qid = V . Therefore we define qm = qidqex, from

which the excess free energy follows directly.

F ex

kBT
= −lnQex = −M lnqex (11)

Since qex = qm/V is just a constant (cf. eq. 9) it is clear F ex should scale linearly with M . This prediction is consistent

with the results of simulation which reveal that the incremental chemical potential quickly reaches a constant value for M > 3

in Fig. 3. Assuming a finite difference approximation that ∆F/∆N ≈ ∂F/∂N = µ at fixed temperature and volume, and since

our MC simulations insert a single polymer (∆N = 1), from Fig. 3(d) we can get the slope of µex
tot/kBT versus M for B∗

2 = 0.00

and obtain an expression for the excess free energy of the adsorbed polymer.

µex
tot

MkBT
= −lnqex ≈ −0.227

F ex = 〈Utot〉 − TSex = −0.227MkBT

(12)

Neglecting relatively small differences between the polymorphs, it is also clear from Fig. 3 that µex
tot has an approximately
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Fig. 6 The polymorph-averaged slope of the total excess chemical potential versus chain length for an adsorbed homopolymer chain at
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2 . Here σc = 6.45 and κ−1 = 1/5 when B∗

2 < 1.01. The standard deviation of the mean incremental chemical potentials taken

over 3 < M < 17 is reported as the error of the slope, and is only larger than symbol size where indicated. When significant, this error is due

to the fact that at a given M the incremental chemical potential between the polymorphs is very different, rather than uncertainty in the

simulations themselves. The dashed lines are only guides to the eye, illustrating the stronger B∗

2 dependence in the entropically-dominated

limit (green) and the weaker dependence in the energetically-dominated limit (blue), relative to very near B∗

2 = 0 (black).

linear shape for most B∗

2 values as well, despite the fact that the ansatz of eq. 10 is not strictly valid for nonzero B∗

2 . By

taking the average µex
i between the FCC and HCP crystals at each M we essentially remove the effect of having different void

distributions in each polymorph, resulting in a single mean-field description of a polymorphic close-packed crystal. It is this

average that remains approximately linear even when ∆µex
tot is not precisely zero between the polymorphs. The behavior of

d〈µex
tot/kBT 〉/dM , which is illustrated in Fig. 6, can then be used to extend eq. 12 to other values of B∗

2 . Near B∗

2 = 0.00 the

slope of 〈µex
tot/kBT 〉 is approximately linear in B∗

2 , which inspires the form:

〈F ex〉
MkBT

=

( 〈F ex〉
MkBT

)

B∗

2
=0

+ aB∗

2 (13)

where for this size asymmetry of σc = 6.45, a = 1.72 as depicted by the black line in Fig. 6. Since B∗

2 can be interpreted as

an excluded volume between a monomer and colloid, it makes sense that this effective volume should affect 〈µex
tot〉 more strongly

in the entropically-dominated limit when B∗

2 > 0 than the energetically-dominated limit when B∗

2 < 0, as evidenced by the

dashed lines in Fig. 6. While more work is necessary to elucidate a precise form for these corrections, linear approximations

above and below B∗

2 = 0 show this conclusion is reasonable. Bold black lines in Fig. 3(d) confirm the accuracy of this linearized

mean-field expression for polymer free energy confined in a close-packed crystal when B∗

2 is reasonably close to zero.

3.3 Role of the interparticle potential

Although the purely repulsive potential between the monomers and colloids produces µex
tot curves which appear qualitatively

different from those using the Yukawa form in Fig. 3(d), it is more important to understand any qualitative differences in the
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grows which results in widening error bars as M increases.

curves of ∆µex
tot in Fig. 3(c). This is because co-solute biasing of a single polymorph relies on the difference in the total excess

chemical potential of the co-solute between different crystals. Figure 7 compares the results at B∗

2 = 0.00 and 0.50 employing

the attractive Yukawa potential. Clearly at B∗

2 = 0.00, despite some apparent oscillations, the curve does not deviate from zero

in a statistically significant fashion, and thus, we conclude the two crystal polymorphs provide equally stable environments for

an adsorbed polymer. However, as B∗

2 increases, these oscillations give way to a curve which qualitatively resembles that in

Fig. 3(c) for B∗

2 = 1.01. Since the same shape of the ∆µex
tot curve obtained with the purely repulsive potential is recovered with

the attractive Yukawa form for B∗

2 > 0, using B∗

2 to distinguish between the entropically (B∗

2 > 0) and energetically dominated

(B∗

2 < 0) cases is qualitative robust against a specific form of the interparticle potential.

Despite this, quantitative differences do exist as σc, κ−1, and ǫ change which cannot be isomorphically reduced in terms of B∗

2

to relate how changes in one can be precisely compensated by changes to one or more of the others. These differences are easiest

to discuss within the framework of the mean-field theory outlined in the previous section. Figure 8(a) depicts the asymptotic

polymorph-averaged slope of µex
tot as the chain grows for increasing colloid diameter at different B∗

2 and κ−1. Tabulated values

and simulation conditions for this figure can be found in the SI. For a fixed B∗

2 and σc, decreasing κ−1 decreases the range of

the attractive interaction between the colloids and monomers. To maintain a constant B∗

2 , ǫ is concomitantly increased. Together

these changes draw the monomers closer to the surface of the colloids out of the center of the voids. This reduces the amount of

favorable many-body interactions a monomer may have with multiple colloids relative to a system with a larger κ−1, lowering the

magnitude of its overall energy (which since it is attractive, is negative) leading to an increase in 〈µex
i /kBT 〉 = d〈µex

tot/kBT 〉/dM .

For all fixed σc and κ−1, changing ǫ (B∗

2 ) alone produces an approximately linear shift in 〈µex
i 〉 which is consistent with the

linear form of eq. 13. However, the most pronounced feature of Fig. 8(a) is the apparent plateau as σc is increased. The fact that

this plateau occurs regardless of B∗

2 or κ−1 is strong evidence that another factor, identical in all of these cases, is responsible.
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In fact, this common thread is the monomers themselves.

We performed simulations such that σc/σm ≥ 6.45 because otherwise monomers growing on a chain could not escape their

initial void cavity as they would be too large to fit through tangent triplets of colloids forming the crystal. However, if we

nonetheless extrapolate the apparently linear slope to small σc for the case of B∗

2 = 0.00 (black line in Fig. 8(a)) the intercept

occurs at σc = 1/(
√

3/2− 1) ≈ 4.45. At this size, a single monomer can just fit into a TV, and an OV is not quite large enough

to accommodate a dimer. So the crystal can only provide space for a polymer composed of a single monomer unit which, at

B∗

2 = 0.00, should have no net excluded volume with the colloids. This is the reason the excess chemical potential is zero at

this point. As the colloid diameter increases, the crystal can accommodate longer polymers, though under such confinement

their monomers are strongly influenced by packing effects with other monomers since in our model they always remain purely

repulsive with one another. However, as the asymmetry increases, these monomer-level packing effects are alleviated leading

to the observed plateau around σc ≥ 9.50. In previous work these effects led to a similar plateau in ∆µex
tot at approximately

the same asymmetry when B∗

2 = 1.01, further supporting this conclusion.13 This is also consistent with the scaling exponents

recovered in Fig. 5 which suggest a two-dimensional self-avoiding random walk at large M .

The fact that the chemical potentials initially become negative as σc increases beyond roughly 4.45, even though B∗

2 = 0.00, is

a result of spatial correlation as a consequence of monomer bonds. In close-packed crystals, the tangency of colloids implies that,

even if the monomers interact only at contact in a “sticky hard-sphere” fashion, a single monomer can always be placed mutually

tangent to two colloids which are, themselves, tangent. This three-body effect lowers the energy of the system substantially

compared to the case of simple two-body interaction. For systems with a finite range of interaction these three-body interactions

can occur more frequently. Moreover, for chains of a length M ≥ 2 the energetic favorability of locations which benefit from

three-body interactions imply that once a monomer inhabits such a region, there is a disproportionate increase in the likelihood
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that neighboring monomers, which are topologically constrained to the local neighborhood, will also benefit from such effects.

This combination of local spatial correlations enhancing many-body interactions lowers the system’s energy, and thus the polymer

chemical potential, relative to that of a system of unbonded monomers (with no topological correlations). Of course packing

effects at lower σc initially oppose this trend, until they are completely alleviated at higher σc leaving only the consequence of

these many-body thermal interactions behind; hence, the shape of the curves in Fig. 8(a). However, although both κ−1 and σc

have independent consequences on the mean-field free energy of the adsorbed polymer, we find that the corrections to eq. 13

collapse for both these parameters. Figure 8(b) illustrates that as σc increases, the mean-field parameter, a, approaches unity

implying the equation of state (cf. eq. 13) is completely captured with only the first order correction of B∗

2 for all κ−1 and σc.

4 Conclusions

We studied the relative stability of the hexagonal close-packed (HCP) and face-centered cubic (FCC) colloidal crystals in the

presence of linear homopolymers, whose segments interact energetically with the crystal, using Monte Carlo simulations. This

significantly extends prior work that only examined the case of purely athermal monomer-colloid interactions. We find that the

reduced second virial coefficient, B∗

2 , serves as a powerful order parameter separating qualitatively different regimes governed

primarily by entropic or energetic effects, according to the sign of B∗

2 . In all cases, the HCP crystal provides an equal or lower

free energy environment for an adsorbed polymer than its FCC counterpart. In the case where B∗

2 < 0, thermal interactions

outweigh entropic penalties driving the monomers into the smaller TVs. Since the HCP crystal has face-sharing pairs of TVs, a

polymer benefits from being able to distribute itself across multiple voids when the chain becomes very long, whereas in the FCC

crystal these pairs do not exist. In the opposite case when entropy dominates the system, B∗

2 > 0, the face-sharing OVs which

are only present in the HCP, provide a similar effect. In both cases, it is the nature of the HCP polymorph, which arranges similar

voids near each other, that creates a lower free energy environment for an adsorbed polymer than in the FCC crystal. This work

demonstrates that the previously elucidated polymer-mediated control over polymorph stability is extendable from the limiting

case of athermal colloid-monomer interactions to more experimentally realizable scenarios where the polymers and colloids have

a finite range of interaction. The predictions made here are premised on the behavior of a single polymer adsorbed in the crystal

phase, which is a reasonable approximation when the adsorbed polymer is somewhat dilute inside the crystal. However, studying

the effect of concentration inside the crystal phase is an important subject for future investigation. Furthermore, although our

current methodology relies on an equilibrium thermodynamic approach, kinetic and ergodicity factors are also plausible routes

to producing a specific polymorph. This is the subject of ongoing and future work.
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Figure	  1:	  A	  linear	  polymer	  (in	  yellow)	  adsorbed	  in	  the	  voids	  of	  a	  hexagonal	  close-‐packed	  crystal.	  	  Three	  
crystal	  layers,	  ABA,	  are	  depicted	  in	  alternating	  colors	  of	  red	  and	  cyan.	  
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