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Disordered filamentous networks with compliant crosslinks exhibit a low linear elastic shear modulus at small strains, but stiffen

dramatically at high strains. Experiments have shown that the elastic modulus can increase by up to three orders of magnitude

while the networks withstand relatively large stresses without rupturing. Here, we perform an analytical and numerical study

on model networks in three dimensions. Our model consists of a collection of randomly oriented rigid filaments connected by

flexible crosslinks that are modeled as wormlike chains. Due to zero probability of filament intersection in three dimensions,

our model networks are by construction prestressed in terms of initial tension in the crosslinks. We demonstrate how the linear

elastic modulus can be related to the prestress in these network. Under the assumption of affine deformations in the limit of infinite

crosslink density, we show analytically that the nonlinear elastic regime in 1- and 2-dimensional networks is characterized by

power-law scaling of the elastic modulus with the stress. In contrast, 3-dimensional networks show an exponential dependence

of the modulus on stress. Independent of dimensionality, if the crosslink density is finite, we show that the only persistent scaling

exponent is that of the single wormlike chain. We further show that there is no qualitative change in the stiffening behavior

of filamentous networks even if the filaments are bending-compliant. Consequently, unlike suggested in prior work, the model

system studied here cannot provide an explanation for the experimentally observed linear scaling of the modulus with the stress

in filamentous networks.

1 Introduction

The mechanical properties of biological cells are governed

by the cytoskeleton, a viscoelastic composite consisting of

three main types of linear protein polymers: actin, micro-

tubules, and intermediate filaments. These filamentous poly-

mers are crosslinked by various binding proteins and consti-

tute a dynamic complex network that maintains the structural

integrity of the cell with the capacity for dynamic reorganiza-

tion needed for active processes. Many in vitro studies have

focused on reconstituted networks with rigid crosslinks.1–12

In the cytoskeleton, however, many of the crosslinks are them-

selves extended and highly compliant proteins. Such flexible

crosslinks can strongly affect the macroscopic network elas-

ticity.13–21 Indeed, experimental studies show that composite

networks can have a linear modulus as low as ∼ 1Pa, while

being able to stiffen by up to a factor of 1000.11,14

Here we analyze 3-dimensional (3D) composite networks

theoretically, and we offer physical simulations thereof. Our

networks are composed of randomly oriented rigid filaments
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that are connected by highly flexible crosslinks, each of which

is modeled as a wormlike chain (WLC),22,23 which has been

shown to accurately describe flexible crosslinkers, such as fil-

amin.24,25 In our approach we assume that the filaments are

much more rigid than the crosslinks, meaning that the network

elasticity is dominated by the entropic stretching resistance of

the crosslinks.

In our theoretical analysis we adopt the widely employed

assumption of affine deformations.16,19,26 Under this premise,

the network is assumed to deform affinely on the length scale

of the filaments, which in turn is assumed to be much longer

than the contour length of the crosslinks. Using a single fil-

ament description in the limit of a continuous distribution of

crosslinks along the filament, we obtain the asymptotic scaling

behavior of the elastic modulus with the stress in the nonlin-

ear regime. We show that in 1-dimensional (1D) networks,

the elastic modulus scales with the second power of the stress,

whereas it scales with the third power in 2-dimensional (2D)

networks. Remarkably, there is no power law scaling in 3D—

in fact, the elastic modulus of a 3D composite network in-

creases exponentially with the stress. Numerical evaluation of

the affine theory at finite crosslink densities—as opposed to a

continuous distribution of crosslinks—shows that (i) the only

asymptotic scaling is that of the modulus scaling with an ex-
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ponent 3/2 with the stress and that (ii) the dependence on di-

mensionality of the system is limited to an intermediate-stress

regime. These findings are in agreement with our extensive

physical simulations of 3D composite networks. For all cases,

the elastic modulus diverges at a finite strain.

Our theoretical analysis is inspired by the mean-field model

proposed by Broedersz et al.16,26 In sharp contrast to our the-

oretical analysis and to the results of our physical simulations,

however, these authors predict linear scaling of the elastic

modulus with applied stress. In particular, for any finite strain,

the elastic modulus remains finite in their model. While this

linear scaling of the elastic modulus is in accordance with

what has been observed experimentally,13,20,21 we here ar-

gue that this model does not adequately capture the elastic re-

sponse of networks with rigid filaments and permanent (i.e.,

non rupturing or rebinding) crosslinks of finite length.

In Ref.19, the authors ruled out that the experimentally ob-

served approximate linear scaling of the modulus with the

stress might be be due to enthalpic (linear) stretching com-

pliance of the crosslinks or filaments. Here, we complement

their analysis by physical simulations that take into account

bending of filaments. Our results empirically show that the in-

clusion of bending rigidity does not impact the nonlinear stiff-

ening behavior of composite networks either. We therefore

conclude that the theoretical explanation for the linear scaling

of the modulus with stress in experiments remains an chal-

lenging open problem.

By physical simulations, we also study the role of prestress.

We show that in contrast to 1D and 2D networks, 3D networks

experience an initial tension due to non-intersecting filaments

resulting in initially stretched crosslinks, and are therefore pre-

stressed. The modulus in the linear deformation regime is then

governed by this prestress; indeed, it is higher than the mod-

ulus expected from the affine theory. Our simulations addi-

tionally indicate that if the network is allowed to relax initial

tension by unbinding and rebinding of crosslinks, the impact

of prestress on the elastic modulus in the linear regime be-

comes insignificant, although the prestress does not relax all

the way to zero.

The remainder of the article is organized as follows. First,

we present the affine theory of composite networks in Sec-

tion 2. Under the assumption that deformations of the net-

work are affine on the length scale of the filaments, we derive

expressions for the stress and modulus in 1D, 2D, and 3D. We

then present our physical simulation model and describe our

network generation procedure in Section 3. We expand on the

implications of our 3D simulation procedure in Section 4; in

particular, we explain the emergence of prestress. We then

discuss the results of our simulations in the linear deforma-

tion regime in Section 5 and indicate which results from the

affine theory are still valid. Finally, we analyze the simulation

results in the nonlinear regime in Section 6.

2 Theory

In this section we analytically derive the stress and modulus of

a composite network under the assumption of affine deforma-

tions on the length scale of the filaments. We consider a col-

lection of N rigid filaments of length L that are permanently

connected by nN/2 flexible crosslinks of contour length l0,

where n is referred to as the crosslink density, i.e., the num-

ber of crosslinks per filament. The filaments are assumed to

be perfectly rigid, i.e., they neither bend nor stretch, and the

crosslinks are modeled via the WLC interpolation formula23

fcl(u) =
kBT

lp

(

1

4(1− u
l0
)2

−
1

4
+

u

l0

)

, (1)

where kBT is the thermal energy, lp the persistence length and

u ≥ 0 the end-to-end distance of the crosslink. Assuming

l0 ≫ lp this force-extension relation implements a crosslink

rest-length of zero and shows a characteristic stiffening with

divergence of force as u → l0. Equation (1) can be integrated

to yield the energy† (up to a constant)

Ecl(u) =
kBT

lp

(

l0

4(1− u
l0
)
−

l0

4
−

u

4
+

u2

2l0

)

. (2)

Imposing affine deformations on the filament level fully de-

termines the deformation field u on the subfilament level. In

the following analysis, we consider a single representative

filament subject to an extensional strain of the surrounding

medium that it is embedded in and crosslinked to.

2.1 1D network calculation

We start with a one dimensional system, i.e., 1D extensional

strain ε , and advance in dimensionality by converting an ap-

plied shear strain γ to the orientation dependent extensional

strain ε(γ) felt by the filament.

In the rest frame of the filament, the end-to-end distance

of a crosslink at distance x from the center of the filament is

given by |u(x,ε)| = |εx| (see Fig. 1 (a)). For notational con-

venience, we consider positive ε only. Under the assumption

that the crosslink density is high enough that one can consider

the associated distribution as uniformly continuous, the total

energy of a filament in 1D is given by

E1D(ε) = 2
n

L

∫ L/2

0
Ecl(εx)dx . (3)

Substituting Eq. (2) into Eq. (3), this expression can be inte-

grated analytically (see Appendix A.1).

† More precisely, it is a free energy, which includes both, energetic (bending)

and entropic terms for the crosslinks (not for the filaments).
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of the WLC energy.

The numerical results in Fig. 2 have been obtained with-

out the small-strain approximation for the extension of the fil-

aments. However, redistribution of the filament orientations

under shear has not been taken into account in Fig. 2. Calcula-

tions including this effect show that it may both decrease and

increase the maximum intermediate slope in the lnK versus

lnσ plot and shift the peak to larger stress values depending

on the maximum strain γd. In any case, the asymptotic scaling

regime remains unchanged.

In the next section we introduce the simulation framework

that we use to study 3D networks consisting of many fila-

ments and crosslinks, relaxing the assumption of affine de-

formations.

3 Simulation model

We perform quasistatic simulations of 3D networks that con-

sist of N rigid filaments of length L, permanently crosslinked

by a collection of nN/2 crosslinks of length l0. All lengths are

measured in units of the side length of the cubic periodic sim-

ulation box. A typical set of parameters is N = 3000, L = 0.3,

n = 60, l0 = 0.03.

Each filament is modeled as perfectly rigid, implying that

its configuration can be described by its two endpoints only,

which are constraint to stay at distance L. The flexible

crosslinks are modeled as a central force acting between the

two binding sites. In particular, we use the WLC interpola-

tion formula (Eq. (1)) and the corresponding energy (Eq. (2)).

In all data that is presented, forces are measured in units of

(kBT )/lp. There are no additional degrees of freedom in-

troduced through the crosslinks, since their configuration is

represented via the endpoints of the filaments, in terms of

barycentric coordinates.

In order to generate an initial network configuration we pro-

ceed as follows. We generate N randomly distributed fila-

ments by first randomly choosing their centers of mass in our

simulation box and by then picking a random orientation for

each filament. For crosslinking we apply the following iter-

ative procedure. We randomly choose two points on distinct

filaments and insert a crosslink if the corresponding point-to-

point distance is shorter than a certain threshold αl0. Here

α ∈ [0,1) serves as a parameter to vary the initially allowed

crosslink lengths in the system. This procedure is repeated un-

til the desired number of crosslinks is reached; see Fig. 3 for an

illustration of the final configuration. Since we perform qua-

sistatic simulations, the system must be at static equilibrium

at all times. As practically all crosslinks will be stretched be-

yond their rest-length after the initial network generation, we

minimize the energy (of the crosslinks) before subjecting the

Fig. 3 Example of an initially generated network that has not been

relaxed into static equilibrium yet. Rigid filaments are shown in

green, flexible crosslinks in blue. Short crosslink or filament

fragments correspond to filaments/crosslinks that cross the periodic

boundaries of the simulation box. For the sake of visual appearance,

the network is much sparser than the systems that are studied in the

remainder of this article, and the ratio of filament to crosslink length

is much smaller, N = 300, n = 10, L = 0.3, l0 = 0.1, α = 0.9.

simulation box to any deformation.‡ For energy minimization

we use the freely available external library IPOPT,28 which

requires the gradient and the Hessian of the system’s energy

function. It might happen during the optimization process,

that individual crosslinks reach extensions u larger than their

contour length l0. Acceptance of these solutions is prohibited

by setting the energy to infinity (1019) for u ≥ l0 in Eq. (2);

without this modification it would become negative in that

regime. The length constraints for the filaments are realized

via Lagrange multipliers.

In order to extract elastic properties of the network we per-

form quasistatic shearing by applying an affine incremental

shear strain δγ to the network, with subsequent rescaling of

filaments to length L (see Fig. 1). We apply Lees-Edwards

shearing periodic boundary conditions.29 The magnitude of

δγ is determined by calculating the maximum affine shear that

leaves all crosslinks below their contour length. Due to the

rescaling of filament lengths, a nonaffine deformation com-

ponent is introduced. This nonaffinity may lead to crosslinks

being overstretched after all. In this case, we iteratively halve

‡ We do neither take into account fluctuations of the filaments nor excluded-

volume effects.
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A Derivation of scaling relationships for the

shear modulus

A.1 1D network

The integral Eq. (3) for the total energy of a single filament

can be solved to give

E1D(ε) = 2
n

L

[

L3ε2

48l0
−

L2ε

32
−

l0L

8
−

l2
0

4ε
ln

(

1−
εL

2l0

)]

.

(18)

The divergence of the energy for ε → εd = 2l0/L stems from

the term ∼ 1
ε ln
(

1− ε
εd

)

, which is therefore the only one that

we need to consider for the asymptotic scaling analysis in 2D

and 3D.

A.2 3D network

To approximate the solution of the integral in Eq. (12) we first

carry out the φ integration analytically and obtain

〈σ3D〉θ ,φ (γ)∼
∫ π/2

0

arctan
[
√

1+(γ/γd)sin2θ
1−(γ/γd)sin2θ

]

√

1− (γ/γd)2 sin2 2θ
(19)

× sinθ dθ . (20)

The integral diverges for γ = γd due to a pole at θ = π/4. We

can approximately consider tan−1
[
√

1+(γ/γd)sin2θ
1−(γ/γd)sin2θ

]

× sinθ as

a constant because it takes finite values around the pole. Since

we are interested in the regime close to the divergence of the

integrand, we expand sin2 2θ up to second order in ν := θ −
π/4. We arrive at

∫ π/4

−π/4

dν
√

1− (γ/γd)2(1−4ν2)
. (21)

Approximation errors close to the boundary of the interval of

integration that are made by expanding sin2 2θ are negligi-

ble, regarding the asymptotics, because the integrand diverges

right at the center of the interval. Now we define µ := 1−γ/γd

and drop all terms of higher than first order in µ , since we are

interested in the behavior close to γ = γd. With η2 := 4ν2 and

δ := 2µ , we obtain

∫ π/2

−π/2

dη
√

η2(1−δ )+δ
. (22)

This can be integrated, with the diverging part being

∼ ln

(

2

√

η2(1−δ )2 +δ (1−δ )+2(1−δ )η

)∣

∣

∣

∣

π/2

−π/2

,

(23)

∼− lnδ , (24)

∼− ln(1− γ/γd) , (25)

which is what has been proposed in Section 2.3.
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Elasticity of 3D networks with rigid filaments and
compliant crosslinks
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hfeldt, Christoph F. Schmidt and Max Wardetzky

We extract the elastic properties of 3D random net-
works of rigid filaments and compliant crosslinks via
physical simulations and derive asymptotic scaling re-
lations of the elastic modulus with the stress in the
context of an affine theory.
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