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Flow-induced instabilities that lead to non-uniform stationary flow profiles have been observed
in many different soft-matter systems. Two types of instabilities that lead to banded stationary
states have been identified, which are commonly referred to as gradient- and vorticity-banding. The
molecular origin of these instabilities is reasonably well understood. A third type of instability
that has been proposed phenomenologically [Europhys. Lett., 1986, 2, 129 and Phys. Rev. E,
1995, 52, 4009] is largely unexplored. Essential to this ”Shear-gradient Concentration Coupling”
(SCC-) instability is a mass flux that is induced by spatial gradients of the shear rate. A possibly
reason that this instability has essentially been ignored is that the molecular origin of the postulated
mass flux is not clear, and no explicit expressions for the shear-rate and concentration dependence
of the corresponding transport coefficient exist. It is therefore not yet known to what types of
flow velocity- and concentration-profiles this instability gives rise to. In this paper, an expression
for the transport coefficient corresponding to the shear-gradient induced mass flux is derived in
terms of the shear-rate dependent pair-correlation function, and Brownian dynamics simulations for
hard-spheres are presented that specify the shear-rate and concentration dependence of the pair-
correlation function. This allows to explicitly formulate the coupled advection-diffusion equation
and an equation of motion for the suspension flow velocity. The inclusion of a non-local contribution
to the stress turns out to be essential to describe the SCC-banding transition. The coupled equations
of motion are solved numerically, and flow- and concentration-profiles are discussed. It is shown
that the SCC-instability occurs within the glass state at sufficiently small shear rates, leading to a
banded flow-profile where one of the bands is non-flowing.

PACS numbers: 82.70.Dd, 64.70.Pf, 42.30.Va

I. INTRODUCTION

Shear-induced flow instabilities have been observed in
a large variety of soft-matter systems. The most studied
instability is the so-called gradient-banding instability,
where in the stationary state typically two bands ex-
tending along the gradient direction are formed with
different, spatially uniform shear rates. This type of
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instability is observed, for example, in worm-like mi-
cellar systems, entangled polymeric systems, micellar
cubic phases, transient networks, supra-molecular poly-
mer solutions, liquid crystalline polymers, and surfac-
tant solutions (the long list of references to this work
can be found in overview papers in Refs.[1–8]). The
gradient-banding instability is the result of a decreas-
ing stress (of the homogeneously sheared suspension)
with increasing shear rate. Any system that exhibits
the very strong shear-thinning behaviour that is nec-
essary to give rise to such a decrease of the stress will
exhibit gradient banding. One of the earlier theories to
describe this instability assumed the existence of an in-
finitely sharp interface between the bands, across which
stress-boundary conditions were imposed [9, 10]. An
approach in which the presence of interfaces between
bands naturally emerges is to add a so-called stress-
diffusion contribution to the equation of motion for the
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stress tensor [11–17]. The stress-diffusion contribution
stabilizes the suspension against the very fast growth of
arbitrary large gradients in the flow velocity. A some-
what different approach to describe the interface ex-
plicitly is to include a higher-order spatial derivative of
the flow velocity in the standard expansion of the stress
tensor, in order to account for large spatial gradients
[6, 18]. This approach to account for the interface be-
tween shear bands will also be used in the present study.
Gradient-banding kinetics and stress selection are af-
fected by, for example, the dependence of the viscosity
on concentration [29] and orientational order [19, 20],
and the coupling of flow with the composition of binary
mixtures where one of the components only exists un-
der flow conditions [21]. A second relatively well under-
stood instability is the so-called vorticity-banding insta-
bility, which leads to the formation of alternating bands
which are stacked along the vorticity direction. It has
been observed, for example, in systems of multi-lamellar
vesicles, worm-like micelles, dispersions of rod-like col-
loids, nano-tube suspensions, and weakly aggregated
colloidal suspensions (for references see the overview
paper in Ref.[6]). There are several possible scenarios
for the vorticity-banding instability, depending on the
system under consideration. A possible mechanism un-
derlying this instability is that hoop stresses are gener-
ated through the non-linear elastic deformation of the
mesoscopic objects that are present in the dispersion
[22], similar to the Weissenberg effect in polymeric sys-
tems. Instead of the non-linear elastic deformation of
polymer chains, mesoscopic objects are now elastically
deformed, like worm-like micelles, aggregates, or inho-
mogeneities formed during the initial stages of phase
separation. Elastic instabilities have been discussed at
length in Ref.[23]. Other scenario’s for the formation
of vorticity bands is that, after the formation of inter-
faces due to gradient-banding, the interface between the
gradient-bands is unstable, where undulation of the in-
terface subsequently leads to band-formation along the
vorticity direction [24–26], or where the high shear-rate
branch is unstable [27].
The molecular origins of the gradient-banding and

vorticity-banding instabilities are thus quite different:
gradient banding requires severe shear thinning of the
shear viscosity and is thus driven by shear stresses,
while the vorticity-banding instability is either an elas-
tic instability leading to normal stresses, or is due to the
instability of a gradient-banded interface or the high
shear-rate branch. Coupling to concentration affects
the gradient- and vorticity-banding kinetics and sta-
tionary states significantly, leading for example to an
inclined shear-stress plateau and banding under con-
trolled stress conditions [20, 28, 29]. However, concen-
tration coupling is not the cause of these instabilities,
contrary to the instability discussed in the present work.
The instability discussed here is entirely due to concen-
tration coupling, and does not occur without it. There

is a large body of literature concerned with the shear-
flow induced enhancement of concentration fluctuations
(see, for example, Refs.[30–35]), which might have a
connection with the origin of the shear-induced insta-
bility of the sort discussed in the present paper [36].
Contrary to gradient- and vorticity-banding, very lit-

tle attention has been given to this so-called Shear-
gradient Concentration Coupling (SCC-) instability.
This instability has been discussed by Nozieres and
Quemada [37] and Schmitt et al. [38] within a phe-
nomenological approach. An essential ingredient here
is that a mass flux is induced by spatial gradients of
the local shear rate. The origin of the shear-gradient
induced mass flux is postulated in Refs.[37, 38] to be
connected to an unspecified lift force or shear-rate de-
pendent chemical potential, respectively. There are
two subsequent studies on the SCC-instability, based
on a irreversible thermodynamics approach where a
shear-rate dependent chemical potential is again pos-
tulated [39], and a study on polymers, departing from
the well-known Rolie-Poly constitutive model, where a
square-gradient Ansatz for the mixing free energy is
made [40]. All of these previous studies postulate ei-
ther a shear-rate chemical potential or a osmotic pres-
sure, and do not address the microscopic origin of the
SCC-instability. The unexplained microscopic origin
of the SCC-instability is probably the reason that this
type of instability has hardly been pursued. To our
knowledge there is only a single paper in which ex-
periments on colloids are interpreted as being the re-
sult of the SCC-instability [41], where the driving force
for the shear-gradient induced mass flux is formulated
in terms of a shear-rate dependent osmotic pressure.
Such a shear-rate dependent osmotic pressure has in-
deed been observed in experiments [42–44]. Brownian
dynamics simulations on hard-sphere suspensions have
been performed to quantify the shear-rate dependence
of this generalized osmotic pressure [45]. Similar sim-
ulations in Ref.[46] relate to a mono-layer of colloids,
where hydrodynamic interactions are at the origin of
shear-gradient induced mass transport. The mecha-
nism for shear-gradient induced mass fluxes proposed
in Ref.[47, 48] is based on the assumption that the mass
diffusion coefficient is shear-rate dependent, which gives
rise to what is commonly known as ”shear-induced dif-
fusion”. A diffusion equation is proposed that does not
include an explicit contribution to the mass flux from
gradients in the shear rate (see eq.(2.2) and the dis-
cussion in section 3 of Ref.[47])), contrary to the phe-
nomenological approach by Schmitt et al. in Ref.[38].
This shear-induced diffusion leads to significant mass
transport only for very large particles (larger than sev-
eral tens of microns). It is important to note that the
shear-gradient induced mass flux that is relevant for the
SCC-instability is not of a hydrodynamic nature, and is
not related to shear-induced diffusion, but is in essence
due to direct inter-colloidal interactions.
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In the present paper we discuss the microscopic ori-
gin of the shear-gradient induced mass flux due to di-
rect inter-colloidal interactions in section II, which can
be formulated in terms of a shear-rate dependent os-
motic pressure. This leads to expressions for concentra-
tion and shear-rate dependent transport coefficients in
terms of the shear-flow distorted pair-correlation func-
tion. Brownian dynamics simulations for hard-sphere
suspensions are presented in section III, from which ex-
plicit expressions for these transport coefficients are ob-
tained as functions of the concentration and shear-rate.
This in turn allows to formulate the advection-diffusion
equation, which couples to the Navier-Stokes equation,
as discussed in section IV. Stability diagrams are con-
structed in section V on the basis of these equations of
motion. The coupled advection-diffusion equation and
the Navier-Stokes equation are solved numerically for a
Couette geometry in section VI. An essential ingredient
is a non-local contribution to the stress that accounts
for stresses resulting from large gradients in the suspen-
sion flow velocity. This non-local contribution stabilizes
the system against the unphysical arbitrary fast growth
of large wave-vector Fourier components, and renders
numerical algorithms stable. The resulting kinetics and
stationary states are discussed in terms of flow-velocity
profiles and concentration profiles.

II. THE ORIGIN OF THE SHEAR-GRADIENT
CONCENTRATION COUPLING (SCC-)

INSTABILITY

The self-amplifying mechanism that gives rise to the
Shear-gradient Concentration Coupling (SCC-) insta-
bility can be understood intuitively as follows [6, 37,
41, 46, 49]. Consider a Couette cell, where the shear
rate near the outer cylinder is smaller as compared to
the inner cylinder. When a mass flux is induced by
spatial gradients of the shear rate towards regions of
smaller shear rates, mass will be transported towards
the outer cylinder. The increase of concentration near
the outer cylinder leads to an increase of the local stress.
The response of the system is to decrease the stress
by lowering the local shear rate. This amplifies spatial
gradients of the shear rate, and leads to an enhanced
mass flux towards the outer cylinder. The enhanced
mass flux in turn gives rise to an even larger concentra-
tion, resulting in an even lower local shear rate. This is
the self-amplifying mechanism that underlies the SCC-
instability. A stationary state is reached once the dif-
fusive mass flux due to existing concentration gradients
cancels with the shear-gradient induced mass flux.
The SCC-instability may also occur in geometries

where there are no deterministic, inherent gradients in
the shear rate, like for a flat geometry. A fluctuation in
the local flow velocity can also induce a mass flux that
initiates the SCC self-amplifying mechanism. Such fluc-

tuations should be sufficiently long-lived in order that
the necessary mass flux can develop to an extent that
it becomes self-amplifying.
The SCC-instability has not been further analyzed af-

ter the original publications by Nozieres and Quemada
[37] and by Schmitt [38], which is probably due to the
ad-hoc introduction of a lift force and a shear-rate de-
pendent chemical potential, respectively, of which the
origin is uncertain. The aim of this section is to eluci-
date the origin of the shear-rate dependence of the rele-
vant transport coefficients. A microscopic derivation of
the mass flux from first principles will be discussed, and
the origin of the shear-gradient contribution to the mass
flux will be unambiguously identified. As will turn out,
mass fluxes must be formulated in terms of a generalized
osmotic pressure, as has been assumed in the analysis
in Ref.[41]. This allows for the microscopic modeling
of the advection-diffusion equation, including the mass
flux induced by spatial gradients of the shear rate.
The driving force for mass transport induced by

shear-gradients considered here is not to be confused
with the phenomenon described in Refs.[47, 48]), where
the mass flux is entirely described in terms of the shear-
rate dependence of the Fickian diffusion coefficient.
Here, no explicit shear-gradient contribution appears in
the diffusion equation which is necessary for the SCC-
instability. Mass transport for such ”shear-induced dif-
fusion processes” is only significant for large particles,
and does not play a role in the SCC-instability as found
in Ref.[41].
The general form of the diffusion-advection equation

for the number density ρ of colloids, which undergoes a
flow u, reads (with the neglect of hydrodynamic inter-
actions between the colloidal particles),

∂ρ

∂t
+∇ · [ ρu ] = D0 ∇2ρ− β D0∇ ·B , (1)

where D0 = kBT/ξ0 is the free single-particle diffusion
coefficient, with ξ0 the friction coefficient, while inter-
actions between colloidal particles are accounted for by
the body force B. The diffusion equation (1) complies
with a continuity equation with a mass flux j = ρv,
where the thermally averaged velocity v of a colloidal
particle is equal to,

v = u+
1

ξ0

[
−kBT ∇ ln ρ+

B

ρ

]
. (2)

This expresses force balance on the diffusive time scale,
where the friction force − ξ0 v balances with the Brow-
nian force (the first term between the square brackets)
and the body force B which is due to colloid-colloid
interactions. The body force that is due to direct inter-
colloidal interactions is equal to,

B(r, t) = − <

N∑
i=1

[∇iΦ] δ(r− ri) > , (3)
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with Φ the potential energy of an assembly of N col-
loidal particles, and where δ is the delta-distribution,
with ri the position coordinate of colloid i.
The above general form of the diffusion equation is

also given in Ref.[50], where the body force is referred to
as ”the particle contribution to the stress”. The body
force that includes forces on the colloidal particles and
the solvent molecules is the body force that appears in
the Navier-Stokes equation, and thus relates to the total
stress.
We will now show how the expression (3) for the body

force gives rise to a contribution in the mass flux that
is proportional to ∇γ̇, where γ̇ is the local shear rate.
First of all, the ensemble average in eq.(3) is written
in terms of an integral with respect to the probability
density function PN of the position coordinates of N
spherical colloids,

B(r, t) = −N

∫
dr1 · · ·

∫
drN PN ∇1Φ δ(r− r1) .

For a potential Φ that is a pair-wise additive sum of
pair-interaction potentials V , it is readily found that,

B(r, t) = −N(N−1)

∫
dr2 P2(r, r2, t)∇V (|r− r2 |) ,

where,

P2(r1, r2, t) =

∫
dr3 · · ·

∫
drN PN (r1, r2, r3, · · ·, rN , t) .

Introducing the pair-correlation function g,

P2(r, r2, t) =
1

N(N−1)
ρ(r, t) ρ(r2, t) g(r, r2, t, [ρ, γ̇]) ,

where the notation [ρ, γ̇] is used to indicate functional
dependence of the pair-correlation function on the den-
sity and shear rate (for the inhomogeneous systems un-
der consideration), the body force on the colloidal par-
ticles can be written as,

B(r, t) = (4)

− ρ(r, t)

∫
dr2 ρ(r2, t) g(r, r2, t, [ρ, γ̇])∇V (|r−r2 |) .

Since the potential restricts the integration range to
distances | r − r2 | less than the range RV of the
pair-interaction potential, only the short-ranged shear-
induced distortion of the pair-correlation need be con-
sidered. For these small distances the shear-flow dis-
tortion of the pair-correlation function is to a good ap-
proximation affine, so that,

g(r, r2, t, [ρ, γ̇]) = geq(r, r2, [ρ, γ̇]) + g0(r, r2, t, [ρ, γ̇])

+
r−r2

|r−r2 | · Ê · r−r2

|r−r2 | g1(r, r2, t, [ρ, γ̇]) , (5)

where geq is the equilibrium pair-correlation function
in the absence of shear flow, g0 is the isotropic shear-
induced distortion, and g1 characterizes the anisotropic
affine distortion of the pair-correlation function. Fur-
thermore, Ê is the symmetric part of the velocity-
gradient tensor divided by the local shear rate. As
the expression (5) for the pair-correlation function as-
sumes an affine distortion, this expression is accurate
only when the Peclet number corresponding to the ra-
dius of the colloidal spheres is not larger than order
unity. For a simple shear flow in the x-direction and
with y the gradient direction, this tensor is equal to,

Ê =
1

2

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ .

The shear rate and colloid density vary only little over
distances less than RV , so that the density appearing in
the integral (4) for the body force, ρ(r2, t) can be Taylor
expanded around r to leading order in gradients,

ρ(r2, t) = ρ(r, t) + ( r2 − r ) · ∇ρ(r, t) . (6)

For the same reason, the various contributions to the
pair-correlation function in eq.(5) are approximately
equal to those in a homogeneous system, with the den-
sity and shear rate taken in between the positions r and
r2. For example,

g0(r, r2, t, [ρ, γ̇]) = ḡ0(|r − r2 |, ρ̄, ¯̇γ) ,
with ρ̄ = ρ ( 1

2
(r+ r2), t) ,

and ¯̇γ = γ̇( 1

2
(r+ r2), t) ,

and similar for geq and g1. Here, the overbar on ḡ0
is used to indicate that this is the correlation func-
tion of a homogeneous system with density ρ̄ and shear
rate ¯̇γ. Since the temporal evolution of the long wave
length density and shear rate variations are much slower
that the relaxation time of the pair-correlation func-
tion for distances less than RV , the pair-correlation
function adjusts itself essentially instantaneously to its
local stationary form. The time dependence of the
pair-correlation function is therefore entirely due to the
time dependence of the local density and shear rate.
Within a leading order gradient expansion, we thus ob-
tain (R = r2 − r),

g0(|r − r2 |, t, [ρ, γ̇]) = ḡ0(R |ρ, γ̇) (7)

+
1

2

∂ḡ0(R |ρ, γ̇)
∂ρ

R · ∇ρ+
1

2

∂ḡ0(R |ρ, γ̇)
∂γ̇

R · ∇γ̇ ,

and similar for geq (for which the shear-rate dependence
is of course absent) and g1. Here, ρ and γ̇ are now
understood to denote the local density and shear rate
(omitting the now superfluous overbar notation). Sub-
stitution of eqs.(6,7) into eq.(4) for B, and performing
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the angular integrations gives,

B(r, t) = −
[
∂P0(ρ, γ̇)

∂ρ
− kBT

]
∇ρ− ∂P0(ρ, γ̇)

∂γ̇
∇γ̇

−∂P1(ρ, γ̇)

∂ρ
Ê · ∇ρ− ∂P1(ρ, γ̇)

∂γ̇
Ê · ∇γ̇ , (8)

up to leading order in spatial gradients, where,

P0(ρ, γ̇) = ρ kBT (9)

−2 π

3
ρ2
∫ ∞

0

dR R3
dV (R)

dR
[ geq(R |ρ) + ḡ0(R |ρ, γ̇) ] ,

and,

P1(ρ, γ̇) = −4 π

15
ρ2
∫ ∞

0

dR R3
dV (R)

dR
ḡ1(R |ρ, γ̇) .

Equation (8) can also be written as,

B(r, t) = −∇ [P0(ρ, γ̇)− ρ kBT ]− Ê · ∇P1(ρ, γ̇) , (10)

where the gradient operators act on the spatial depen-
dence of the colloid density and shear rate. The only
component of the body force of interest here is the com-
ponent acting along the gradient direction, which is the
contribution −∇ [P0 − ρ kB T ]. According to eqs.(2,8)
(with j = ρv), the mass flux in the gradient direction
is thus equal to,

j = ρu−βD0∇P0(ρ, γ̇)

= ρu−βD0

[
∂P0(ρ, γ̇)

∂ρ
∇ρ+

∂P0(ρ, γ̇)

∂γ̇
∇γ̇

]
. (11)

The interpretation of the above result for the mass
flux is as follows. From equilibrium statistical mechan-
ics, a well-known expression for the equilibrium pressure
in terms of the pair-correlation function geq reads [51],

P eq(ρ) = ρ kBT − 2 π

3
ρ2
∫ ∞

0

dR R3
dV (R)

dR
geq(R |ρ) .

Since the correlation function relates to inter-colloidal
interactions, this pressure is in fact the osmotic pres-
sure [52]. This expression for the osmotic pressure is
precisely the expression that we found for P0 in eq.(9),
except that the equilibrium pair-correlation function is
now the shear-distorted pair-correlation function. This
is why we shall refer to P0 as a ”generalized osmotic
pressure”. In this sense, just like for inhomogeneous
unsheared systems, the mass flux is proportional to the
spatial gradient of the osmotic pressure. The shear-rate
dependence of this generalized osmotic pressure gives
rise to the shear-gradient contribution to the mass flux.
It should be noted that this generalized osmotic pres-
sure is different from the pressure that appears in the
Navier-Stokes equation. The pressure in the Navier-
Stokes equation relates to the body force that includes

forces on both the colloids and the solvent molecules.
The body force that appears in the advection-diffusion
equation is the force that results from forces on the
colloids only (see also the discussion in section III just
below eq.(18)).
In the following we consider suspensions of hard

spheres, for which the pair-interaction potential is ei-
ther zero, when the cores do not overlap, or is infinite,
when cores overlap. For such hard-core interactions the
integral in eq.(9) for the generalized osmotic pressure
can be evaluated in terms of the contact value of the
pair-correlation function, that is, the value where the
distance between two colloids is equal to 2a, with a the
radius of the cores. To this end the so-called cavity func-
tion y = g exp{+β V } is introduced (with β = 1/kBT ).
This function is continuous at contact, and has the
same contact value as the pair-correlation function [51].
Since exp{−βV }dV/dR = −kBTd exp{−βV }/dR =
−kBTδ(R − 2a), with δ the delta-distribution, it fol-
lows from eq.(9) that,

P0(ρ, γ̇) = ρ kBT +
2 π

3
(2a)3 ρ2 kBT gciso(ρ, γ̇) , (12)

where we abbreviated (the superscript ”c ” stands for
”contact value”),

gciso(ρ, γ̇) = geq(R = 2a |ρ) + ḡ0(R = 2a |ρ, γ̇) .
The body force along the gradient direction is, accord-
ing to eqs.(10,12), therefore equal to,

B(r, t) =
2 π

3
(2a)3 kBT

∂
{
ρ2 gciso(ρ, γ̇)

}
∂ρ

∇ρ

+
2 π

3
(2a)3 kBT ρ2

∂gciso(ρ, γ̇)

∂γ̇
∇γ̇ .

The mass flux in eq.(11) can now be most conveniently
written as,

j = ρu−Deff ∇ρ− ξ∇γ̇ , (13)

where the effective diffusion coefficient is equal to,

Deff (ρ, γ̇) = D0

[
1+

2 π

3
(2a)3

∂
{
ρ2 gciso(ρ, γ̇)

}
∂ρ

]
, (14)

and the shear-gradient coefficient is equal to,

ξ(ρ, γ̇) = D0

2 π

3
(2a)3 ρ2

∂gciso(ρ, γ̇)

∂γ̇
. (15)

The explicit density and shear-rate dependence of these
transport coefficients will be obtained by means of
Brownian dynamics simulations, from which the con-
tact values of the pair-correlation function are obtained,
which then allows to analyze the transient kinetics and
stationary states resulting from the SCC-instability.
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III. BROWNIAN DYNAMICS SIMULATIONS

In this section, Brownian dynamics (BD-) simulations
are presented, in order to determine the concentration
and shear-rate dependence of the contact value of the
pair-correlation function under shear flow conditions.
The simulation results will be used to establish the ex-
plicit concentration and shear-rate dependence of the
effective diffusion coefficient (14) and the shear-gradient
coefficient (15).
The governing equation for BD-simulations is the

overdamped Langevin equation,

0 = FH
i + FP

i + FB
i ,

where FH
i , FP

i and FB
i are the hydrodynamic force,

the inter-particle force, and the Brownian force exerted
on the ith particle, respectively. On the diffusive time
scale under consideration, inertial forces can be ignored.
With the neglect of hydrodynamic interactions between
the colloids, the hydrodynamic force is equal to,

FH
i = ξ0 (vi − ui ) ,

where ξ0 = 6πη0 a is the single-particle friction coef-
ficient (with η0 the shear viscosity of the solvent, and
a the radius of the spheres), vi is the velocity of the
sphere, and ui the externally imposed solvent veloc-
ity at the position of the sphere. For the inter-particle
force FP

i , we employ the overlap-preventing potential
free method [45, 53]. Here, after a move of the par-
ticles leading to core-overlap, they are forced to move
back to a position where there is contact between the
surfaces. The corresponding displacement is equal to
(with rij the vector connecting the two centers of the
overlapping spheres),

Δr
overlap
i =

1

2

rij

rij
(rij − 2a) , rij < 2a .

The Brownian force FB
i is generated as a random num-

ber, with zero average and variance complying to the
equipartition of kinetic energy,

< FB
i > = 0 ,

< FB
i (t)F

B
i (t

′) > = 2 ξ0 kBT Î δ(t− t′) ,

where Î is the identity tensor.
Introducing dimensionless variables by rescaling

length with the radius a, energy with kBT , and time
with a2/D0 (the time required for a particle to diffuse
over a distance equal to it’s own radius), the dimen-
sionless displacement of the position of particle i is (the
overtildes are used to indicate dimensionless variables),

dr̃i =
[
ṽ∞
i + F̃

p
i

]
dt̃+

√
2 dW̃i , (16)

where,

F̃
p
i = Δr̃

overlap
i /dt̃ ,

and where dW̃i is the random dimensionless displace-
ment due to the Brownian force, such that,

< dW̃i > = 0 ,

< dW̃i(t) dW̃i(t
′) > = Î δ(t− t′) dt .

Furthermore, the dimensionless imposed solvent veloc-

ity ṽ∞
i = Γ̃ · r̃i, where the dimensionless velocity gradi-

ent tensor Γ̃ has only one non-zero component, the xy
element, which is equal to the Peclet number,

Pe = ˜̇γ = γ̇ a2/D0 .

Time integration of eq.(16) extends over the interval

t̃ = 0 − 100 with time-steps of dt̃ = 10−4, for shear

rates in the range ˜̇γ = 0.01 − 10 and for volume frac-
tions ranging from 0.25 to 0.55. In this concentration
and shear-rate range there is no SCC-instability, and
crystallization is not observed (probably because nucle-
ation requires larger systems and/or it is too slow on the
time scale during which the simulations are performed).
We used a box containing N = 3375 particles with peri-
odic boundary conditions. We verified that this number
of particles is sufficiently large, by repeating simulations
with 1000 particles, leading to results that are the same
to within 2%.
After the steady state is reached, the pair-correlation

function g(r) is calculated from,

g(r) =
1

ρ̄ 2

〈
N∑
i=1

N∑
j=1

j �=i

δ(r− rij)

〉
,

where ρ̄ is average number density of particles, and the
brackets denote time-averaging. An accurate descrip-
tion of the contact value of the pair-correlation function
for hard spheres without shear flow up to concentra-
tions of about 45% is given by the so-called Carnahan-
Starling equation [54],

geq, c(φ) =
2− φ

2(1− φ)3
, (17)

where,

φ =
4π

3
a3 ρ ,

is the dimensionless concentration: the volume frac-
tion of colloidal spheres. A comparison of our BD-
equilibrium simulation results with the Carnahan-
Starling equation is shown in Fig.1. There is a rea-
sonable agreement, with small deviations at very high
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FIG. 1: A comparison between the simulated contact values
of the equilibrium pair-correlation function (the data points)
and the Carnahan-Starling equation (17) (the solid line).

FIG. 2: The difference Δg between the angular aver-
aged pair-correlation function and the equilibrium pair-
correlation function as a function of the inter-particle sepa-
ration in units of the particle radius a. The inset shows the
equilibrium pair-correlation function. The volume fraction
is 55%.

volume fractions above 45%, similar to what is found
in Ref.[45]. This slight overestimation is attributed in
Ref.[45] to the effective softness that is introduced in
the simulations through unresolved particle overlaps.
Of interest for the calculation of the transport coeffi-

cients in eqs.(14,15) is the contact value of the isotropic
part of the pair-correlation function, which according to
eq.(5), is equal to the angular-averaged pair-correlation
function at the core surface,

giso(R) = geq(R |ρ) + ḡ0(R |ρ, γ̇) =
1

4 π

∮
dr̂ g(r) ,

where the integral ranges over the directions of r. Ex-
amples of the isotropic part of shear-distorted pair-
correlation function are plotted as a function of the
inter-particle separation for two shear rates in Fig.2.
An example of the effect of shear flow on the pair-

FIG. 3: (a) The pair correlation function for a volume
fraction of 45% in equilibrium, without shear flow. The
colour code indicates the value of the pair-correlation func-
tion (blue is a low value, red a high value). (b) Same as in
(a), but now for a shear rate corresponding to a Peclet num-

ber equal to ˜̇γ = 0.5. The arrows indicate the compressional
and extensional directions. (c) The difference between the
pair-correlation functions under shear in (b) and without
shear in (a). The blue colour code now corresponds to a
negative value, red to a positive value.

correlation function is shown in Fig.3, for a volume
fraction of 45%. In Fig.3a the pair-correlation func-
tion without shear flow is shown, where the colour code
measures the value of the correlation function (blue is
a low value, red a high value). The dotted circle in-
dicates the location of the core-surface. In Fig.3b the
pair-correlation in shear flow is plotted, and in Fig.3c
the difference between pair-correlation function under
flow and its equilibrium value is shown. There is a pro-
nounced increase of the pair-correlation function along
the compressional direction, and a clear decrease along
the extensional axis, as expected. We note that the
shear-induced stripes and peaks exhibit by the pair-
correlation function as found in Ref.[45] only occurs at
Peclet numbers larger than about 10. Here, the analy-
sis is restricted to Peclet numbers less than 1, for which
the same oval structure for the pair-correlation function
as seen in Fig.3 is also found in Ref.[45]. The difference
Δgiso between the angular averaged pair-correlation
function and the equilibrium pair-correlation function
is given in Fig.2 as a function of the inter-particle sep-
aration, for two Peclet numbers. As can be seen, the
contact value is a strong function of the shear rate.
Concentration and shear-rate dependent contact val-

ues of the isotropic part of the pair-correlation function
are shown in Fig.4a, where the data points are BD-
simulation results for various volume fractions. As can
be seen from Fig.4b, the shear-distorted part Δgciso =
gciso − geq,c of the isotropic contact value of the pair-

correlation function varies like ∼ ˜̇γm
for each volume

fraction. The volume fraction dependence ofm is shown
in Fig.4c, where the solid line corresponds to,

m = 0.43 + 5.26φ− 8.80φ2 . (18)

Note that, according to eqs.(12,19,20), the osmotic pres-

sure varies like ∼ ˜̇γm
, where the Peclet number is to be

Page 7 of 18 Soft Matter



8

0.01 0.1 1
0

2

4

6

8

10

12

14

(a)iso
g

Pe

c

0.01 0.1 1

0.1

1

10

����

����

����

(b)�g
c

Pe

iso

������

0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

m

�

glass

(c)

0,2 0,4 0,6
0,1

1

0.1

0.5

Pe=1

1-�/�
m

5

(d)
H

FIG. 4: (a) The contact value gciso of the isotropic part of the pair-correlation function as a function of the Peclet number for
various volume fractions. The data points are BD-simulation results for φ = 0.25 (the lower set of data points) up to 0.55
(the upper set of data points), increasing in steps of 0.05. (b) The difference Δgciso between the isotropic contact values of
the pair-correlation function of the sheared and unsheared equilibrium system as a function of the Peclet number for various
volume fractions. The slope of the straight lines in this double-logarithmic plot is equal to the exponent m in eq.(19). (c)
The exponent m as a function of the volume fraction. The solid curve is the second order polynomial in eq.(18). (d) The

quantity H ≡ Δgciso/˜̇γ
m

as a function of 1 − φ/φm on a double-logarithmic scale. The slope of the straight line is equal to
the exponent −s in eq.(19). Some of the data points fall right on top of each other, so that they are not visible in this plot.

interpreted as its absolute value, since reversal of the
shear rate does not change the osmotic pressure. An
approximate linear dependence of the shear-induced os-
motic pressure on the applied shear rate is found exper-
imentally in Ref.[44] for volume fractions ranging from
0.30 to 0.50 (see in particular their Fig.3). The expo-
nent m is indeed found in Fig.4c to be close to unity
within this range of volume fractions. As hydrody-
namic interactions are neglected in our BD-simulations,
it thus seems that the functional shear-rate dependence
is not too much affected by such hydrodynamic inter-
colloidal interactions. It should be mentioned, however,
that the Peclet numbers in Ref.[44] is extremely high,
so that the agreement between our results and those
experiments may be fortuitous. A linear dependence
of the osmotic pressure on the shear rate for concen-
trations below φg has also been proposed in Ref.[46]
(see, for example, their eq.(39)). Brownian dynamics
simulations have been performed in Ref.[45], likewise
with the neglect of hydrodynamic interactions, where it
is found that the pressure as obtained from the trace
of the stress tensor corresponds to m ≈ 1.7 for a vol-
ume fraction of 0.45 and for Peclet numbers ranging
from 0.1 to 1 (see their Fig.17). As the body force in
the advection-diffusion equation accounts for forces on
the colloidal particles only, while the pressure obtained
from the trace of the stress tensor includes in addition
the forces on the solvent, the osmotic pressure discussed

in the present paper is different from that in Ref.[45].
Gradients in the osmotic pressure as considered here
lead to diffusive mass transport, while the pressure ap-
pearing in the Navier-Stokes equation in Ref.[45] leads
to convective transport. This is the reason why a differ-
ent exponent of 1.7 is reported in Ref.[45] as compared
to our results.

As a glass is a ”frozen-in liquid”, microstructural or-
der in the quiescent glass state is very similar to that
in a fluid. This is most probably the reason why molec-
ular dynamics simulations on hard-sphere systems find
that the contact value of the pair-correlation function
(without shear flow) changes smoothly from the fluid,
to the meta-stable fluid region, to the glass state, on in-
creasing the concentration [55]. This also underlies the
assumption in mode coupling theory that extrapolated
structurefactors from fluids to concentrations within
the glass state can be used to assess glassy dynamics.
As yet, however, there are no rigorous arguments for
smooth variations of structural variables from (meta-
stable) fluids into the glassy state, not for unsheared
and not for sheared systems. We assume here that the
same smooth variations as seen in simulations and often
assumed for unsheared systems also holds for sheared
systems. As long as no crystallization occurs, the flow-
ing branch of a glass most probably behaves very much
like a concentrated flowing fluid. The concentration de-
pendence of m within the fluid state is thus smoothly
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extrapolated into the glass state as shown in Fig.4c.

In Fig.4d the quantity H ≡ Δgciso/˜̇γm
is seen to vary

like ∼ (1−φ/φm)−s, where φm = 0.64 is the maximum
random close packing volume fraction of spheres, and
with,

s = 2.525 ,

independent of the shear rate. Furthermore, H is found
to be independent of the shear rate. These results imply
that,

gciso(φ, ˜̇γ) = geq, c(φ) +A ˜̇γm
(
1− φ

φm

)−s

, (19)

is an accurate representation of the contact value of
the isotropic part of the pair-correlation function. The
value of the amplitude A is found to be equal to,

A = 0.0140 .

The solid lines in Fig.4a correspond to the represen-
tation (19), which is indeed seen to describe the BD-
simulation data perfectly.
The expression (19) for the pair-correlation function

specify the shear-rate and volume fraction dependencies
of the transport coefficients in eqs.(14,15), which will be
solved numerically for a Couette geometry in section VI.

IV. EQUATIONS OF MOTION

Brownian dynamics simulations can not be used to
analyze the SCC-instability, since unrealistically large
systems must be simulated to achieve this. Instead,
equations of motion must be formulated which are then
solved numerically. In this section we will formulate
the two necessary equations of motion. In subsection
IVA we will state the advection-diffusion equation as
obtained from the considerations in the previous sec-
tions, and in subsection IVB the equation of motion
for the flow velocity is discussed.

A. The advection-diffusion equation

The advection-diffusion equation as derived in sec-
tion II does not assume equilibrium, and is therefore
also applicable within the glass state. In addition, since
microstructural order in the glass is very similar to
that in the fluid, the contact value (19) for the pair-
correlation function is expected to be reasonable also
within the glass. The advection-diffusion equation, ap-
plicable to fluids and glasses, thus follows immediately
from eqs.(13,14,15),

∂ρ

∂t
+∇ · [ ρu ] = ∇ · [Deff ∇ρ ] +∇ · [ ξ∇γ̇ ] , (20)

where u is the suspension flow velocity, the effective
diffusion coefficient in terms of dimensionless variables
is equal to,

Deff (φ, ˜̇γ) = D0

[
1 + 4

∂

∂φ

{
φ2 gciso(φ, ˜̇γ)}] ,

and the shear-gradient coefficient is equal to,

ξ(φ, ˜̇γ) = 18 η0
D0

kBT
φ2

∂gciso(φ, ˜̇γ)
∂˜̇γ .

The concentration and shear-rate dependence of the
contact value gciso of the isotropic part of the pair-
correlation function is specified by eq.(19), as obtained
from the BD-simulations.
As mentioned before, the shear-rate induced mass

flux as described in Ref.[47] is entirely assumed to be
due to the shear-rate dependence of Deff in eq.(20)
[48]. This so-called shear-induced diffusion leads to
significant mass transport only for very large particles,
larger than several tens of microns. There is no SCC-
instability without the explicit contribution from shear-
gradient induced mass transport.
Our equation of motion (20) is coupled to the equa-

tion of motion for the suspension flow velocity u, which
is discussed in the next subsection.

B. The equation of motion for the suspension
flow velocity

Although the rheological properties of concentrated
hard-sphere suspensions could in principle be obtained
from similar Brownian Dynamics simulations as dis-
cussed in section III, there is an abundance of literature
on simulations and rheological experiments of hard-
sphere systems available to be able to construct a reli-
able Navier-Stokes equation. We chose to use this ex-
isting information to construct the Navier-Stokes equa-
tion, rather than to perform a separate Brownian Dy-
namics study, which would merely reproduce existing
knowledge.
The inertial contribution to the Navier-Stokes equa-

tions can be neglected for the low Reynolds numbers
typical for colloidal systems. Furthermore, the re-
laxation of the fluid velocity is very fast in compar-
ison to the temporal evolution of the colloid concen-
tration, which can be seen as follows. The time τsw
that a shear wave needs traverse a distance l is equal
to ρm l2/η (with ρm the specific mass density of the
suspension). A lower bound for the time needed for
the colloid concentration to change over a length scale
l is the time τdiff = l2/Deff needed for a colloidal
sphere to diffuse over that distance. When the ratio
τdiff/τsw = η/(ρm Deff ) is large, the flow velocity is
enslaved by colloid concentration. Substitution of typi-
cal numbers (shear viscosity 10−2Ns/m2, mass density
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103 kg/m3, and diffusion coefficient 10−11m2/s) shows
that this ratio is of the order 106. This validates the
assumption that flow is enslaved by concentration, so
that the explicit time derivative in the Navier-Stokes
equation can be neglected. The Navier-Stokes equation
therefore reduces to,

0 = ∇ ·Σ , (21)

where Σ is stress tensor. The standard expression for
the stress tensor is Σ = Σyield+η

[∇u+ (∇u)T
]
(”T ”

stands for ”transposition”), where Σyield is the yield-
stress tensor, which is zero below the glass-transition
volume fraction φg = 0.58, and where η is the shear-
viscosity. Spatial variations in the pressure are absent
for the flow profiles under consideration here, which are
therefore omitted. This expression for the stress tensor
is the result of a leading order expansion with respect
to gradients in the flow velocity u. In banded profiles,
however, gradients may be large, so that the next higher
order term in such a gradient expansion must be in-
cluded. This non-local contribution to the stress turns
out to be essential to be able to describe the forma-
tion of banded flow profiles, as it stabilizes the system
against the arbitrary fast growth of large gradients in
the flow velocity (this is shown in the linear stability
analysis in section V). This holds for gradient-banding
as well as for the SCC-instability. The total stress ten-
sor is therefore equal to [18],

Σ = Σyield +
(
η − κ∇2

) [∇u+ (∇u)T
]
, (22)

where κ > 0 is referred to as the shear-curvature vis-
cosity. Both η and κ are functions of the concentration
and shear rate, which is essentially different below and
above the glass concentration.
What has been neglected in the constitutive relation

in eq.(22) are normal stresses. As we restrict ourselves
to laminar flow within symmetric geometries like a Cou-
ette cell or parallel plates, and spatial gradients of the
shear rate are essential for the SCC instability, we ne-
glect these normal stresses. For flows in more complex
geometries, where normal stresses affect the direction
of flow velocities, and thereby spatial gradients in the
shear rate, a more realistic constitutive relation should
be employed that includes normal stresses.
For volume fractions φ < φg there is a Newtonian

plateau up to Peclet numbers of approximately 0.1 to 1
up to volume fraction close to φg [45, 56–61], in agree-
ment with the simulation data in Fig.4a. For values
of Peclet numbers smaller than unity that are of in-
terest here, within the Newtonian plateau, the viscos-
ity in eq.(22) is thus approximated by the zero-shear
viscosity. There are several propositions that describe
the concentration dependence for the viscosity of hard-
sphere suspensions quite accurately, like an exponential
dependence on concentration [62] and through general-
ized Stokes-Einstein relations [63, 64]). Here we use the

well-known Krieger-Dougherty relation [65],

η(φ, ˜̇γ) = η0 (1− Φ)
−q

, φ < φg ,

for the concentration dependence of the zero-shear vis-
cosity, where η0 is solvent viscosity, and where the no-
tation,

Φ = φ/φm .

is adopted from Ref.[41] as a dimensionless concentra-
tion. The experimental values of q that are reported
vary from 2.5 × φm = 1.6 [57] to 2 [58], up to concen-
trations of about 0.59. A theory for barrier formation
and particle hopping predicts an exponent of 9.1 in the
concentration range of 0.505−0.605 [66]. We adopt here
the value,

q = 2 ,

which describes experimental data on hard-sphere silica
dispersions quite accurately. The shear-curvature vis-
cosity diverges similarly as the viscosity at the volume
fraction φm, while the range of shear rates where shear
thinning occurs is similar for both [18]. We will there-
fore assume the same concentration dependence for the
shear-curvature viscosity as for the shear viscosity,

κ(φ, ˜̇γ) = κ0 (1− Φ)
−q

, φ < φg.

where κ0 is a constant.
Contrary to fluid suspensions, there is no Newtonian

plateau in hard-sphere glasses. Shear thinning immedi-
ately sets in when flow is induced by applying a stress
just above the yield stress, which is reasonably well de-
scribed by a Herschel-Bulkley form of the stress, which

predicts that the viscosity in eq.(22) varies like ∼ ˜̇γ −1/2

[41, 67, 68]. We therefore adopt the same Herschel-
Bulkley form as used in Ref.[41] (see their eq.(4) with
p = 3, n = 0.5, and A = 15),

η(φ, ˜̇γ) = 15
a2

D0

Σyield(Φ) (1− Φ)1/2 ˜̇γ −1/2
, φ > φg .

The concentration dependence of the yield stress of
hard-sphere glasses is ∼ (1− Φ)

−p
, where p is reported

to vary between 1 and 3, while the prefactor is equal to
kBT/(100a

3) [41, 69]. We will use the same expression
for the yield stress as in Ref.[41],

Σyield =
kBT

100 a3
(1− Φ)

−p
, (23)

which is understood to act along the flow direction. The
exponent is equal to,

p = 3 .
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The shear-curvature viscosity has again a similar shear-
rate and concentration dependence as the shear viscos-
ity,

κ(φ, ˜̇γ) = 15
a2

D0

κ0

η0
Σyield(Φ) (1− Φ)

1/2 ˜̇γ −1/2
, φ > φg .

Note that the apparent divergence of the viscosity at
zero shear rate is of no concern as only the stress enters
the Navier-Stokes equation, which is well-behaved at

zero shear rates (and varies like ∼ ˜̇γ1/2
).

V. LINEAR STABILITY ANALYSIS AND THE
STABILITY DIAGRAM

The linear stability analysis given in previous work
on the SCC-instability of colloids could only be done
for zero wave vectors, since the non-local contribution,
as quantified by the shear-curvature viscosity, has not
been included before. Without this contribution, the
growth rate of variations/fluctuations of the flow veloc-
ity indefinitely increases with increasing wave vectors,
which is unphysical. The non-local contribution renders
variations/fluctuations of sufficiently large wave vectors
stable, which is required to derive a physically meaning-
ful dispersion relation.
Consider a flow in the x-direction with gradients in

density and flow velocity only the y-direction. Within
the glass, the applied shear stress is supposed to be
larger than the yield stress. Substitution of ρ = ρ0+ δρ
and u = γ̇0y+ δu into the advection-diffusion equation,
where ρ0 and γ̇0 are the constant initial density and
shear rate respectively, and linearization with respect
to the small perturbations δρ and δu gives,

∂δρ

∂t
= Deff

∂2δρ

∂y2
+ ξ

∂3δu

∂y3
, (24)

where Deff and ξ are understood to be evaluated at the
density ρ0 and shear rate γ̇0. The equation of motion
for the flow velocity similarly gives,

0 =
∂σ

∂γ̇0

∂2δu

∂y2
+

∂σ

∂ρ0

∂δρ

∂y
− κ

∂4δu

∂y4
. (25)

where η and κ are evaluated at ρ0 and γ̇0, and where,

σ = γ̇0 η(ρ0, γ̇0) , φ < φg ,

σ = Σyield(ρ0) + γ̇0 η(ρ0, γ̇0) , φ ≥ φg ,

is the shear-stress of the initially homogeneously
sheared suspension, again at the density ρ0 and the
shear rate γ̇0. The time dependence of the perturba-
tions will be exponential due to the linearization. The
exponents for the density and flow velocity are the same,

as the velocity is enslaved by the concentration. Hence,
for sinusoidal spatial perturbations,

δρ = δρ0 exp{iky − λ(k)t} ,

δu = δu0 exp{iky − λ(k)t} . (26)

Substitution into eqs.(24,25) leads to the dispersion re-
lation,

λ(k) = k2

[
Deff − ξ

dσ

dρ

{
dσ

dγ̇
+ κ k2

}−1
]

. (27)

According to eq.(26), the initial density and flow profiles
are unstable when λ < 0, that is, when,

Deff

(
dσ

dγ̇
+ κ k2

)
< ξ

dσ

dρ
→ unstable . (28)

Since κ > 0, this result shows that perturbations corre-
sponding to large spatial gradients, for which the cor-
responding wave vector k is large, are stable. Only
sufficiently smooth variations in density and shear rate
will be unstable, while rapidly varying variations remain
stable. It thus follows from eq.(28) that the system is
unstable against arbitrary smooth spatially varying per-
turbations (for which k = 0), when the stability factor,

S ≡ ξ

Deff

dσ/dρ

dσ/dγ̇
, (29)

is larger than unity. This reproduces the SCC-stability
criterion as derived similarly in Refs.[37, 38, 41].
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FIG. 5: (a) The dimensionless quantity Γ/K2 , and (b) the
dimensionless (negative) growth rate Γ as a function of the
squared dimensionless wave vector K = k a. Here, S = 2
and C = 200 (solid curves) and C = 400 (dashed-dotted
lines).

The dispersion relation (27) is most conveniently
written in dimensionless form as,

Γ = K2

[
1− S

1 + C K2

]
,
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where Γ = λ(k) a2/Deff is the dimensionless (negative)
growth rate, K = k a is the dimensionless wave vector
(with a the radius of the colloidal spheres), S is again
the stability factor in eq.(29), and C = κ/(a2 dσ/dγ̇).
The quantity Γ/K2 is plotted in Fig.5a as a function of
K2 for the typical values of S = 2 and C = 200 (solid
curve) and C = 400 (dashed-dotted curve). Those wave
vectors where Γ < 0 are unstable, while larger wave
vectors corresponding to large spatial gradients remain
stable. The fastest growing Fourier mode is the mode
where Γ attains its minimum in Fig.5b. The stabiliza-
tion of Fourier modes with large wave vectors is solely
due to the non-local stress contribution as characterized
by the shear-curvature viscosity κ. As can be seen, the
larger the shear-curvature viscosity (to which C is pro-
portional to), the smaller the wave-vector range where
the system is unstable. For κ = 0 the growth rate
increases indefinitely like ∼ K2 with increasing wave
vector. Such an arbitrary fast growth of large spatial
gradients is unphysical.
The critical wave vector kc beyond which spatial vari-

ations are stable, for which λ(k) = 0, follows from
eq.(28) as,

kc =

√
dσ/dγ̇

κ
(S − 1) , (S > 1) , (30)

while the fastest growing Fourier mode is the one with
the wave vector km for which dλ/dk = 0, and hence,

km =

√
dσ/dγ̇

κ

(√
S − 1

)
, (S > 1) . (31)

The above scenario for the initial banding kinet-
ics is formally very similar to initial gas-liquid spin-
odal demixing kinetics as first described by Cahn and
Hilliard [70, 71]. The equivalent of the shear-curvature
viscosity is the square-gradient coefficient in the Cahn-
Hilliard theory for spinodal decomposition. Similarly
to the higher order derivative in the expression for the
stress tensor, the Cahn-Hilliard square-gradient coef-
ficient multiplies a higher order spatial derivative in
Fick’s diffusion equation, which accounts for the in-
crease in the free energy on formation of sharp concen-
tration gradients. The shear-curvature contribution to
the stress tensor was introduced in Ref.[18] to describe
gradient-banding. The stabilization of fast growth of
large spatial gradients through the shear-curvature vis-
cosity is a necessary feature for the numerical stability
of algorithms to solve the above discussed equations of
motion.
The stability criterion S < 1 in eq.(29) together with

the explicit forms of the transport coefficients discussed
before allows to construct the stability diagram. This
diagram marks the combinations of shear rates and con-
centrations where the system turns from being (meta-)
stable to unstable. There is an essential difference be-

FIG. 6: The stability diagrams in the shear-rate versus
concentration plane: (a) for φ < φg and (b) for φ ≥ φg.
The thick line marks the transition from stable to unsta-
ble (where S = 1). The iso-S lines are indicated with their
corresponding values for S, which curves are separated by
a colour code (red is a relatively high value of S, blue a
low value). The data points are experimental data for ster-
ically stabilized PMMA particles: white data points are for
particles with a radius of 138nm, the black data points for
150nm, taken from Ref.[41].

tween a system where the initial uniform volume frac-
tion is smaller or larger than the glass-transition con-
centration φg. For φ < φg we have dσ/dρ ∼ γ̇, while
for φ ≥ φg , dσ/dρ ∼ constant (for small Peclet num-
bers). This difference is due to the yield-stress contri-
bution that is only present within the glass, and leads
to a marked difference between the stability diagram for
concentrations below and above the glass transition.
As can be seen from Fig.6a, for concentrations below

the glass transition the uniform system is stable at least
up to Peclet numbers of order 1. Within the glass, on
the contrary, there is a large range of concentrations and
relatively small shear rates where the uniform system is
unstable. The thick solid line in Fig.6b marks the shear
rates and concentrations where S = 1. This line marks
the transition from the stable (S < 1) to unstable state
(S > 1) of a uniform system.
The white and black data points in Fig.6b are ex-

perimentally determined transition points for PMMA
spheres, taken from Ref.[41]. In view of our neglect of
hydrodynamic interactions, these data compare reason-
ably well with theory.
As will be seen in section VI, banding can also oc-

cur for concentrations very close to the glass transition
concentration without a SCC-instability. The stability
criterion (29) is thus a sufficient but not a necessary
condition for a stationary banded flow.
In the notation of Ref.[41], n is the exponent appear-

ing in the shear-rate dependent stress for φ > φg. In
our case n = 1/2 (the exponent −1/2 in the expression
for the shear-rate dependent part of the viscosity, plus 1
as the viscosity is multiplied by the shear rate to obtain
the stress). A similar value for n ≈ 0.4− 0.5 is adopted
in Ref.[41]. The value for m in eqs.(18,19), which de-
scribes the shear-rate dependence of the osmotic pres-
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sure, is chosen in eq.(5) of Ref.[41] to be slightly smaller
than n. The resulting value m = 0.4 − 0.5 is similar
to what we find in Fig.4c within the glass. The value
of m, however, is found to be concentration dependent
(see eq.(18)), varying from 0.50 for φ = φg to 0.18 for
φ = φm. The difference m− n determines whether the
S = 1 stability curve in the stability diagram in Fig.6b
slopes to the left or to the right: for m − n > 0 the
S = 1 curve has a negative slope, for m− n < 0 a posi-
tive slope. In the latter case the uniform glass becomes
unstable on lowering the shear rate, which has been ob-
served experimentally in Ref.[41]. Such a negative value
of m−n is also found in our analysis. The small differ-
ence between m and n leads to the essentially shear-rate
independent location of the stability curve for the lower
concentrations, as discussed in Ref.[41].
Note that eq.(5) for the pair-correlation function is

only accurate for Peclet numbers typically less than
unity. The SCC instability within the glass state indeed
occurs at Peclet numbers smaller than unity, as can be
seen from Fig.6b. For fluids, however, the instability
occurs at most at quite high Peclet numbers, as can be
seen from Fig.6a. To analyze the SCC instability below
the glass transition requires therefore a representation
of the pair-correlation function that is also accurate at
much higher Peclet numbers, which is beyond the scope
of the present study.

VI. NUMERICAL RESULTS FOR
CONCENTRATION- AND FLOW-PROFILES

It has not been possible in previous work on col-
loids to calculate velocity and concentration profiles.
There are no theoretical predictions yet concerning the
velocity- and concentration profiles resulting from the
SCC-instability. An essential ingredient for the calcu-
lation of velocity- and concentration profiles is the non-
local contribution to the stress, as characterized by the
shear-curvature viscosity, which stabilizes the system
against arbitrary fast growth of variations/fluctuations
with large spatial gradients. Without this non-local
contribution to the stress any numerical algorithm
would be inherently unstable.
To solve the non-linear differential equations, a 2nd

order central finite difference method is used to evaluate
spatial derivatives, and a Newton-Rapson iteration is
used to account for the non-linear term in Navier-Stokes
equation, while the time derivative is determined using
the predictor-corrector iteration scheme based on the
Crank-Nicolson method (Adams method) [72]. In the
numerical calculation, a spatial discretization is used
that sets the maximum value of the wave vector kmax.
When the number of grid points over an interval of
length L is Nd, this maximum value of the wave vector
is equal to kmax = Ndπ/L. In case kmax is less than
the critical wave vector kc in eq.(30), not all unstable

Fourier modes are accounted for, and the numerical so-
lutions are not realistic. A sufficiently fine grid must be
chosen to assure that all unstable Fourier modes are ac-
counted for. This is confirmed by comparing numerical
solutions with a different number of grid points. In this
simulation,Nd = 200 and dt̃ = 2×10−3, whileNd = 400
and dt̃ = 5× 10−4 are used to verify convergence.
The two coupled equations of motion for the con-

centration and flow velocity as discussed in section
IV will be solved numerically for a cylindrical Cou-
ette geometry (see Fig.7). Such a geometry features
the inherent shear-gradients to induce the onset of the
SCC-instability mechanism as explained in section II.
All variables are assumed to be fully-developed in the
θ−direction (around the cylinder axis), and homoge-
neous in the z−direction (along the cylinder axis). The
only relevant spatial coordinate is therefore the radial
distance from the cylinder axis, which will be denoted
by r. The simulation domain in this direction is set by
the radii R1 and R2 of the inner and outer cylinder,
respectively. The gap width R2−R1 is chosen as 1000a
(with a the radius of the colloids), while R1/R2 = 0.98.
As will be seen later, the spatial varying volume fraction
deviates at most of the order of 0.005 around the initial
uniform volume fraction, so that banded flow profiles
can be calculated from numerical solutions of equations
of motion by takingm in eq.(18) equal to its value corre-
sponding to the initial volume fraction, independent of
position. To verify this procedure, the additional con-
tributions due to the concentration dependence of m to
the equations of motion can be estimated from the nu-
merical solutions using a constant m. These additional
contributions turn out to be very small, which validates
the use of a constant value for m.

FIG. 7: The cylindrical Couette geometry. The radius of
the inner, rotation cylinder is R1, the outer radius of the
stationary cylinder isR2. The gap width is chosen to be 1000
times the radius a of the spherical colloids, and R1/R2 =
0.98.

The equation of motion for the concentration in terms
of the radial cylindrical coordinate reads,

∂ρ(r, t)

∂t
=

1

r

∂

∂r

{
r Deff

∂ρ(r, t)

∂r

}
+
1

r

∂

∂r

{
r ξ

∂ γ̇(r, t)

∂r

}
.

The stress is the sum of the yield-stress and a viscous-
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FIG. 8: Stationary profiles for a volume fraction of 0.60, well within the glass. (a) Velocity profiles: the dashed blue curve
is for a Newtonian fluid, the blue solid line for a stable initial state where the applied dimensionless stress is equal to 200,

and the red solid curve for an unstable initial state with an applied stress equal to Σ̃(R1) = 50. The corresponding Peclet
numbers are 1.0 and 0.0078, respectively. Velocities are normalized with respect to the velocity of uwall of the rotating inner
cylinder. (b) The difference of the flow velocity of a Newtonian fluid and the local velocity. (c) The position dependent
volume fraction.

stress contribution,

Σ = Σyield +Σvisc ,

where the yield stress is given in eq.(23), while,

Σvisc =

(
η − κ

1

r

∂

∂r

{
r
∂

∂r

})
γ̇(r, t) .

The Navier-Stokes equation reads,

∂

∂r

{
r2 Σ

}
= 0 ,

provided that the total local stress is larger than the
yield stress. No-slip is assumed at both the walls of the
inner and outer cylinder, that is, the suspension flow ve-
locity is zero at the stationary outer wall where r = R2,
and equal to the non-zero wall velocity of the inner wall
for r = R1. The applied stress at the rotating inner
cylinder will be fixed. There is no principle difference
between controlled stress and controlled shear-rate ex-
periments (contrary to gradient-banding in the absence
of coupling to concentration, where banding does not
occur under controlled stress conditions). The applied
stress is hereafter specified by the dimensionless stress,

Σ̃(R1) =
Σ(r = R1)

kBT/a3
. (32)

There are no mass fluxes through the walls of both
cylinders: j(R1) = 0 = j(R2). Due to the inclusion
of the shear-curvature contribution we need a third set
of boundary conditions. As the gap width is relatively
small compared to the inner cylinder radius, so that

FIG. 9: Stationary profiles starting from a stable state, for a
concentration just above the glass transition, for an overall
volume fraction of φ = 0.582. (a) The velocity profile and

(b) the volume fraction, for applied stresses of Σ̃(R1) = 14
(the red curves) and 20 (the blue curves). The resulting

apparent Peclet numbers ˜̇γ are indicated in the figure. Ve-
locities are normalized by the velocity of the rotating inner
cylinder uwall. The black dashed line is the profile for a
Newtonian fluid.

variations of the shear rate are relatively small in the
non-banded state, we use here as the third boundary
condition that the shear rates are constant in the vicin-
ity of the walls: ∂γ̇(r, t)/∂r = 0 for both r = R1 and
r = R2.

The remaining parameter that needs to be specified
is the shear-curvature viscosity κ0. The interface thick-
ness in a stationary shear-banded state is of the order
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κ0/η0, so that the dimensionless quantity,

Λ̃ =
1

a

√
κ0

η0
,

is a measure for the interface thickness in units of the
radius a of the colloids. The interface thickness is prob-
ably much larger than the size of the colloids, so that

we will use Λ̃ = 100 in the numerical analysis.
Stationary flow- and concentration-profiles for an ini-

tially homogeneous state are given in Fig.8. The ini-
tial overall concentration is 0.60, which well within the
glass. The dashed line in Fig.8a is the flow profile for
pure solvent, and the solid blue line corresponds to an
initially stable suspension with an applied dimension-

less stress at R1 of Σ̃(R1) = 50 (see eq.(32)), while the
red curve corresponds to an initially unstable state with
a dimensionless stress of 200. The velocities are nor-
malized with respect to the velocity uwall of the inner
cylinder. The Newtonian velocity profile is essentially
linear for the small gap width under consideration. The
stable flow profile is somewhat curved, which is due to
the shear-gradient induced mass flux. For the initially
unstable state the final flow profile (the red curve in
Fig.8a) exhibits a banded structure, where one band is
non-flowing. The self-amplified mass flux leads to an
increase of the concentration near the outer cylinder to
an extent that the local yield stress becomes larger than
the local applied stress, leading to an arrest of the lo-
cal flow. The slight curvature within the flowing band
near the non-flowing band is related to the width of the
interface which is set equal to a tenth of the total gap
width. In Fig.8b the difference between the velocity of
a Newtonian fluid and the local velocity is plotted. The
stationary concentration profiles are given in Fig.8c. As
can be seen, the variation of the concentration around
the overall concentration is limited to about 0.01, which
justifies to use the value of the exponent m correspond-
ing to the overall concentration. That small changes in
concentration are sufficient to induce a banded flow is
due to the strong concentration dependence of trans-
port coefficients and viscometric functions.
Banded flows can also occur for initially stable sys-

tems. For an overall concentration of 0.582 and an ap-

plied dimensionless stress of Σ̃(R1) = 14, the stabil-
ity parameter is always around 0.6. It is never larger
than unity, not in the initial state nor in the transient
states. Nevertheless we find a banded structure with
very much the same features as the banded flow profile
in case of a SCC-instability, as can be seen in Fig.9a
(the red curve). The banded flow is now not due to
the SCC-instability. The stability criterion discussed
in section V is thus a sufficient but not a necessary
condition for banding. The reason for banding in this
case is as follows. The local dimensionless stress at the
outer cylinder is 13.446. This is just above the yield
stress of 13.440 for the initial concentration. The shear-

induced mass flux towards the outer cylinder, without
self-amplification, is now sufficient to increase the local
concentration to a value that leads to a local yield stress
that is larger than the local stress, so that the local ve-
locity vanishes, resulting in a banded flow profile. The
slight increase in concentration at the outer cylinder is
illustrated in Fig.9b (the red curve). For the small in-
crease of the concentration that is necessary to lower
the local stress at the outer cylinder below the yield
stress, there is no need for the self-amplifying increase
of concentration. For larger initial concentrations, the
SCC-self-amplification mechanism is necessary to give
rise to a sufficiently large increase of the local concen-
tration such that the local yield stress becomes larger
than the actual local stress at the outer cylinder. The
blue curves in Figs.9a,b are for a larger applied dimen-
sionless stress of 20. For this relatively high applied
stress, the local stress is always larger than the local
yield stress so that there is no banding. As before, the
curvature of the flow profile is now entirely due to the
shear-curvature contribution to the stress.
It is in principle possible that in part of the sys-

tem the concentration is above, and in part below the
glass-transition concentration. This only happens when
the initial volume fraction is to within about 0.001 in
the vicinity of the glass-transition concentration, and is
therefore hardly of experimental relevance. A numeri-
cal solution for such cases would also require an entirely
new computer algorithm in order to match the regions
where the concentration is above and below the glass-
transition concentration. We therefore refrain from an
analysis of this rather esoteric situation.
In analogy with thermodynamically driven phase

transitions in the absence of flow, spinodals and bin-
odals can be defined in case of banding transitions
[19, 20]. The spinodal is generally defined as the points
where the system becomes unstable (this is the line
where S = 1 in Fig.6b). As banding can also occur
outside the unstable region where S > 1, as seen above,
one might define the region where S < 1 but neverthe-
less banding occurs, as the meta-stable region, which is
bounded by the binodal. Contrary to gradient-banding,
however, the location of the binodal is not an intrinsic
property of the system under consideration, but also
depends on the shear-cell geometry. For example, when
the gap width of a Couette is increased, the natural
spatial gradients in the shear rate are increased, which
increases the shear-gradient induced mass flux, so that
banding of the SCC type for hard-sphere glasses oc-
curs down to lower concentrations. The binodal thus
shifts to lower concentrations as the cell gap width is
increased.
The temporal evolution of the flow and concentra-

tion profiles of the unstable system, for which stationary
profiles were given in Fig.8, are shown in Fig.10. The
initial condition here is a spatially constant concentra-
tion. The stability factor in the initial state is equal to
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FIG. 10: Temporal evolution of (a) the concentration profile, (b) of the velocity profile, and (c) of the apparent Peclet
number. The various times t̃ = tD0/a

2 are indicated in (b). The overall volume fraction of 0.60, and the applied stress of

Σ̃(R1) = 50, of which the stationary profiles are given in Fig.8, the red curves). Video’s can be found in the supplementary
material.

1.00077 and 1.00540, at r = R2 and r = R1, respec-
tively. The typical wave length 2π/km of the (position
dependent) most rapidly growing Fourier component is
thus found from eq.(31) to be of the order of the gap
width. This explains the smooth growth of the profiles
in Fig.10a,b. Similar smooth growth kinetics is found
in the experiments in Ref.[41]. As the applied stress is
fixed, the overall shear rate changes during band forma-
tion. This apparent Peclet number is plotted in Fig.10c.
The temporal increase of the shear rate shows that the
viscosity of the suspensions as a whole decreases during
banding. The video ”Video-SCC-1” in the supplemen-
tary information shows the temporal evolution of the
suspension flow velocity and the volume fraction.
For the initial conditions in the above examples, a

spatially uniform density has been chosen. An at ran-
domly chosen initial condition for the concentration
(and hence the corresponding flow velocity), as a super-
position of Fourier modes with wavelengths up to the
gap width, leads to the same final state as for the uni-
form initial state. Higher order Fourier modes decay
fast, while the smooth variations slowly grow very much
as for the uniform initial state. This is due to the value
of the stability factor S, which is close to unity, so that
according to the discussion in section 6 only smooth spa-
tial variations are unstable. The video ”Video-SCC-2”
in the supplementary information shows the temporal
evolution of the flow velocity and the volume fraction
up to t̃ = 700 for three different initial conditions.

VII. SUMMARY AND CONCLUSIONS

An essential ingredient for the Shear-gradient Con-
centration Coupling (SCC-) instability is a mass flux

that is induced by spatial gradients of the shear rate.
The microscopic origin of this mass flux is elucidated,
and it is shown that the force that drives the mass flux is
related to gradients of a ”generalized osmotic pressure”
that is formally equal to the standard expression for
the equilibrium osmotic pressure, but where the pair-
correlation function is now the shear-distorted pair-
correlation function. This result leads to expressions
for the transport coefficients that enter the advection-
diffusion equation in terms of the shear-distorted pair-
correlation function.

Brownian Dynamics (BD-) simulations are performed
for concentrated hard-sphere suspensions under shear
flow to obtain the shear-distorted pair-correlation func-
tion, and thereby explicit expressions for the shear-rate
and concentration dependence of these transport coef-
ficients. The advection-diffusion equation is coupled to
the Navier-Stokes equation, for which accurate expres-
sions for the concentration dependence of the viscosity
and the yield stress as known from the literature are
adopted.

Essential is the inclusion of a non-local stress con-
tribution, the ”shear-curvature stress”, which stabilizes
the system against the arbitrary fast growth of large
spatial gradients of the flow velocity.

The coupled advection-diffusion and Navier-Stokes
equations are used to construct stability diagrams.
Numerical solutions of these coupled equations for
a Couette geometry allow us to study the banded
concentration- and velocity-profiles. For the hard-
sphere system under consideration it is found that
banded flow profiles occur for concentrations above the
glass concentration within a large part of the shear-rate
versus concentration plane. The SCC-instability is pre-
dicted to occur at very low shear rates, in accordance
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with experiments. One of the bands has a very small
shear rate, and is essentially non-flowing. Outside the
interface connecting the two bands, the shear rate is
essentially constant, independent of position within the
flowing band. There is a weak spatial variation of the
shear rate due to the shear-curvature contribution to
the stress.
It should be noted that the kinetics of shear-band

formation as well as the final stationary state of SCC-
banded structures depends on the shear-gradients that
are naturally present in the shear-geometry that is used
in an experiment. For example, there is most likely a
difference concerning the SCC-characteristics in a Cou-
ette cell as compared to a cone-plate geometry where
secondary flow determines the shear-gradient induced
mass transport.
Banding is also found to occur without the SCC-

instability, provided that the concentration is very close
to the glass transition. In such cases the mass flux need
not be self-amplified in order that the locally applied
stress becomes less than the local yield stress, which
leads to banding. The mere geometry-imposed shear-
gradient induced mass flux is sufficient to increase the
local density by the small amount needed to induce a
yield stress that is larger than the locally applied stress.

For larger concentrations, deeper into the glass, self-
amplification of the mass flux is necessary to achieve
this.
In this work we neglected hydrodynamic interac-

tions between the colloidal particles. The above work
could be improved by including hydrodynamic inter-
actions, which affect the shear-rate and concentration
dependence of the transport coefficients that enter the
advection-diffusion equation. A second improvement
would be to include elastic contributions to the stress,
which might affect banding kinetics.
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