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Abstract

We perform Monte Carlo simulations of a binary, strongly separated mixture of A- and B-

type homopolymers with some amount of random AB copolymers added. The interface is ana-

lyzed and the interface tension is calculated using the model of capillary waves. We can clearly

demonstrate that random copolymers are localized at real, fluctuating interfaces between in-

compatible polymer species and micellization is not favored over adsorption. Our study proves

that random copolymers are potential candidates for compatibilization of polymer-polymer

mixtures. By simulating random copolymers in a one-component bulk and comparing their

free energy to the copolymers adsorbed at the two-phase interface we show that the adsorp-

tion is thermodynamically stable. We use scaling arguments developed for ideal and non-

fluctuating interfaces to rationalize the simulation results and we calculate the reduction of

interface tension with increasing amount of the adsorbed copolymers.
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1 Introduction

Behavior of AB copolymers at the interface between two immiscible homopolymer species A and

B has been in the focus of study already for a long time . It was shown experimentally1–5, in the-

oretical6–13 and simulation11–23 studies that copolymers tend to adsorb at the interface. Adsorbed

copolymers can be used in technological applications like the compatibilization and mechanical

reinforcement of composite materials.

Especially the case of random AB copolymers attracted much interest since these are easy to

synthesize and should exhibit rather good properties as compatibilizers, in particular to reinforce

AB composites by forming entanglements across the interface. Up to now, theoretical as well

as simulation studies of random copolymers at interfaces were limited to considering ideal, non-

fluctuating interfaces. These were modeled by a step potential preferring either the A or the B

species depending on the side of the interface, and both phases represented athermal solvent for

both monomer species. The mechanism of adsorption of random copolymers at ideal interfaces

was shown to be governed by the formation of so called “excess blobs”7,8. These are chain parts

containing an excess of one species, which is localized at the preferred side of the interface. The

corresponding scaling variable can be inferred6 from a simple Imry-Ma type argument24. The

latter is based on the fact that a fragment of a random copolymer containing g monomers will

have a random excess of g1/2 monomers of one species. This leads to a scaling variable that can

be chosen as χN1/2, where χ is the Flory-Huggins parameter representing the selectivity of the

interface and N is the chain length. The corresponding power laws for the asymptotic scaling

of the radius of gyration and for the order parameter of the adsorption were derived and tested

by simulations in Refs.16,18. In further works the effect of asymmetric interface potentials20 or

interface layers23 and effects occurring when many chains are adsorbed21,22 were considered.

The validity of the results obtained for ideal interfaces for the case of real interfaces was how-

ever challenged25 on the grounds that copolymers build micelles in the bulk26 and it was claimed

that the micellar state might be thermodynamically more favorable than the adsorbed state at the

interface. In the present study, we model the immiscible phases directly and thus allow for the
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formation of a real, fluctuating interface. We are thus able to study the properties of the interface

itself, in particular the surface tension depending on the amount of the adsorbed copolymers. We

also test the validity and applicability of the theoretical predictions made for random copolymers

at ideal interfaces for the case of fluctuating interfaces. Furthermore, the presence of explicit bulk

phases allows us to test the competition between the micellar state and interface localization. From

the monomer densities in the bulk and at the interface a conclusion that the preferred state for the

random copolymers is the adsorbed one already can be done. We also simulate random copolymers

in one phase and compare the free energy of the micelles, which copolymers build in this case with

the free energy of the copolymers adsorbed at the two-phase interface. This allows us to show that

the interface adsorption is definitely thermodynamically favored by random copolymers.

The rest of this work is organized as follows. After the description of our simulation model in

section 2 we consider the distribution and single chain properties of random copolymers at AB-

surface in Section 3.1. In Section 3.2, the surface tension of the interface is studied. In Section 3.3,

the scaling laws based on the excess blob concept are reconsidered for real fluctuating interfaces.

The free energy for adsorbed and non-adsorbed random copolymers is calculated in Section 3.4.

Our conclusions are presented in Section 4.

2 Simulation model

We employ a version of the bond fluctuation model (BFM)27, which was described in detail else-

where28. In general during a Monte Carlo move, excluded volume conditions and bond restrictions

are checked and a move is only carried out if the lattice places for the moved monomer are free

and the new bonds are within the set of allowed (108) bond vectors. Additional interactions be-

tween the monomers are taken into account using a Metropolis algorithm. In the present case the

interaction energy is determined by the number of AB-contacts within a range of nearest neighbor

positions around a given monomer. As in previous work28,29 we consider only repulsive interac-

tions between unlike species which avoids unphysical freezing effects even in the case of strong
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segregation. By counting the number of AB contacts on the lattice, three constellations with 4, 2

and 1 contacts have to be distinguished. They occur with probability hI = 0.18, hII = 0.48 and

hIII = 0.34, respectively28. Thus the average interaction energy of an AB monomer pair is given

by

EAB = ε(4hI +2hII +hIII) = 2.02ε, (1)

where ε denotes a microscopic interaction parameter per lattice contact which is the primary pa-

rameter in the simulation model. The Flory-Huggins parameter30 is related to EAB by

χ =
pe f f EAB

kBT
, (2)

where pe f f ≈ 3.5 is the effective coordination number of the monomer in our simulations. Using

Equation (1) we obtain the approximate relationship

χ ≈ 7ε
kBT

. (3)

In the following we consider energy units given by kBT ≡ 1.

The simulation box has L× L×D lattice points with the parallel extension L = 256 and the

perpendicular extension D = 64. We apply periodic boundary conditions in each direction. The

A and B homopolymers (referred to as bulk in the following) have the chain length (number of

monomers) of Nh = 64. We consider random A-B copolymers (referred to as RCP in the following)

of different chain lengths N = 16, 32, 64, 128. We denote the total number of random copolymers

by nc.

The preparation of the system is as follows. First, an athermal mixture of nc homopolymers of

lentgh N and a certain amount nh of homopolymers with length Nh is prepared such as to obtain

the lattice occupation fraction of 0.5, corresponding to a dense melt. The system is then relaxed for

106 Monte Carlo steps (MCS). This corresponds to several relaxation times of the polymer chains.

After that the nh chains with length Nh are separated into two groups according to the position of
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their center of mass zcm: the chains with zcm < D/2 are assigned as A-type and the chains with

zcm > D/2 are assigned as B type. At the same time, the nc chains with length N are assigned a

random AB monomer sequence. The interaction between A and B species is then turned on and

the system is then relaxed again for 107 MCS so that the interface (and its periodic image) between

the both bulk phases is built up. The bulk phases have the perpendicular extension of more than

5 times the radius of gyration of bulk chains and more than 3 times the radius of gyration of the

longest copolymer chains considered (N = 128). This ensures that we have true bulk phases. The

system is in equilibrium already after 106 MCS, so that the configurations between the 106th and

the 107th MCS are used for calculating averages. Since the configurations were stored every 104th

MCS.

Our simulation procedure obviously ensures that the positions of RCP are randomly distributed

in the simulation volume, before the interaction is turned on and the interface is built up. The

random copolymers thus can choose the state which they thermodynamically prefer without being

restricted to a distinguished initial state.

3 Results

3.1 Density and radius of gyration profiles

We define first the density ρm(x,y,z) for a certain monomer group m by

ρm(x,y,z) = ⟨nm(x,y,z)⟩, (4)

where the occupation number nm(x,y,z) = 1 if there is a monomer from group m occupying the

lattice position (x,y,z) and nm(x,y,z) = 0 otherwise. Because the system is homogeneous in xy-

direction we consider the laterally averaged density profiles given by

ρm(z) =
1
L2 ∑

x,y
ρm(x,y,z). (5)

5
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Figure 1 shows the results for ρm(z) for different monomer groups (total bulk monomers, bulk A

and B monomers and total RCP monomers) normalized by the bulk density ρb = 1/16. The to-

tal density of random copolymers (solid lines) exhibits pronounced peaks at both A-B interfaces.

Away from the A-B interfaces, the RCP monomer density becomes almost zero. This shows that

the vast majority of the random copolymers is localized at the A-B interfaces after relaxation. The

total bulk density (dotted lines) exhibits a dip at the interfaces, which becomes more pronounced

with increasing copolymer amount as the bulk chains more and more get expelled by the copoly-

mers in the interface region.
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Figure 1: Perpendicular monomer density profiles ρm(z) normalized by the bulk density ρb = 1/16 for
different groups of monomers and different amount of copolymers nc as indicated, N = 64 and ε = 0.4
(χ ≈ 2.8).

Next we consider the perpendicular and parallel components of the squared radius of gyration

defined by

R2
g⊥ =

1
N

N

∑
i=1

⟨(zi − zcm)
2⟩, (6)

R2
g∥ =

1
N

N

∑
i=1

⟨(xi − xcm)
2 +(yi − ycm)

2⟩, (7)
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Figure 2: Perpendicular and parallel components of the squared radius of gyration vs. the z component of
the chain center of mass for the copolymers and bulk chains for N = 64, nc = 200 and ε = 0.4 (χ ≈ 2.8).

Figure 3: A simulation snapshot for the same parameter values as in Figure 2.
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where (xi, yi, zi) denote the position of the monomer i on the lattice and N is the total number

of monomers in the polymer chain. In Figure 2 we plot R2
g⊥ and R2

g∥ for homopolymers and

copolymers as function of the z coordinate of their center of mass zcm = 1/N ∑N
i=1 zi. This yields

a profile for the chain extension in the direction perpendicular to the interface. We see that RCP

at the interfaces are strongly squeezed in this direction. At the same time, the lateral extension of

the random copolymers at the interface is greater than in the bulk. Both effects originate from the

confinement of random copolymers at the interface.

As was seen from Figure 1, almost all of the random copolymers are located at the interfaces.

Data points in Figure 2 indicate that a finite probability to find the center of mass of a random

copolymer between the interfaces still exists. These chains are highly stretched, as compared to

the bulk homopolymers. In Figure 3 a simulation snapshot for the same parameter values as in

Figure 2 is shown. We see that random copolymers always have monomers at least at one of

the both interfaces. Sometimes the copolymers have monomers at both interfaces so that they

bridge them23. This explains the high stretching of the chains with the center of mass between the

interfaces. Note the very low occurrence of these events from Figure 1.

Homopolymer chains are squeezed at the interface, too. For the parallel direction, however,

no significant difference in the extension in the bulk- and the interface regions is observed for the

homopolymers. This is in accordance with Silberberg’s argument for melt polymers at a repulsive

interface31.

Since in the initial configuration the random A-B monomer sequence were assigned to ran-

domly chosen chains, not necessarily located at the A-B interface, from the findings of this section

we already conclude that random copolymers tend to localize at the A-B interface spontaneously

and independent of their initial position.

3.2 Interface tension

Adsorption of copolymers at the A/B interface leads to the reduction of the interface tension. The

direct calculation of the interface tension from thermodynamic relations requires the access to the

8
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Figure 4: Snapshot of the interface calculated with block size B = 8 as discussed in the text.
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average, B= 32
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Figure 5: Density order parameter from Equation (8) for blocks of different size B with respect to the
interface position in the block. The scattered data indicate the results for individual blocks. The continuous
lines are averages over all blocks of a given size. With decreasing block size, the slope increases.
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entropy of the system which is not directly possible from particle-based simulations. We thus apply

the method of Ref.32 to extract the surface tension from the broadening of the interface profile due

to capillary waves. To this end, we divide the x− y plane into adjacent square blocks of size B×B

and calculate the density order parameter profiles mB(z) in each block B:

mB(z) =
1

B2 ∑
(x,y)∈B

ρA(x,y,z)−ρB(x,y,z)
ρA(x,y,z)+ρB(x,y,z)

. (8)

After that, we determine the interface position zint(B) in each block as the z point at which the

order parameter from Equation (8) changes from the negative to the positive value. A snapshot

of the resulting interface profile is shown in Figure 4. The order parameter mB(z− zint(B)) for

individual blocks and the averaged value over all blocks of a given size B

m(z) = ⟨mB (z− zint(B))⟩B∈blocks of size B (9)

is displayed in Figure 5 as function of z. From the averaged profiles we can already see that the

effective interface width is increasing with the block size. The width w of the averaged order

parameter profile m(z) is fitted according to the expression from the self-consistent field theory:

m(z) = tanh
(

z− zint

w

)
. (10)

It is now important to distinguish between the intrinsic width of the interface, w0, and interface

width due to so-called capillary waves33. The averaged order parameter profile includes both

contributions and leads to a large effective width w. As follows from the consideration of the

interface hamiltonian34, which can be diagonalized in the Fourier space, the effect of the interface

fluctuations on the effective width is described by

w2 = w2
0 +

1
4σ

ln
qmax

qmin
, (11)
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where σ is the interface tension, qmax and qmin is the upper and the lower cutoff wave vector,

respectively. Since B is the largest length scale in the block of size B, the lower cutoff qmin scales

like 1/B. The interface tension σ can be extracted from the slope of w2 vs. ln(B). In Figure 6 we

plot the squared effective width, w2, semi-logarithmically as function of the block size, B. Due to

boundary effects for small and large values of B, only for the intermediate values of B = 16, 32, 64

the linear scaling of w2 with ln(B), predicted by Equation (11) can be approximately observed.

The increasing slope of the curves in this region with increasing nc thus leads to decreasing values

of σ .

Another way to determine the interface tension is to consider the probability distribution P(z)

of the interface positions zint(B) in the blocks, which is predicted to be Gaussian34:

P(z) =
1√

2πs2
exp(− z2

2s2 ) (12)

with the variance

s2 =
kBT
2πσ

ln
qmax

qmin
. (13)

Figure 7 shows the interface position distributions for the pure AB interface. From the Gaussian

fits (dashed lines), the variance s can be found and with the cutoff values qmax = 2π/B and qmin =

2π/L, the interface tension can be determined.

Figure 8 shows the results for the interface tension determined by both methods described

above for the pure A/B interface. For the interface without copolymers, the scaling with χ1/2, ex-

pected from the strong segregation limit of the self-consistent field theory35 is roughly fulfilled for

larger values of χ . The notable difference between the values of the interface tension determined

by different methods in Figure 8 is well known from previous works32. We note that both methods

map the real two-phase interface into a simplified model32–34 with idealized zero interface thick-

ness. Therefore, the absolute values of the surface tension calculated with both methods should be

considered as model dependent. In the following we will discuss results for both methods.

In Figure 9 we plot the interface tension for interfaces with adsorbed copolymers as function

11
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Figure 6: Squared interface width w2 vs. block size B for ε = 0.4 (χ ≈ 2.8), N = 64 and different amount of
copolymer chains nc as indicated. The vertical dashed lines mark the region of the values of B, 16 ≤ B ≤ 64,
for which the linear scaling of w2 with ln(B) predicted by Equation (11) is observed.
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Figure 7: Distribution of interface positions for block size B = 8. The dashed lines are Gaussian fits.
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of the amount of the copolymers. As can be seen, the adsorption of copolymers reduces the inter-

face tension σ . A simple scaling argument in the framework of the excess blob picture (see next

Section) can be used to estimate the reduction of the interface tension ∆σ . A single excess blob at

the interface leads to ∆σ ∼ kBT . The number of excess blobs in the chain is given by N/g, where

the blob size g scales as g ∼ χ−2, see Equation (17). This yields

∆σ ∼−nintNχ2

L2 , (14)

where nint is the number of chains at the interface and L2 is the interface area. In Figure 10 we plot

the interface coverage nint (for the same values of χ and N as in Figure 9), the values of σ obtained

in the simulation and the values of σ calculated from the above scaling relation according to

σ(χ,nc) = σ(χ,0)−α
nint(χ,nc)N χ2

L2 . (15)

The numerical value α = 2.5×10−2 of the prefactor was chosen as the best fit using the data with

ε = 0.5 (χ ≈ 3.5).

1,8 2 2,2 2,4

χ1/2

0,1

0,15

0,2

0,25

 σ

1 / s
2

w
2

cap
 (B=16, 32, 64)

χ1/2
 fit

Figure 8: Interface tension of a pure A/B interface. Circles are the results from the method of interface
width scaling (see Figure 6), where the values of B = 16, 32, 64 were used and diamonds are the results
from the method of the width of the interface position distribution (see Figure 7). The dashed line is a linear
fit according to the prediction of the strong segregation model to the results from the width of the interface
positions distribution.
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(b)

Figure 9: The interface tension as function of the amount of the copolymers nc for N = 64 and different
interaction strengths ε , obtained by the method of interface width scaling (a) and by the method of interface
position distribution (b).

3.3 Scaling and excess blobs

After we have shown that the copolymer chains localize at the interface, we turn to the detailed

study of their properties. The question of interest is the scaling with the relevant parameters χ and

N. It was shown for ideal interfaces7,16,18 that the adsorption of single chains is controlled by the

scaling variable

y = χN1/2, (16)
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Figure 10: (a): the interface coverage nint by copolymers, (b): the interface tension obtained by the method
of interface width scaling (full symbols) and from the theoretical estimate according to Equation (14) (open
symbols) as explained in the text. The results are displayed as function of the amount of the copolymers nc

for N = 64 and different interaction strengths ε as indicated.
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accounting for the formation of “excess” blobs. These result from the average excess g1/2 of one

species in a random binary sequence of g monomers. The average number of monomers g forming

an excess blob should obey the following condition

g1/2χ ∼ 1. (17)

Blobs of this size stick to the preferred side of the selective interface because the free energy effort

to enter the other side of the interface is of the order kBT . The scaling variable which controls the

localization of RCP at a selective interface is given by the number of excess blobs per chain and

can be chosen as in Equation (16).

This in turn allows to derive the scaling laws for the radius of gyration of RCP at ideal inter-

faces. To this end, we write the perpendicular and parallel components of the radius of gyration

as

Rg∥,⊥(χ ,N) = Rg(0,N) f∥,⊥(y) (18)

where Rg(0,N) is the radius of gyration for the chain of length N in the isotropic case (χ = 0)

and f∥,⊥ are the scaling functions for the parallel and the perpendicular directions, respectively.

Rg(0,N) scales according to Rg(0,N)∼ Nν , with the Flory exponent ν = 0.588 for excluded vol-

ume chains and ν = 0.5 for ideal chains. For y ≪ 1, both scaling functions obviously should obey

the asymptotic limit f∥,⊥(y ≪ 1) = 1. To determine the asymptotic limit for y ≫ 1, for the perpen-

dicular direction one employs the fact that the size of the chain is given by the blob size and does

not depend on N, Rg⊥ ∼ N0. Assuming an asymptotic power law f⊥(y ≫ 1) = ym⊥ , gives thus the

relation ν +m⊥/2 = 0 which leads to16,18

m⊥ =−2ν . (19)

As for the parallel direction, since the chains become localized around the interface and since the

data suggests some swelling, as a first approximation one can consider a two dimensional chain
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with excluded volume, Rg∥ ∼ N3/4 (this point will be discussed later). This leads to the relation

ν +m∥/2 = 3/4, which gives

m∥ = 2(
3
4
−ν). (20)

The asymptotic limits for both directions can be summarized by the following equation

f⊥ ,∥(y) =

 1, y ≪ 1

ym⊥ ,∥, y ≫ 1
(21)

In Figure 11, we plot Rg⊥(χ,N)/Rg(0,N) and Rg∥(χ,N)/Rg(0,N) for the copolymer chains

with different length N located at the interface. As chains at the interface we define those with the

center of mass within the interval (zint −5,zint +5). We performed extra simulations of few chains

of size N in the bulk of homopolymer chains at χ = 0 to determine Rg(0,N). This was done to

account for possible size effects. The results are given by R2
g(χ = 0) = 7.6, 16.2, 34.0, 69.7 for

N = 16, 32, 64, 128 respectively.

For a dense melt, the Flory exponent is ν = 0.5. Thus, we obtain in the limit y ≫ 1 from

Equations (19) to (21), Rg⊥ ∼ y−1 and Rg∥ ∼ y0.5. The subtle point here is that the copolymer

chains experience some excluded volume interactions in the interface region due to the dilution of

monomers. While the excess blob scaling works well for Rg∥, see Figure 11 (b), the exponent of

0.5 is only approached in the limit of very strong segregation, where the copolymer chain is nearly

flatly confined in the depleted zone of the interface. On the other hand, if the copolymers would not

experience any excluded volume in the interface zone, their lateral extension would not change, as

for the case of bulk chains, in marked contrast to the observation in Figure 2. For the perpendicular

extension, see Figure 11 (a), neither the scaling is displayed nor the expected asymptotic behavior

is shown. We see that the scaling prediction Rg⊥ ∼ y−1 (see dashed line in Figure 11) largely

overestimates the tendency for RCP to squeeze in perpendicular direction. This may be related

to the fact that the interface position z(x, y) fluctuates, which overlays the measurement of the the

extension of the localized copolymers in perpendicular direction.
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On order to eliminate the effect of interface fluctuations we can calculate the perpendicular

extension of the copolymers locally in the blocks which we already introduced for determining

the surface tension in Section 3.2. Here we consider the second moment of the copolymer density

distribution relative to the interface position in every block B and average over all blocks of a

given size:

D2 =
⟨
(z− zint(B))2ρm(x,y,z)(x,y,z)∈B

⟩
B∈blocks of size B

(22)

In Figure 12 we plot D/N1/2 as a function of the ideal scaling variable. In fact, the scaling predic-

tion for ideal interfaces is recovered. We note that the crossover value of χN1/2, which is necessary

to reach the asymptotic behavior is of the order unity.

The order parameter which characterizes the adsorbed state can be defined as22

m =
2M
N

−1, (23)

where M is the number of monomers in contact with their own phase. For the disordered phase

(χ = 0), one has on average M = N/2 and thus m = 0, whereas at high values of χ , in the perfectly

ordered state, all monomers should be surrounded by their own species (M = N) and thus m = 1

should apply.

Using the excess blob picture, the number of the monomers of the "right“ species in a blob of

size g is given on average by g/2+αg1/2, where α is a numerical prefactor. Since there are N/g

blobs, we obtain M = (N/g)(g/2+αg1/2), and thus m = αg−1/2. Together with Equation (17)

this yields

m ∼ χ . (24)

This relation can be rewritten in terms of the scaling variable Equation (16) as

mN1/2 ∼ y (25)

In Figure 13 we plot mN1/2 vs the scaling variable. We can see that the scaling according to the
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Figure 11: Squared radius of gyration perpendicular to the interface (a) and parallel to the interface (b)
vs. the scaling variable Equation (16). The number of copolymers is nc = 50.
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D
 / 

N
1/
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~ y
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N = 16
N = 32
N = 64
N = 128

Figure 12: Square root D of the block averaged second moment of the copolymer density distribution as
defined in Equation (22), scaled with the square root of the RCP length N, vs. the scaling variable. Average
value over all blocks of size B = 16 (see Equation (22)). The number of copolymers is nc = 50.

above relation is fulfilled for the values of the scaling variable y <∼ 10.

0 20 40 60 80

χ Ν1/2
0

2

4

6

8

m
 N

1/
2

N = 16
N = 32
N = 64
N = 128

Figure 13: Rescaled order parameter as defined in Equation (25) vs. the scaling variable for nc = 20 and
different N.

3.4 Thermodynamic considerations

Besides adsorbing at the two-phase boundary, random copolymers can reduce their free energy

by forming random micelles in one of the bulk phases. It was even conjectured that the micellar
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phase could have a lower free energy than the adsorbed one. Our results for the monomer density

already indicate that this is not the case. In order to corroborate this finding by thermodynamic

arguments, we have simulated copolymers in the single (A) phase surrounding and have calculated

the potential energy of the chains

U = χ
N

∑
i=1

nAB(i). (26)

Here nAB(i) denotes the number of opposite species contacts of monomer i.

0 1 2 3 4 5 6 7
 χ

0

0,2

0,4

0,6

0,8

1

U
 / 

N
,  

  F
 / 

N

U(N = 16), at interface
U(N = 32), at interface
U(N = 64), at interface
U(N = 16), in bulk
U(N = 32), in bulk
U(N = 64), in bulk
F(N = 64), at interface
F(N = 64), in bulk

Figure 14: The potential energy and the free energy per monomer of the copolymers at the interface (open
symbols) and in the bulk (full symbols) for nc = 20 and different N.

In Figure 14 we display the results for the potential energy per monomer for the random copoly-

mers at the interface (open symbols) and in the pure bulk (full symbols). The potential energy

approximately scales with the chain length in both cases. Even though in the bulk the copolymers

indeed reduce their energy by micellization, the chain energy at the interface is still smaller and

thus the latter case is energetically more advantageous.

In order to obtain also the free energies, we simulate the values of χ down to the demixing

threshold (χc ≈ 2/Nh = 0.031) and exploit the thermodynamic integration procedure36

F(β ) =
1
β

∫ β

0
U(β ′)dβ ′ , (27)
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using the fact that β = 1/kBT can be identified with the interaction parameter ε in our Monte-

Carlo method. The results are represented by continuous lines on Figure 14 and show that inter-

face adsorption is clearly more favorable than bulk micellization, not only energetically but also

thermodynamically.

4 Conclusions

The localization of random copolymers (RCP) became a question of debate due to the possibility of

micellization of the copolymers in one-phase surrounding. The previous studies of ideal interfaces

could not discuss the polymers in one phase and thus could not account for the micellization effect.

Going beyond previous work we have simulated random copolymers in an explicit, strongly

separated two-phase surrounding. We note that our simulations also take into account the rough-

ness and thermal fluctuations of the interface between two homopolymer phases.

The results from the monomer density distributions already signalize that random copolymers

are located at the interfaces and their appearance in the bulk is negligible (except for the very rare

cases where a copolymer is anchored at both the interface and it’s periodic image). This means that

RCP finally adsorb at the interface between the two immiscible phases, regardless of their initial

position.

Using the method of the interfacial capillary waves hamiltonian, we calculated the reduction of

the inteface tension due to adsorption of the copolymers and compared it with a simple scaling pre-

diction. We also checked the scaling predictions for extensional properties of random copolymers

from the ideal interface studies (excess blob picture) and have shown that after appropriate correc-

tions (accounting for the non-flatness of the interface) the scaling arguments can be applied also

for fluctuating interfaces. At this point it is interesting to note that the copolymer chains display

a stretching in the direction parallel to the interface which can only be explained by an residual

excluded volume effect. Although the asymptotic exponent which corresponds to a crossover from

Gaussian to 2D excluded volume conformation statistics is not reached, excess blob scaling is
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satisfied. It remains an interesting question whether this behavior is due to the reduced density

and enhanced end-point concentration in the interface region or related to corrections to excluded

volume screening as proposed recently37.

To verify that the adsorbed state of the copolymers is thermodynamically stable, we have also

simulated random copolymers in a one-phase bulk and compared their free energy with that of

random copolymers at the two-phase boundary. We observe that even though the micellization of

RCP indeed leads to energy reduction, the adsorption at the two-phase interface displays the lower

free energy and is thus thermodynamically stable.

A more detailed study of random A-B micelles in pure homopolymer environment would be

of interest for future studies. Also the kinetical properties of the copolymers would be of interest.

Since the center of mass of an adsorbed copolymer experiences a randomly fluctuating force, a

significant slowing down of the dynamics can be expected38,39.
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