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Effect of the surface forces action on equilibrium profile of a meniscus in a vicinity of an apparent 

three phase contact line under a combined action of disjoining/conjoining and capillary pressures is 

modelled and analysed. 

 

 
 

Abstract 

Equilibrium profile of a capillary meniscus formed under combined action of 

disjoining/conjoining and capillarity pressures is investigated. Attention is focused on the shape of a 

transition zone between a spherical meniscus and a thin liquid film in front of the meniscus. 

Poisson-Boltzmann equation is used for calculations of electrostatic contribution to the 

disjoining/conjoining pressure and the liquid shape inside the transition zone. Both complete and 

partial wetting conditions are investigated. 
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1. Introduction 

 

Disjoining/conjoining pressure is a manifestation of surface forces acting in thin liquid layers. 

This concept was introduced and successfully investigated in the pioneering works of Derjaguin.
1,2

 

Since then this concept has had widespread applications in interactions in colloid systems, such as 

suspensions, emulsions, foams, liquid films on solid surfaces. The well-known DLVO theory of 

colloidal stability is completely based on the disjoining/conjoining pressure acting between 

colloidal objects (for example, particles/droplets).
1
 Disjoining/conjoining pressure also acts in a 

vicinity of a three-phase contact line in the case of wetting/spreading.
3
 However, for historical 

reasons the action of disjoining/conjoining pressure action in the case of wetting/spreading has 

received less attention. Still there is a number of publications where the effect of surface forces on 

wetting and spreading phenomena of liquids on solid substrates is considered (see
4-7

 and references 

therein).  

Liquid wetting films on solid substrates exist because the disjoining/conjoining pressure 

inside the liquid film is balanced by the capillary pressure in the neighbouring meniscus or droplet. 

Inside spherical part of a meniscus or a droplet the separation between the liquid-vapour and solid-

liquid interfaces is bigger than radius of the disjoining/conjoining pressure action. Hence, the shape 

of the meniscus or droplet is determined by the action of capillary pressure only.
3
 Hence, a 

transition zone must exist in between a droplet/meniscus and a flat thin liquid film in front where 

the disjoining/conjoining pressure and capillary pressure act simultaneously.
3,5,7

 The size and shape 

of the transition zone is essential because experimental measurements of equilibrium/hysteresis 

contact angles and surface curvature of bulk liquids are carried out outside this transition zone. It is 

well known that disjoining/conjoining pressure cannot be measured in the whole range of surface 

forces action
1
, hence, the shape of liquid inside the transition zone may supply information on the 

disjoining/conjoining pressure isotherm in the range where direct experimental measurements of 

disjoining/conjoining pressure are currently impossible.  

Below we model equilibrium liquid profiles inside the transition zone between a capillary 

meniscus and a thin liquid film in front. A low-slope approximation for the liquid interface in the 

transition zone is used which allows using isotherm of disjoining/conjoining pressure of flat liquid 

films.
1,8-9

 Equilibrium conditions in both normal and tangential directions are satisfied using this 

approach. Disjoining/conjoining pressure isotherms are obtained by direct solution of Poisson-

Boltzmann equation with appropriate boundary conditions. This enables us analysing the 
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electrostatic component of disjoining/conjoining pressure and its dependence on properties of the 

system under investigation. The effect of disjoining/conjoining pressure is discussed for both 

complete and partial wetting conditions.  

 

2. Disjoining/conjoining pressure and wetting phenomena 

2.1. Equilibrium flat wetting films 

Let us consider the conditions of equilibrium for flat wetting films in contact with a liquid 

meniscus or a droplet.  

Kelvin’s equation describes the change in vapour pressure over the curved liquid/vapor 

interface (for example, a capillary or a droplet)
20

: 

,     (1) 

where P
e
 = P

a
 – P

l
  is  the excess pressure; P

l  
is  the pressure inside the liquid; P

a
 is the pressure in 

the ambient vapour; v
m
 is the liquid molar volume; p

s
 and p are the saturated vapour pressure and 

the pressure over the curved interface, respectively; p
s
 is the equilibrium vapour pressure over a flat 

liquid surface. The excess pressure inside the droplet, Pe, should be negative (pressure inside the 

droplet is higher than the pressure in the ambient vapour). Thus, the right-hand side of Kelvin’s 

equation must be negative, which is possible only if p > ps; that is, droplets can only be at 

equilibrium with oversaturated vapour. It is difficult to investigate experimentally equilibrium 

droplets on solid substrates because it is necessary to maintain oversaturated vapour over the 

substrate under investigation for a prolonged period of time
3
. 

In contrast to a droplet equilibrium for a meniscus according to the Kelvin’s equation is 

possible with undersaturated vapour (Pe > 0 and p < p
s
). Note, equilibrium meniscus can exist in the 

case of both complete and partial wetting. The latter is different from equilibrium droplets, which 

can exist only in the partial wetting case; in the case of complete wetting droplets spread out 

completely. In this section we focus on the transition zone of a meniscus in the case of complete 

wetting.  

In Fig. 1 a schematic presentation of two possible shapes of disjoining/conjoining pressure 

isotherms is given. These types of dependence, Π(ℎ) , are typical for the sum of electrostatic and 

van der Waals components of the disjoining/conjoining pressure (DLVO theory). Dependency 1 in 

Fig. 1 corresponds to the complete wetting case, while curve 2 usually corresponds to the partial 

wetting case.  

�� = �	
� ln ���  
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The thickness he of the equilibrium wetting film in this case corresponds to the intersection of 

a straight line Pe > 0 with the disjoining/conjoining pressure isotherm: there is a only one 

intersection in the case 1 in Fig. 1, which corresponds to the complete wetting case. 

It could be three intersections of a straight line Pe > 0 (isotherm 2 in Fig.1) with the 

disjoining/conjoining pressure isotherm. However, hβ and hu are a metastable and an unstable 

equilibrium thicknesse, respectively; only he corresponds to a thermodynamically stable equilibrium 

thickness.
1,3 

 

 

Fig. 1. Schematic presentation of disjoining/conjoining pressure isotherms. 

(1) complete wetting case, (2) partial wetting case. 

he, hu, hβ – thicknesses of a stable, an unstable and a metastable wetting films respectively.
1,3

 

The shape of the isotherms is typical for a sum of electrostatic and van der Waals interactions 

(DLVO theory). 

 

The equilibrium contact angle in terms of disjoining/conjoining pressure is determined
1,3

 as 

    (2) 

where � is disjoining pressure; γ is the liquid-vapour interfacial tension. 

There are two possible situations in geometrical definition of equilibrium contact angle ��: 

(i) � � �� (Fig. 2, case 2), this situation is referred to as partial wetting case and contact angle 

is defined as cos θ� = �/�� � 1; 

cos �� = 1 � 1�� �(ℎ)�ℎ�
�  
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(ii) � ! �� (Fig. 2, case 1), this situation is referred to as complete wetting; the contact angle 

cannot be introduced geometrically. The case of complete wetting is characterised below by the 

ratio �/�� which can be referred to as ‘cos �� ! 1’. 

 

Fig. 2. A schematic presentation of two possible positions of a spherical meniscus inside a two 

dimensional capillary. 

(1) partial wetting, �� ! �, cos θ� = �/�� � 1; 

(2) complete wetting, �� � �, �/�� ! 1. 

 

For the complete wetting case the integral in the right-hand side in Eq.(2) is always 

positive
3,11

 (see curve 1 in Fig.1). For partial wetting conditions (cos �� � 1), the integral inh the 

right hand site of Eq. (2) of the disjoining/conjoining pressure is negative (Fig.1, curve 2). 

A statistical mechanics approach to the disjoining/conjoining pressure of planar films in 

application to wetting phenomena was presented in
21-22

. 

 

 

2.2. Equation for equilibrium liquid profile 

The excess free energy should reach its minimum value for any equilibrium liquid profile h(x). 

The following requirements must be satisfied for this to occur: (i) the first variation of the excess 

Gibbs free energy, δG, vanishes, (ii) the second variation, δ2
G, is positive, and (iii) the 

transversality condition at the three-phase contact line should be satisfied.
3
 The excess Gibbs free 

energy, G, of a non-flat liquid layer, for example, a droplet or a meniscus on a solid substrate is 

expressed in the absence of gravity
3,10

 as: 

refDe GGVPSG −++= γ ,      (3) 

where S, V, and GD are the excess vapour-liquid interfacial area, the excess volume, and the excess 

energy associated with the surface forces action, respectively; Gref is the excess free energy of a 

reference state, which is the excess free energy of an equilibrium flat liquid film of thickness he.   
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Below for simplicity only two dimensional equilibrium systems are under investigation. In 

this case the excess free energy (3) can be rewritten as: 

( ) ,)()(121
1

dxdhh

h

dhhhhPhG
eh

eeee∫ Π−∫
∞

Π+−+







−′+=

















∫
∞

γ
   (4) 

where ‘ denotes differentiation with respect to a coordinate x1 along the profile. The equilibrium 

liquid profile corresponds to the minimum of the excess free energy (4), which can be obtained 

using the Euler equation: 

,     (5) 

where " = �#√1 � ℎ′& − 1( � ��(ℎ − ℎ�) � ) Π�(ℎ)�ℎ�� − ) Π�(ℎ)�ℎ��  is the integrand in Eq. (4). 

This results in the following augmented Young-Laplace equation: 

. .   (6) 

In the case of a constant surface tension and in the low-slope approximation, (ℎ′)& ≪ 1, Eq. (6) 

takes the following form: 

 .    (7) 

The subscript e in Π� corresponds to the state of equilibrium between the capillary and disjoining/ 

conjoining pressures as described by Eq.(7). This is the equation for equilibrium meniscus profile 

satisfying the condition of the minimum of the excess free energy G in the low-slope approximation.  

 

3. Model description 

3.1. Model assumptions 

Let us consider an equilibrium transition zone II (Fig. 3) between a two dimensional capillary 

meniscus (I) and a flat wetting film (II). We use a rectangular coordinate system, (x1, x2), where x1, 

x2 are the tangential and normal coordinates, respectively. The width of the capillary, 2H, is 

assumed to be much larger than the thickness of the equilibrium flat film, he. In the case under 

consideration, the thickness of the liquid layer, h(x1), is a function of x1 only, as shown in Fig. 3, 

where the meniscus in the case of complete wetting is sketched: a continuation of a spherical 

meniscus (broken line) of radius re does not intersect either the solid walls of the capillary or the 

thin liquid film of thickness he. The partial wetting case is considered below in the next section. 

,",ℎ − ��-. ,",ℎ/ = 0 

�� − ��(ℎ) − ��-. �ℎ/11 � (ℎ/)	& = 0 

�ℎ/′ � ��(ℎ) = ��  
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7 

 

 

Fig. 3. A schematic presentation of a capillary meniscus in the case of complete wetting. 

The regions I, II, and III correspond to the spherical capillary meniscus, the transition zone and the 

flat equilibrium film, respectively. The radius of curvature of the meniscus, re, is smaller than the 

half width H. The values re and he are to be determined below. 

 

An aqueous solution of a binary univalent symmetric strong electrolyte is considered below. 

All surface forces additional to the capillary forces are supposed to be caused by electrostatic 

interaction between the charged surfaces only. All other surface forces (including van der Waals 

forces) are neglected on this stage. There is no flow under equilibrium conditions and all ion fluxes 

vanish. The surface tension is assumed constant, which is valid in the absence of surfactants.
12,13

 

 

3.2. Governing equations 

The expression for electrostatic component of disjoining/conjoining pressure was derived for 

the case of low-slope interface profile (see Appendix 1): 

( ) 0

2

2

2

0

2

0 2
2

)(
)exp()exp()(

2

2

RTc
xF

RT
RTch

hx

hx
−









∂
∂

−−+=Π
=

=

ϕεε
ϕϕ    (8) 

where 3 = Φ5/(�	) is a dimensionless potential in which the dimensional potential, Φ, is made 

dimensionless using F/RT, where F is the Faraday constant, R is the gas constant, and T is the 

absolute temperature, respectively; c0 is the molar electrolyte concentration; ε and ε0 are the 

dielectric constants of water and vacuum, respectively. 

Eq. (8) was obtained using Poisson-Boltzmann equation in combination of the condition of 

normal-stress balance for the interface profile (see Appendix 1 for details). Eq.(8) coincides with 

wel-known expression for electrostatic component of disjoining pressure obtained for flat films
1,16

. 

Derivation presented in Appendix 1 shows that it is also valid for the case of non-flat thin liquid 

layers in the case of low-slope approximation. 
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Calculation of the dependence Π(ℎ)  according to Eq.(8) requires the knowledge of two 

functions, 3(ℎ)  and 3/(ℎ),  at the liquid-vapour interface, -& = ℎ . These functions can be 

determined by numerical integration of Poisson-Boltzmann equation: 

    (9) 

The following boundary conditions are used below for integration of Poisson-Boltzmann Eq. 

(9) in order to calculate the electric potential distribution 3(-&) and ,3/,-& across the liquid film: 

a) constant surface electrical potentials on both liquid-solid and liquid-vapour interfaces: ϕs, ϕh 

= const; 

b) constant surface charge densities σs, σh = const. 

These two case are selected because according to Derjaguin et al.
1
 the cases ϕ= constant and 

σ= constant are the limiting cases for all possible boundary conditions: the minimum possible 

values of disjoining/conjoining pressure corresponds to the case ϕ= const, whereas the σ constant 

case corresponds to the maximum values of disjoining/conjoining pressure. All other physically 

possible situations for both an electric potential and surface charge variation on the boundaries 

results in disjoining/conjoining pressure isotherms located in between curves 1 and 2 (see below Fig. 

7). 

Conditions ϕs, ϕh = const or σs, σh = const mean that at variation of the thickness, h, the 

boundary values of potential ϕ or surface charge σ remain constant on both boundaries of the film 

(but variable inside the film). The situations when ϕs ≠ ϕh or σs≠ σh are rather common. 

The equilibrium interfacial profile under the action of the surface forces is described by the 

augmented Young-Laplace equation (6) or (7) originally proposed by Derjaguin
1
:.   

 Eq.(7) or (A14) in Appendix 1 are the particular cases of (6) for the low-slope interface 

(ℎ′& 	≪ 1); these equations are solved using the following boundary conditions: -. → ∞,ℎ = ℎ� , 	ℎ/ = 0       (10) 

The unknown values of the radius of the equilibrium meniscus, ��, and the thickness of the 

equilibrium flat film, he, are determined below before calculating the equilibrium profile. The latter 

is determined using  a procedure of matching the inner and outer asymptotic solutions (see 

Appendix 2).  

Eq. (6) for the flat film ( ℎ = ℎ�; 	ℎ/, ℎ// = 0 ) in combination with Eq. (8), solved 

simultaneously with Eq. (A17) gives a system of two equations for two unknown values he and ℎ∗ = � − ��: 

:;<:=;; = >;?@ABCC@ (exp(3) − exp(−3)). 
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 (11) 

The values he and h
*
 determined from Eqs. (11) allow calculating equilibrium meniscus 

profile inside the transition zone using Eq. (7). 

 

4. Results and discussion 

 

In this section distribution of electric potential is determined using boundary conditions of 

constant potential or constant charge. After that dependences of the disjoining/conjoining pressure 

and the shape of the interface are deduced. An aqueous solution of univalent strong electrolyte NaCl 

is used at temperature T = 293 [K]; bulk NaCl concentration c0 = 1 and 1×10
3
 [mole/m

3
]; surface 

tension of solution γ = 72.7 and 74.7×10
-3

 [N/m], respectively; the width of the capillary H = 3×10
-6

 

and 3×10
-7

, [m]. The well-known expressions
1,16

 relating σ and ϕ on the boundaries are used: G� = HHI AB> J:<:=;K=;L� for the liquid/vapour interface; 

G� = −HHI AB> J:<:=;K=;LI for the solid/liquid interface   (12) 

The Poisson-Boltzmann equation was solved for various values of separation h with the fixed 

boundary values of surface potentials or surface charges. Two cases are considered below: (i) 

symmetric potential profiles for electrically similar surfaces having the identical boundary values of 

either electric potentials or charges, that is, ϕs = ϕh or σs = σh; (ii) asymmetric profiles for 

electrically dissimilar surfaces having different boundary values of electric potentials or charges, 

that is, ϕs ≠ ϕh or σs ≠ σh. 

 

4.1. Electrically similar surfaces 

For the case ϕh,s = const, the electric potential ϕ changes inside the liquid, but the boundary 

values of ϕ are fixed. The constancy of the boundary potentials ϕh,s is achieved at the expense of a 

change in the surface charges, σh,s (see Fig. 4a). This change corresponds to variation of the slope 

of the curves ϕ(h) at both surfaces, as can be seen from Eq. (12). This variation in the charge 

corresponds to a redistribution of ions between the liquid phase and the surfaces due to 

adsorption/desorption. 

MNO
NPΠ�(ℎ�) = �	QI#R-�(3) � R-�(−3)(=;L� − (�	)&HHI25& T,3,-&U=;L� 

& − 2�	QI = �� − ℎ∗ℎ∗ = ℎ� � � − ℎ∗� � Π�(ℎ)�ℎ�
� 
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In this section symmetric boundary conditions ϕs = ϕh were selected. As a result, the surface 

charges are also symmetric: σs = σh. In this case (see Fig. 4b) the disjoining/conjoining pressure is 

positive, Π(h) >0, which corresponds to repulsion between the interfaces: this is the consequence of 

identical charges of both liquid-air and solid-liquid interfaces:  σs = σh. 

In the case of σh,s = constant two situations are considered below: the interacting surfaces are 

similarly charged, or oppositely charged. In the first case repulsion between the surfaces is expected, 

whilst in the second case attraction may take place.  

The results are presented in Fig. 5 (for the case of similarly charged surfaces, σs >0, σh >0) 

and in Fig. 6 (for the case of oppositely charged surfaces, σs >0, σh <0). In the case of identically 

charged surfaces, the identical values of surface potentials were obtained, that is, ϕs = ϕh (see Fig. 

5a). However, in the case of oppositely charged surfaces potentials ϕs and ϕh vary in a different way 

(Fig. 6a): similarly to the charges they are of opposite sign, ϕs = -ϕh. As a result in the case of 

identical charges of both interfaces, the repulsion is obtained, Π(h) > 0 (Fig. 5b); while in the case 

of oppositely charged interfaces, it results in attraction, Π(h) < 0 (Fig. 6b). However, Fig. 6b shows 

that in the second case dΠ/dh < 0, so any flat wetting films for this cased are unstable and flat films 

cannot exist under these conditions.
3,4

 

 

a)     b) 

Fig. 4. Dependencies of the surface charge (a), according to Eq. (12); disjoining/conjoining 

pressure isotherm (b), according to Eq. (8). The case of constant surface potentials, ϕh,s = constant. 

The parameter values are Φs = -15 mV, ϕs = -0.6; Φh = -15 mV, ϕh= -0.6. (a): 1 and 2 correspond to 

the solid/liquid (σs) and vapour/liquid (σh) interfaces, respectively. 
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a)                                                                  b) 

Fig. 5. Dependencies of the surface electric potentials (a); disjoining/conjoining pressure isotherm 

(b), according to Eq. (8). The case of constant surface charges, σs >0, σh >0, σh,s = constant, σs =27 

10
-3

 C, σh =27 10
-3

 C. (a): 1 and 2 correspond to the solid/liquid (ϕs) and vapour/liquid (ϕh) 

interfaces, respectively. 

  

a)                                                                  b) 

Fig. 6. Dependencies of the surface electric potentials (a); disjoining/conjoining pressure isotherm 

(b), according to Eq. (8). The case of constant surface charges, σs >0, σh <0; σh,s  = const, σs =27 

10
-3

 C, σh =-27 10
-3

 C. (a): 1 and 2 correspond to the solid/liquid (ϕs) and vapour/liquid (ϕh) 

interfaces, respectively. 

 

It is important to compare the disjoining/conjoining pressure isotherms presented in Figs. 4 

and 5. The dependencies have different character at small separations but coincide at large h (Fig. 7). 

The  latter is because at large distances only slight overlapping of the electric double layers takes 

place. However, in the case of small separations the interaction is stronger and the difference in 

boundary conditions becomes important. In the case σ = constant the disjoining/conjoining pressure 
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diverges as h→0 (curve 2), whereas for ϕ = constant disjoining/conjoining pressure (curve 1) has y-

axis intercept corresponding to the maximum possible value of Π(h).  

The disjoining/conjoining pressure isotherms calculated using Eq. (8) with two types of 

boundary conditions (Fig. 7) qualitatively agree with results of Derjaguin et al.
1
 As already was 

mentioned above according to Derjaguin et al.
1
 all other physically possible situations for both an 

electric potential and surface charge variation on the boundaries results in disjoining/conjoining 

pressure isotherms located in between curves 1 and 2 in Fig. 7.  

 

Fig. 7. Comparison of disjoining/conjoining pressure isotherms for different types of boundary 

conditions. 

Calculation using Eq. (8): 1.  ϕ = const = -0.6 (Φ = -15 mV), 2.  σ= const = -27 mC. 

 

 

4.2. Equilibrium flat liquid film  

Equilibrium condition for flat liquid films corresponds to equality of disjoining/conjoining and 

capillary pressures inside meniscus/drop, the film is in contact with. This equality follows from Eq. 

(6) at ℎ/, ℎ// = 0: 

( )
ehx

hx r
RTc

xF

RT
RTc

γϕεε
ϕϕ =−









∂
∂

−−+
=

= 0

2

2

2

0
0 2

2

)(
)exp()exp(

2

2

 

Solution of the latter equation corresponds to points of intersection of the disjoining/conjoining 

pressure isotherm and the straight line, as shown in Fig. 8,a. This intersection is always possible in 

the case σ= constant. However, in the case ϕ = constant the high values of the capillary pressure 

(� �� ! ΠVWX⁄ 	) cannot be counterbalanced by the disjoining/conjoining pressure; such situation 

occurs in thin capillaries at max/ Π< γer . 
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A maximum disjoining/conjoining pressure value Πmax is found below using the following 

consideration: the Maxwell part of the disjoining/conjoining pressure tends to zero at small 

separations (Fig. 8,b) at ϕs = ϕh = constant: lim�→I :<:=; = 0. Hence, the maximum value of the 

disjoining/conjoining pressure is equal to an excess osmotic pressure in the film as compared with 

the bulk phase: 

( ) 00max 2)exp()exp( RTcRTc hh −−+=Π ϕϕ      (13) 

   

a)                                                                    b) 

Fig. 8. Condition of equilibrium between disjoining/conjoining and capillary pressures (a); 

vanishing the Maxwell part of disjoining/conjoining pressure at small separations (b). 

 

Equating right hand site of Eq. (13) and γ	/��	, and assuming that γ	/�� 	\ 	γ	/�, the critical 

capillary half width H
cr

 corresponding to the equality ΠVWX = γ	/�?]  can be obtained as: 

.   (14) 

The dependence H
cr

 on electric potential Φ� = 3� �	 5⁄  is shown in Fig. 9.  

 

�?] = �QI�	(exp(3�) � exp(−3�) − 2) 
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Fig. 9. The critical capillary half width H
cr

 as a function of the electric potential on the boundary x2 

= h 

at T = 293 [K]; c0 = 1 [mole/m
3
]; γ= 72.7 × 10

-3
 [N/m]; ϕh,s = const. 

 

Fig. 9 shows that the equilibrium between the disjoining/conjoining and capillary pressures is 

possible only in the region H>H
cr

, where the capillary pressure is less than Πmax. The region H<H
cr

 

between the two branches of the dependence H
cr

(Φh) in Fig. 9 corresponds to thin capillaries and 

low potentials Φh. Inside this ‘prohibited’ zone the capillary pressure is too high or the 

disjoining/conjoining pressure is too low and, hence, equilibrium is impossible and  flat films do not 

exist.  

 

4.3. Interaction of electrically dissimilar surfaces 

In the previous section the cases ϕh,s = constant and σh,s = constant with symmetric conditions 

on both boundaries were considered. It was assumed that the values of the electric charge or electric 

potential were identical on both solid-liquid and liquid-vapour interfaces. Now we consider films 

with electrically dissimilar interfaces for values of electric potential (or surface charge) that are 

different on both the vapour-liquid and liquid-solid interfaces. Note in this case the boundary values 

are different, but still fixed, i.e. they are supposed not to depend on the film thickness h.  
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a) 

   

b)                                                                            c) 

Fig. 10. Interaction of electrically dissimilar surfaces for the case of constant surface potentials, ϕh,s 

= const. a) electric potential distribution, according to Eq. (9): ϕs = -2.12 (Φs = -53.5 mV), ϕh = -

0.42 (Φh = -10.6 mV); b) surface charges σh,s variation, according to Eq. (12): 1- liquid/vapour 

interface, 2- solid/liquid interface; c) disjoining/conjoining pressure isotherm according to Eq. (8). 

 

In the case of constant but different electric potentials ϕs ≠ ϕh, the calculations using the 

Poisson-Boltzmann Eq. (9) results in an asymmetric distribution of electric potentials (Fig. 10a). 

Since the boundary values of ϕ are fixed the surface charges σh,s vary (see Fig. 10b). In contrast to 

the previous calculations, where ϕs = ϕh, the charges on both boundaries in the present case vary in 

different ways and one of them even changes sign (see Fig. 10b). The disjoining/conjoining 

isotherm has a maximum in the case (Fig. 10c): at high separations repulsion prevails, whereas at 

small distances attraction is observed. 
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a) 

    

b)                                                                            c) 

Fig. 11. Interaction of electrically dissimilar surfaces for the case of constant surface charges, σh,s = 

const: a) electric potential distribution, according to Eq. (9):  σs = -27 mC,  σh = 270 mC; b) surface 

potentials ϕh,s variation: 1- liquid/vapour  interface, 2- solid/liquid interface; c) 

disjoining/conjoining pressure isotherm according to Eq. (8). 

 

In Fig. 11 the asymmetric constant charge case is presented: the boundary values of σ are 

fixed, whereas the boundary electric potentials change and the dependences ϕh(h) and ϕs(h) do not 

coincide (see Fig. 11b). The disjoining/conjoining pressure isotherm has a minimum in this case 

(see Fig. 11c): an attraction at large separations and a repulsion at small separations.  
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Let us consider as an example ϕh,s = constant, which is presented in Fig. 10,a in order to 

understand why the disjoining/conjoining pressure isotherms have a complicated form including the 

extrema. Since the electric potentials on the boundaries are constant disjoining/conjoining pressure 

can change only due to a variation of the Maxwell part of disjoining/conjoining pressure (see Eq. 

(8)). 

It is possible to identify three intervals of h values corresponding to the different parts of the 

disjoining/conjoining pressure isotherms (see Fig. 12). In the first interval of low h values the 

gradient ,3 ,-&⁄  tends to infinity because for this case ϕh,s = constant, hence, the difference ∆ϕ=ϕh 

- ϕs tends to a constant value at x2→0 (Fig. 12, region 1). According to Eq. (8) this implies that 

Π→∞ at low separations h between the surfaces. In region 2 of the intermediate values of h, the 

gradient ,3 ,-&⁄  decreases and at a certain h it becomes equal to zero (Fig. 12, region 2). Under 

these conditions the Maxwell part of disjoining/conjoining pressure is absent and the 

disjoining/conjoining pressure takes its maximum value which is equal to the excess osmotic 

pressure in the film according to Eq. (13). Finally, at large distances h, the gradient ,3 ,-&⁄  

becomes negative, reaches its limiting value and does not depend anymore on the increase of h (Fig. 

12, region 3). In this region the surfaces are non-interacting, and the Maxwell part becomes constant 

which exactly equals to the excess osmotic pressure, Πmax, Eq. (13). This is the reason why the 

disjoining/conjoining pressure tends to zero at large separations.  

The above consideration shows that the maximum of the disjoining/conjoining pressure 

isotherm is related to the sign change of the gradient ,3 ,-&⁄  , which is proportional to the surface 

charge σ (see Eq. (12)): one of the surfaces changes sign of its charge in response to the variation in 

h (see also the calculated σ-dependences in Fig. 10,b). This phenomenon is referred to as a surface 

charge reversal or overcharging.
18,19

 However, the disjoining/conjoining pressure changes its sign 

not at the point of overcharging, but at the point where the Maxwell part of disjoining/conjoining 

pressure in Eq. (8) becomes equal to the osmotic part. 

A similar analysis can be made for other asymmetric cases. For the condition σh,s = constant 

shown in Fig. 11 the minimum on the disjoining/conjoining pressure isotherm is explained by the 

variation of the osmotic part of disjoining/conjoining pressure at the constant Maxwell part. For 

large values of h the electrostatic attraction prevails because the osmotic pressure is weak. At short 

distances the osmotic pressure in the thin film increases and exceeds the magnitude of the Maxwell 

term, hence, repulsion is prevailing in this region of thicknesses. 

 

Page 17 of 36 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



18 

 

 

a) 

      

b)      c) 

Fig. 12. Analysis of complex character of disjoining/conjoining pressure isotherm for the case ϕh,s = 

const; ϕs = -2.12; ϕh = -0.42. Three types of electric potential profiles (a); the potential distributions 

at h variation (b); the calculated disjoining/conjoining pressure isotherm (c). 

 

 

4.4. Equilibrium liquid profile inside the transition zone 

Equilibrium liquid profile inside the transition zone is calculated using Eq. (7) obtained from 

minimising the excess free energy or using Eq. (A14) obtained from the normal stress balance. The 

radius of the equilibrium meniscus, �� = � − ℎ∗	, and the thickness of the equilibrium flat film, he 

are determined by solving the set of Eqs. (11). 

The right boundary of the transition zone in x1-direction was determined from the condition 

that the calculated profile should be smoothly connected with a spherical part of meniscus. The 

following parameters were used in the calculations below: T = 293 [K]; c0 = 1 [mole/m
3
]; γ =   

72.7×10
-3

 [N/m]; H = 3×10
-6

, [m].  

The results of the calculations are presented in Fig. 13. These results confirm that the high 

values of Π obtained for the highly-charged or high-potential surfaces correspond to thicker flat 
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equilibrium films (with high capillary pressure). That is, the higher values of the 

disjoining/conjoining pressure the larger the thickness of the flat equilibrium film, he (Fig. 13).  

In the case ϕ = constant the disjoining/conjoining pressure reaches the maximum value ΠVWX 

at h→0 (see the inset in Fig. 13,a). Hence, a critical value of the meniscus radius exists (see Eq. 

(14)) beyond which equilibrium between the disjoining/conjoining and capillary pressures is no 

longer possible as discussed above. Thus, equilibrium film thickness he cannot increase indefinitely 

in the case ϕ = const: a maximum possible value of he exists in this case. In contrast, in the σ = 

constant case the film thickness is not limited by ΠVWX because the disjoining/conjoining pressure 

increases indefinitely at small h (see the inset in Fig. 13,b).  

The distribution of the normal stress components in Eq. (7) along x1 coordinate is given in Fig. 

14. The figure illustrates a definition of the transition zone between the flat film and the spherical 

meniscus as discussed above. 

 

a) 
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b) 

Fig. 13. Equilibrium liquid profiles calculated according to the described above procedure. 

(a) ϕh = ϕs = const; (b) σh = σs = const. 

 

 

Fig. 14. The normal stress components as functions of x1 coordinate. 

1 – capillary pressure due to the profile curvature, �ℎ′′; 2 – disjoining/conjoining pressure, Πe; 3 – 

total pressure, �ℎ// � Π�; 4 – excess pressure, Pe, which is capillary pressure for a spherical 

meniscus, �/�� = �ℎ// � Π�. 

(I) – zone of a spherical meniscus; (II) – transition zone; (III) – zone of a flat capillary film (see Fig. 

3). The complete wetting case: σs= -50 mC, σh= -50 mC. 
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4.5. Effect of the van der Waals component  

In the previous section only electrostatic component of the disjoining/conjoining pressure was 

taken into account. The effect of the van der Waals component, Π^, is calculated as follows
1
: 

      (15), 

where _ = −_`  is referred to hereafter as the ‘Hamaker constant’; _`  is the original Hamaker 

constant; h is the separation between the interfaces. The positive (negative) values of the constant A 

correspond to repulsion (attraction). The following parameters were used in the calculations below: 

T = 293 [K]; c0 = 1×10
3
 [mole/m

3
]; γ = 74.7×10

-3
 [N/m]; H = 3×10

-7
, [m]. 

For the case of repulsive intermolecular interaction the inclusion of Π^ should increase the 

disjoining/conjoining pressure and, as a result, lead to a higher thickness of equilibrium film. In Fig. 

15 the different types of disjoining/conjoining pressure isotherms and the liquid profiles are 

presented. The dashed lines correspond to the case when the disjoining/conjoining pressure includes 

the electrostatic component only, i.e. Π = Πa . The solid lines correspond to the full DLVO 

interaction: Π = Πa � Π^ . Lines 1, 2 in Fig. 15 were calculated for a “weaker” electrostatic 

component (Φs = Φh = -30 mV), lines 3,4 were obtained for a “stronger” electrostatic interaction 

(Φs = Φh = -150 mV). 

In the case of weaker electrostatic interaction (Fig. 15 curve 1), the van der Waals component 

creates a significant increment in the disjoining/conjoining pressure and the film thickness increases 

considerably (Fig. 15 curve 2). For the stronger electrostatic interaction (Fig. 15 curve 3), the 

contribution of the van der Waals component to the disjoining/conjoining pressure is less significant, 

and only a slight increase in the film thickness is observed (Fig. 15 curve 4). 

In Fig. 15 the case of the constant surface potentials, ϕh = ϕs = constant is presented. For the 

case σh = σs = constant, the effect of Π^ is similar. The van der Waals component leads to an 

increase in the disjoining/conjoining pressure values and, as consequence, to a growth of the flat 

film thickness. Additional data on the influence of the disjoining/conjoining pressure components 

on the liquid profile parameters are shown in Fig. 16. 

As in Fig. 15 the dashed lines correspond in Fig. 16 to the case of electrostatic component 

only, Π = Πa. The solid lines correspond to the full disjoining/conjoining pressure: Π = Πa � Π^. 

Fig. 16 illustrates how the electric properties of the surfaces and van der Waals interaction influence 

the values of he (the equilibrium film thickness) and ℎ∗, where  ℎ∗ = � − ��) (see Fig. 3). 

 

Π^ = _6cℎd 
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Fig. 15. Influence of van der Waals component of disjoining/conjoining pressure on the liquid 

profile for the case  ϕh = ϕs = const. The thick dashed lines: a single electrostatic component of 

disjoining/conjoining pressure; the solid lines: electrostatic + van der Waals components of 

disjoining/conjoining pressure (Hamaker constant A = 5×10
-21 

J). 1. Φs,h = -30 mV, Π = Πa; 2. Φs,h 

= -30 mV, Π = Πa � Π^; 

3. Φs,h = -150 mV, Π = Πa; 4. Φs,h = -150 mV, Π = Πa � Π^. 

 

For the case of constant surface potentials, ϕh = ϕs = const (Fig. 16,a), the higher the absolute 

value of electric potential the bigger the values he and h
*
. In the case of full disjoining/conjoining 

pressure (solid lines), the disjoining/conjoining pressure is higher due to van der Waals interaction 

and there is an increase in he and h
*
 values in comparison with a case of a single electrostatic 

component (dashed lines). As also shown in Fig. 16,a the biggest difference between the cases Πa 

and Πa � Π^ is observed at Φ values close to zero (curves 1,2 vs. 3,4 in Fig.16,a): the influence of 

the van der Waals component is the most pronounced at a low electrostatic interaction. The effect of 

the van der Waals interaction on he and h
*
 reduces while increasing the electrostatic part of 

disjoining/conjoining pressure. 
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a)                                                                        b) 

Fig. 16. Dependence of he and h
*
 on the surface values of electric potentials (a) and the surface 

charge densities (b). 

a) constant surface potentials, ϕh = ϕs = const; b) constant surface charges, σh = σs = const.  

1,2  - electrostatic component only, Π = Πa; 3,4 - sum of electrostatic and van der Waals 

components, Π = Πa � Π^ (A = 5×10
-21 

J). 

1,3 - equilibrium film thickness he; 2,4 -  ℎ∗ = � − ��. 

 

When the electrostatic component is the only one contributing to disjoining/conjoining 

pressure (curves 1,2 in Fig. 16,a) the curves he and h
*
 do not tend to zero at Φ→0. The zero value of 

he corresponds to a certain critical value of electric potential Φcr
 (Fig. 16,a), because the meniscus 

cannot exist at very low electric potentials, when Φ < Φcr
. The critical value of Φ is related to a 

magnitude Πmax (see Eq. (13)) beyond which equilibrium between disjoining/conjoining and 

capillary pressures is impossible. The value of Πmax decreases with Φ decrease, and at value Φcr
 the 

magnitude Πmax becomes too low to counterbalance the existing value of capillary pressure. Thus, a 

critical electric potential Φcr
 is a parameter similar to a critical capillary width H

cr
, which was 

introduced earlier (Eq. (14)). These both parameters follow from the condition of the equilibrium 

between capillary and disjoining/conjoining pressures (see section 4.2). For the case presented in 

Fig. 16,a, the critical value Φcr
 = - 7.8 mV. 

For the case of full DLVO interaction, Π = Πa � Π^  (solid lines in Figs.16,a,b) the 

magnitudes he and h
*
 tend to non-zero values at Φ→0 (Fig.16,a) or σ→0 (Fig.16,b). These non-zero 

values of he and h
*
 are the same for both cases and correspond to conditions when the van der 

Waals interaction included only, i.e. Π = Π^, Πa = 0.  
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If disjoining/conjoining pressure includes the electrostatic component only (dashed lines for 

the case σh = σs = const (Fig.16,b)) then the dependencies he and h
*
 tend to zero at σ→0 (in contrast 

to situation in Fig.16,a): equilibrium between disjoining/conjoining and capillary pressures is 

possible at very small thicknesses h in the case σh = σs = const (see Fig. 8). Fig.16,b shows also that 

the difference h
*
 − he decreases at σ→0 (lines 1,2). That means the shrinking of the transition zone 

between a spherical meniscus and a flat wetting film in the case of constant surface charges. 

 

4.6. Equilibrium liquid profile under partial wetting conditions 

The previous consideration was carried out for the case of complete wetting conditions. To 

calculate the liquid profile for the partial wetting case it is necessary to use the 

disjoining/conjoining pressure isotherm which includes the attractive interaction (negative values of 

disjoining/conjoining pressure) and gives the values cos �� � 1 calculated according to Eq. (2).  

For the case of partial wetting the continuation of the spherical meniscus intersects the flat 

liquid film at a contact angle �� (Fig. 17). Since the values of �� could be high the condition ℎ/ ≪ 1 

used above could not be always satisfied for the case of partial wetting conditions. The set of Eqs. 

(11) deduced for the case of complete wetting is not applicable anymore for the calculation of the 

film thickness he and the meniscus radius re. 

 

Fig. 17. Meniscus in the case of partial wetting.  

In this case �� ! �, so ℎ∗ = � − �� � 0. 

 

In this case it is more convenient to solve directly Eq. (6). Integration of this equation using 

boundary condition 		ℎ/(ℎ → �) = −∞ results in the following first-order differential equation: 

 .    (16) 

�ℎ�-. = −e−1 � �&f��� (� − ℎ) − ) Π��ℎ�� g& 
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Solution of Eq. (16) should satisfy the boundary conditions in the region of a flat film: ℎ(∞) = ℎ�; 	ℎ/(∞) = 0. 

Substitution of ℎ = ℎ� and ℎ/ = 0 into Eq. (16) and using �� = � − ℎ∗ gives a relation between ℎ∗ 
and ℎ�: 

.    (17) 

Thus, the values h
*
 and he are found by solving Eq. (17) in combination with the first equation from 

the system (11). After this the liquid profile in the transition zone is calculated according to Eq. (16). 

An example of the calculation for the partial wetting case in comparison with the complete 

wetting conditions is given in Fig. 18. This figure shows that the transition between the flat film and 

the spherical meniscus is sharter in the case of partial wetting (curve 2 in Fig. 18). This behaviour is 

caused by the attractive part of the isotherm for the case of partial wetting conditions (see inset in 

Fig. 18).  

A distribution of the normal stress components in x1 direction (Fig. 19) shows that 

disjoining/conjoining pressure (curve 2) is positive in the zone III of a flat film, then it changes its 

sign in the transition zone II (becomes negative with h increase, according to the isotherm form). At 

high h in the region III of spherical meniscus, disjoining/conjoining pressure tends to zero. The 

value of local capillary pressure �h = �ℎ///(1 � ℎ/&)d/&  (curve 1) changes oppositely to 

disjoining/conjoining pressure so that a total pressure (a sum of disjoining/conjoining and capillary 

pressures, curve 3) remains constant along x1 axis (Fig. 19).  

The values of a local capillary pressure directly determine a shape of the liquid profile. 

Capillary pressure takes the maximum value under the complete wetting conditions in the region of 

a spherical meniscus (Fig. 14, curve 1), i.e. the liquid profile has the maximum curvature in this 

area. In the partial wetting case capillary pressure reaches the maximum inside the transition zone 

(Fig. 19, curve 1), so the liquid profile has the maximum curvature here (Fig. 18, curve 2).  

ℎ∗ = � − � − ℎ�1 � 1� ) Π��ℎ��  
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Fig. 18. Comparison of the liquid profiles for the cases of complete and partial wetting. 

1. complete wetting (θe=0): σs= -100 mC, σh= -10 mC, Π^ = 0; 2. partial wetting (θe=10.4°): σs= -

100 mC, σh= 10 mC, Π^ = 0; QI = 1 mole m
-3

. 

 

The partial wetting case presented in Figs. 18 and 19 is characterized by the value of the 

equilibrium contact angle θe=10.4°. This value was calculated using Eq. (2)  at he = 1.85×10
-9

 m.  It 

should be noted that only one of the possible types of the equilibrium liquid profile under the partial 

wetting conditions is presented in Fig. 18. Other forms of the transitional profiles and other values 

of θe can be found by variation of the disjoining/conjoining pressure isotherm.  

The character and intensity of the surface forces have a decisive effect on the liquid profile 

inside the transition zone. In general a growth of a flat film thickness is observed with an increase 

of the disjoining/conjoining pressure values due to augmentation of the electrostatic or van der 

Waals components.  
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Fig. 19. The normal stress components as functions of x1 coordinate for the case of partial wetting. 

1 – capillary pressure due to the profile curvature, �h; 2 – disjoining/conjoining pressure, Πe; 3 – 

total pressure, �h � Π�; 4 – excess pressure, �� = �/�� = �h � Π�. 

(I) – zone of a spherical meniscus; (II) – transition zone; (III) – zone of a flat capillary film (see Fig. 

3). The partial wetting case (θe >0): σs= -100 mC, σh= 10 mC, Π^ = 0, θe= 10.4°. 

 

 

5. Conclusion 

Inside a transition zone between the spherical part of a meniscus and a thin wetting film in 

front the combined action of capillary and disjoining/conjoining pressures determines the liquid 

shape. The model was developed for both complete and partial wetting cases. The low-slope 

approximation for the liquid profile inside the transition zone was used. Expression for the 

electrostatic component of disjoining/conjoining pressure was derived. The equilibrium meniscus 

radius and film thickness were obtained using a method of matching of the inner and outer 

asymptotic solutions. Both cases of complete and partial wetting are considered. 

The presented theory allows calculating equilibrium liquid profile inside the transition zone, 

equilibrium contact angles, the disjoining/conjoining pressure isotherms, and the distribution of 

electric field inside the liquid phase. The electrostatic parts of the disjoining/conjoining pressure 

isotherms were calculated by solving the Poisson-Boltzmann equations. The cases of different 

boundary conditions for electric potential distribution at liquid/vapour and liquid/solid interfaces 

were considered and compared. 
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In the case of the interacting surfaces with similar charges or potentials the electrostatic 

component of disjoining/conjoining pressure, Π(ℎ),  is a monotonous function (completely 

increasing or decreasing). In the case of dissimilar interacting surfaces the dependency Π(ℎ) can 

include maximum or minimum. This complicated form of disjoining/conjoining pressure isotherms 

is explained by the fact that the osmotic and Maxwell parts of the electrostatic interaction changes 

in different way in response to the variation of h. As a result the difference between them (equal to Π(ℎ)) can change its sign and include the extrema. 

Our results prove that the form of the disjoining/conjoining pressure isotherm has a decisive 

effect on the shape of the equilibrium interfacial profile inside the transition zone: the higher 

disjoining/conjoining pressure, the larger the thickness of the equilibrium flat film and the lower 

value of the radius of equilibrium meniscus. For the partial wetting case isotherms have a negative 

(i.e. attractive) part on the interaction curve: the deeper the attraction minimum the thinner the 

equilibrium flat film and the higher the contact angle value. The sharper form of the profile within 

the transition zone for partial wetting case is related to the attraction minimum: the stronger the 

attraction the sharper the transition between the flat film and spherical part of the meniscus. The 

inclusion of the van der Waals component in the disjoining/conjoining pressure leads to its increase, 

and, as a result, a growth of the flat film thickness and a decrease of the meniscus radius. 

A critical width of capillary is introduced for characterisation of the possibility of the flat film 

existence in thin capillaries: at small H the capillary pressure is high and cannot be counterbalanced 

by the electrostatic component of disjoining/conjoining pressure which has the limiting maximum 

value Π�i=  for the case of constant surface electric potentials. For the flat films under these 

conditions the mechanical equilibrium is impossible, the equilibrium thickness, he, of the films 

tends to zero. Similarly, the critical value of the surface electric potential is introduced: for the 

potential values below the critical one the electrostatic interaction is too weak and the 

disjoining/conjoining pressure cannot counterbalance the existing value of capillary pressure. There 

is a ‘prohibited’ zone characterized by low values of the surface potential and small values of the 

capillary width H, where the equilibrium between capillary and disjoining/conjoining pressures is 

not achieved.  
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Appendix 1 

Expression for electrostatic component of disjoining/conjoining pressure  

The electric field distribution inside the liquid is described by the Poisson equation: 

q
xx

−=








∂
Φ∂

+
∂

Φ∂
2

2

2

2

1

2

0εε  ,     (A1) 

where q is electric charge density, which is a function of the ion concentrations: j = 5kQl(-., -&) − Qm(-., -&)n. 
The flux of ions o± = −q±∇Q± ∓ 5 (�	)⁄ q±Q±∇t vanishes at equilibrium in any direction, where 

±D  are diffusion coefficients. 

Let us introduce a dimensionless electric potential as
RT

FΦ
=ϕ . Then, the equation for ion flux 

becomes ϕ∇∇−= ±±±±± cDcDJ m
r

. Hence, from the equilibrium conditions, we have: 
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Integration of the latter two equations results in  

)exp()(),(

)exp()(),(
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±±

±±

=

=

 ,    (A2) 

where )(),( 1221 xAxA ±±  are integration functions. Comparison of the latter two equations shows 

that ±±± === aconstxAxA )()( 1221 . In the bulk solution, where the electric potential is equal to 

zero, electroneutrality is satisfied, hence, a+=a-=c0, where c0 is concentration of anions and cations 

in the bulk solution. That is, the concentrations from Eq. (A2) can be rewritten as  

)exp(),( 021 ϕmcxxc =±       (A3) 

Substitution of Eq. (A3) into Eq. (A1) results in the well- known Poisson-Boltzmann equation for 

the electrical potential: 

( ))exp()exp(
0

0

2

2

2

2

2

1

2

ϕϕ
εε

ϕϕ
−−=









∂

∂
+

∂

∂
RT

cF

xx
    (A4) 
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According to the low-slope assumption we can neglect variations with respect to x1 inside the 

transition zone (,		 ,-. ≪ ,		 ,-&⁄⁄ ):  

( ))exp()exp(
0

0

2

2

2

2

ϕϕ
εε

ϕ
−−=

∂

∂
RT

cF

x
    (A5) 

In the case of equilibrium, the momentum equations in the x1 and x2 directions are expressed 

as follows
14,15

: 

0
11

=
∂
∂

−
∂
∂

−
xF

RT
q

x

p ϕ
,      (A6) 

0
22

=
∂
∂

−
∂
∂

−
xF

RT
q

x

p ϕ
.      (A7) 

Substitution ( ))exp()exp(0 ϕϕ −−= Fcq  into the latter two equations results in  

( )[ ] 0)exp()exp(0

1

=−+−
∂
∂

ϕϕRTcp
x

. 

( )[ ] 0)exp()exp(0

2

=−+−
∂
∂

ϕϕRTcp
x

. 

Integration of these equations yields  

( ) 10 )exp()exp( CRTcp =−+− ϕϕ     (A8) 

where C1 is an integration constant. Eq. (A8) shows that the sum of the hydrostatic and osmotic 

pressures remains constant throughout the whole system.  

The excess pressure Pe in Kelvin’s equation given by Eq. (1) is equal to the capillary pressure 

in the region of the spherical meniscus (region I in Fig 3): 

ee

s

m rp

p

v

RT γ
=ln ,       (A9) 

The normal stress balance for a liquid film in the transition zone
3
 is: 

hx
h

h

dx

d
EEp =

′+

′
=+−+− 2

2
1

2

20

2

0 ,
1

 

2

1 γ
εεεε   (A10) 

where 
i

i
xF

RT
E

∂
∂

−=
ϕ

 is the electric field. 

Taking into account that ,		 ,-. ≪ ,		 ,-&⁄⁄ , Eq. (A10) can be written as: 

h
xF

RT
p

hx

hx
′′=









∂
∂

+−
=

=
γ

ϕεε
2

2

2

0

2

2

2 2

)(
     (A11) 

Combination of Eqs. (A11) and (A8) results in: 

01 2)( RTcChh −=Π+′′γ      (A12), 

Page 30 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



31 

 

where 

( ) 0

2

2

2

0

2

0 2
2

)(
)exp()exp()(

2

2

RTc
xF

RT
RTch

hx

hx
−









∂
∂

−−+=Π
=

=

ϕεε
ϕϕ    (A13) 

is the normal component of disjoining/conjoining pressure, Π, which coincides with the well-known 

expression for the electrostatic part of the disjoining/conjoining pressure.
1,16

 According to Eq. (A13) 

at high separations  Π(ℎ → ∞) = 0 and 3(ℎ → ∞) = 0. These conditions mean that the electric 

field and disjoining/conjoining pressure vanish at large distance between the surfaces. 

It is easy to check that the disjoining/conjoining pressure is constant in the normal direction 

by differentiating Eq. (A13) with respect to x2 : 

( ) 0)exp()exp(
2

2

2

22

00

2

=
∂
∂













∂
∂








−−+=
Π

xxF

RT
RTc

dx

d ϕϕ
εεϕϕ . 

Since the terms in the bracket correspond to the Poisson-Boltzmann equation, it follows that the 

disjoining/conjoining pressure remains constant in the normal direction not only in the case of flat 

films,
5,9

 but also in the case of low-slope films. Hence, to write down a normal stress balance, any 

x2 plane can be chosen. In the above expressions a value x2=h corresponding to a vapour/liquid 

interface was selected. The constant in Eq. (A12) becomes 
er

RTcC
γ

=− 01 2  and 01 2RTc
r

C
e

+=
γ

. 

Hence, the equation for the liquid profile is 

e

e
r

hh
γ

γ =Π+′′ )( ,     (A14) 

and ( )
er

RTcp
γ

ϕϕ +−−+= 2)exp()exp(0 . 

Equation (A14) has been obtained using the condition of normal stress balance, Eq. (A10). 

The obtained equation coincides with Eq. (7) which was derived from the principle of the excess 

free energy minimisation (4). Thus, the same equation is obtained in this section using completely 

different approach. 

 

 

Appendix 2 

The matching inner and outer solutions 

The equilibrium film thickness he and the meniscus radius re (see Fig. 3) are determined by 

matching the inner and outer asymptotic solutions. In region I where electrical double layers do not 

overlap, the liquid profile is described as follows: 
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( )[ ] *

2/32'

''

1 hH
P

h

h
e −

==
+

γγ
, 

where *hHre −=  (see Fig 3). 

Integration of the latter equation with boundary condition h(0)=H results in the following solution 

for the spherical meniscus: 

( ) ( )( )2

*1

2

*1)( hHxhHHxh −−−−−=     (A15) 

Introducing the dimensionless variables: ξ = h/he, and y = [x1-(H-h* )]/l , where l is a length scale 

along x1, ( )*hHhl e −= , which is the length scale of the transition zone. Using these variables Eq. 

(A15) can be rewritten close to the position of the minimum film thickness in Fig. 3: 

2

*
)(

2y

h

h
y

e

+=ξ .     (A16) 

The unknown value 
eh

h*
 can be determined by matching the solution according to (A16) and inner 

solution, Eq. (A14), at y→-∞. 

Let us introduce the same dimensionless variables ξ and y in Eq. (A14): 

1)(,1)(
2

2

=∞=+ ξξ
ξ

f
dy

d
, 

where )(
*

)( h
hH

f eΠ
−

=
γ

ξ . Let us introduce a new unknown function in the latter equations: 

ξξ ′=)(p ; then, 0)1(),(1)()( =−=′ pfpp ξξξ . After integration  











−−−=′ ∫

ξ

ξξξξ
1

)(12 df  

From the latter equation at −∞→y : 









+−−=′ ∫

∞

1

)(122 ξξξξ df  

Eq. (A16) can be also rewritten as: 

eh

h*2
2 −−=′ ξξ  

Comparison of the two latter equations results in: 
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+= ∫

∞

1

)(1* ξξ dfhh e
. 

Hence, the following relation between he  and h* should be satisfied for matching of the inner and 

outer solutions: 

  (A17) 
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