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ABSTRACT 

Macromolecular scaffolds made of polymer-wrapped single-walled carbon nanotubes 

(SWCNTs) have been explored recently (Zhang et al., Nature Nanotechnology, 2013) as a new 

class of molecular–recognition motifs. However, selective analyte recognition is still challenging 

and lacks the underlying fundamental understanding needed for its practical implementation in 

biological sensors. In this report, we combine coarse-grained molecular dynamics (CGMD) 

simulations, physical adsorption/binding theories, and photoluminescence (PL) experiments to 

provide molecular insight into the selectivity of such sensors towards a large set of biologically 

important analytes. We find that the physical binding affinities of the analytes on a bare SWCNT 

partially correlate with their distribution coefficients in a bulk water/octanol system, suggesting 

that the analyte hydrophobicity plays a key role in determining the binding affinities of the 

analytes considered, along with the various specific interactions between the analytes and the 

polymer anchor groups. Two distinct categories of analytes are identified to demonstrate a 
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complex picture for the correlation between optical sensor signals and the simulated binding 

affinities. Specifically, a good correlation was found between the sensor signals and the physical 

binding affinities of the three hormones (estradiol, melatonin, and thyroxine), the 

neurotransmitter (dopamine), and the vitamin (riboflavin) to the SWCNT-polymer scaffold. The 

four amino acids (aspartate, glycine, histidine, and tryptophan) and the two monosaccharides 

(fructose and glucose) considered were identified as blank analytes which are unable to induce 

sensor signals. The results indicate great success of our physical adsorption-based model in 

explaining the ranking in sensor selectivities. The combined framework presented here can be 

used to screen and select polymers that can potentially be used for creating synthetic molecular 

recognition motifs.  

Keywords: coarse-grained molecular dynamics simulation, physical adsorption and binding, 

carbon nanotube, biological sensor. 

 

1. INTRODUCTION 

Highly-selective molecular recognition (molecular complementarity) of the target species 

by the host plays an important role in many biological systems involving interactions between 

receptor-ligand,
1
 antigen-antibody,

2
 DNA-protein,

3
 sugar-lectin,

4
 and RNA-ribosome.

5
 This 

selectivity is a key consideration in the pharmaceutical and biomedical industries for the rational 

design of drugs.
6
 It also plays a key role in the functionality of artificial chemical sensors and 

molecular devices for biomedical (e.g., cancer cell detection),
7, 8

 environmental (e.g., toxic agent 

monitoring),
9, 10

 and national security (e.g., anti-biochemical weapon) applications.
11, 12
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However, sensors that utilize proteins are batch-dependent, fragile, expensive, and 

difficult to control and manufacture, which limits their use in various applications.
13-15

 This has 

motivated researchers to design and create synthetic constructs that can specifically recognize 

molecules of interest, including implementing these molecular recognition motifs for sensing 

applications. Novel chemical sensors based on nanomaterials, including nanoparticles,
16, 17

 

nanowires,
18, 19

 graphene,
20-22

 and SWCNTs
7, 23-25

  (usually functionalized with polymers as 

surface receptors), present great challenges in determining the molecular conformation of the 

new receptor (the nanomaterial-polymer complex), as well as in designing chemical structures of 

the polymer in order to achieve high selectivities towards certain guest molecules (analytes).  

A new class of molecular-recognition motifs for solution-phase chemical sensing has 

been identified recently using SWCNT-polymer complexes.
26, 27

 This new engineering-designed 

recognition motif relies on the wrapping morphology and solution-phase properties of the 

polymers, and therefore, differs from the antibody-antigen type mechanism associated with 

antibody-conjugated SWCNT sensors.
28-30

 Very recently, we successfully demonstrated a series 

of novel synthetic heteropolymers that when constrained onto a SWCNT by chemical adsorption, 

form a new corona phase composed of polymer “anchors” that exhibit highly selective 

recognition for specific molecules.
31

 We refer to this sensing mechanism as “Corona Phase 

Molecular Recognition” (CoPhMoRe), suggesting that the polymer corona phase that is exposed 

to the solution phase indeed imparts selectivity towards certain analytes when they coat the 

SWCNT surface. Conceptually, SWCNTs are single graphene sheets rolled into a cylindrical 

geometry that creates quantum confinement of electrons and excitons in a single dimension.
32

 

Their unique optical and electronic properties make them ideal substrates for fluorescence
24

 or 

field-effect transistor (FET)
25

 sensors for molecular recognition. As fluorescence sensors, they 
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show photoluminescence (PL) quenching (bleaching), enhancing, or shifting in the near-infrared 

(nIR) spectrum upon binding of analytes.
33

 As FET sensors, they show orders-of-magnitude 

change in electronic conductance upon physical adsorption of analytes.
25

 The attractiveness of 

SWCNTs as sensor elements, while no doubt enhanced by their excellent sensitivity, is still 

limited by their poor selectivity towards target analytes. In general, it is believed that the analyte-

selective sensor signal results from a combined effect of the analyte binding affinity to the sensor 

surface and the ability of each adsorbed analyte to introduce the optical or electronic signal. 

While the optical or electronic signals of these sensors are directly associated with the shift of 

Fermi levels,
25

 exciton quenching by dye molecules,
34

 or solvatochromatic shifting from solution 

environmental perturbations
35

, their selectivity is also imparted by the difference in the binding 

(or physical adsorption) affinities of various analytes on SWCNTs. Such a correlation is quite 

intuitive, because the analytes need to first reside sufficiently close to the SWCNT surface in 

order to interfere with electrons and excitons. This notion was recently tested by combining 

experiments and all-atomistic (AA) molecular dynamics (MD) simulations for SWCNT-FET 

sensors, but only for a very small set of analytes.
36

  

These SWCNT-polymer complexes, which mimic biological antibodies, can serve as 

scaffolds for biosensors in aqueous environment to detect binding of analytes, even at the single-

molecule level.
37-40

 In spite of the experimental advances discussed above, a theoretical 

understanding of the binding selectivity of analytes is still lacking. Although high-throughput 

screening of many analytes against one type of SWCNT-polymer sensor is already practical, 

synthesizing many types of polymers without clear design guidelines is still very tedious and 

time consuming, thereby making the screening of candidate polymers very challenging. 

Accordingly, developing a theoretical description that provides mechanistic understanding of the 
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molecular recognition is critical. To this end, molecular docking is the most common 

computational method used for high-throughput screening of binding selectivities. Specifically, 

in this method, one utilizes scoring functions to estimate the ligand-receptor binding free energy, 

which usually relies on experimentally-determined (X-ray crystallography or solution phase 

NMR) receptor molecular conformations.
41

 On the other hand, all-atomistic (AA) molecular 

dynamics (MD) simulations are capable of: (i) predicting receptor molecular conformations, (ii) 

allowing flexibility in receptor and ligand dynamics, and (iii) tracing the trajectory of the entire 

binding process, but they are only affordable on supercomputers.
42, 43

 To make it computationally 

more efficient, coarse-grained (CG) MD simulations
44

 could be utilized. Indeed, CGMD 

simulations are advantageous to handle large systems (~1,000,000 atoms) and long time scales 

(~10 µs) with reasonable accuracy and predictive power, when compared to AAMD simulations 

which are only capable of modeling small adsorbed molecules on SWCNTs.
45-47

 

With the above in mind, here, we combine large-scale CGMD simulations and physical 

adsorption/binding theories to quantify the binding affinities of 11 biologically important 

analytes on a SWCNT decorated with polyethylene glycol (PEG)-based polymers. The chemical 

structures of the 11 biologically important analytes, including their corresponding 

ionic/protonation states under physiological pH (7.4), are shown in Fig. 1a. These structures 

consist of 4 amino acids (aspartate (Asp), glycine (Gly), histidine (His), and tryptophan (Trp)), 2 

monosaccharides/sugars (fructose and glucose), 3 hormones (estradiol, melatonin, and thyroxine), 

a neurotransmitter (dopamine), and vitamin B2 (riboflavin). These 11 analytes were selected 

because they exhibit: (i) diverse sensing behaviors, and (ii) unique selectivity and ranking in our 

photoluminescence experiments using the high-throughput screening assay. The polymers 

studied possess a hydrophilic PEG backbone (made of 100 monomers) extended into the aqueous 
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solution in order to stabilize the SWCNT. These polymers are also functionalized with two 

fluorescein isothiocyanate (FITC) groups which act as hydrophobic “anchors” to non-covalently 

stack onto the SWCNT surface (see Fig. 1b). Note that the hydrophilic PEG backbones are not 

expected to interfere with binding,
31

 while the sensing or binding selectivity is imparted by the 

corona phase composed of the anchors. The predicted ranking of binding affinities was compared 

with experimental PL quenching results to facilitate understanding of the physical-adsorption 

mechanism behind the selectivity of SWCNT-polymer sensors. 

 

2. COMPUTATIONAL METHODS 

2.1. Simulation of SWCNT-Polymer Scaffold. The CGMD simulations were carried out 

using the GROMACS 4.5 software package.
48

 The MARTINI force field developed by Marrink 

et al. was used to model the SWCNT-polymer scaffold in water.
49

 Four water molecules were 

modeled using one P4 particle in the MARTINI force field. The PEG chain in the polymer was 

modeled according to Lee et al.
50, 51

 The SWCNT was modeled using the 3:1 mapping scheme by 

Wallace and Sansom,
52

 and described by the SC3 particle in the MARTINI force field. An (8,6) 

SWCNT was used as a model SWCNT because it is semiconducting and contributes 

significantly to the fluorescence intensity among SWCNTs of various chiralities.
26

 The SWCNT 

was fixed in the middle of the simulation box with 3D periodic boundary conditions. The length 

of the simulation box along the z-axis, Lz, was kept constant in order to mimic an infinitely long 

nanotube along this axis. The FITC groups in the PEG-based polymer were coarse-grained from 

their energy minimized all-atomistic (AA) structures predicted from the PRODRG2 program,
53

 

following the philosophy of the MARTINI force field (see Sections 2.2. and 2.3.). The internal 

Page 7 of 38 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



7 

 

coordinates of the FITC groups, as well as their connections to the PEG chain, were modeled 

using an elastic network approach with a spring constant of 17,000 kJ/mol/nm
2
.
54

 

All simulations involving SWCNTs were conducted under the isothermal-semiisobaric 

ensemble (NPxyT, fixed numbers of molecules, constant pressure of 1 bar along the x and y-axes, 

and constant temperature of 300 K). All the non-bonded interactions (Lennard-Jones and 

Coulombic) were treated using the default values in the original MARTINI paper.
49

 The equation 

of motion was integrated at a time step of 0.01 ps for the SWCNT-polymer scaffold. At the 

beginning, to facilitate polymer adsorption onto the SWCNT surface, which occurs through a 

time-consuming diffusion process, a non-equilibrium MD simulation was carried out by pulling 

the FITC groups towards the nanotube surface. This approach is appropriate because only the 

hydrophobic FITC groups are supposed to stack onto the nanotube surface. Subsequently, the 

obtained molecular structure was equilibrated without any constraints for 500 ns to allow 

rearrangements of the PEG backbone and the FITC groups on the nanotube surface. The last 200 

ns of the simulation was collected for data analysis. Note that due to the larger diffusivities of the 

CG particles relative to those of their AA counterparts, the real time spent in a simulation is 

approximately 4 times that of the simulated time.
49

 Therefore, the system was effectively 

simulated for around 2 µs. Note that the simulated system consists of around 70,000 CG particles, 

which is equivalent to around 280,000 atomic groups or more than 1 million atoms. The 

equilibration of the SWCNT-polymer simulation was confirmed by monitoring the time-

dependent 2D radius of gyration (the square roots of the squared summations of the x and y 

components) of the PEG backbone perpendicular to the nanotube central axis (Fig. S1 in the 

Supporting Information). Note that although the simulations were carried out in 3D, our 

primary interest is understanding the radial (2D) behavior, perpendicular to the cylindrical (z) 
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axis, in order to monitor how far the polymer scaffolds stretch out radially. Specifically, we 

carried out the simulation for 500 ns to make sure that the fluctuation in the 2D radius of 

gyration profile converges to a tolerance value (~ 5% of the mean value). 

 

2.2. Simulation of Analyte Binding Affinity. The binding affinities of 11 analytes on the 

SWCNT-polymer scaffold were predicted by simulating the adsorption process of each analyte 

on the scaffold. The 2 monosaccharides and the 4 amino acids were modeled using the extended 

MARTINI force field for carbohydrates
55

 and proteins,
56

 respectively. The remaining 5 analyte 

molecules were coarse-grained from their energy minimized AA structures from the PRODRG2 

program,
53

 following the philosophy of the MARTINI force field. Note that due to the coarse-

grained nature of the MARTINI force field, some detailed analyte properties, such as the dipole 

moment of the analyte molecule and the charge transfer process on the SWCNT-polymer surface, 

are not included in the simulation. In fact, the charge transfer process can only be described 

using quantum mechanical methods, which are limited to very small systems and short time 

scales.
57

 The dipole moment of the analyte can only be described in all-atomistic simulations, 

which are also limited to small systems and nanosecond time scales.
36

 On the other hand, the net 

charge of the analyte molecule is well described by the current CG model. For example, 

dopamine and Asp molecules are modeled to carry net charges of +1 and –1 under physiological 

pH, respectively. The net charge, in fact, is taken into account in the computation of Henry’s 

constants or hydrophobicity of the analyte (e.g., higher net charge leads to larger analyte 

hydrophilicity and a lower Henry’s constant). Therefore, the overall goal of the current paper is 

to utilize CG models to understand sensor selectivity from the perspective of classical polymer 
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morphology and physical adsorption, rather than charge transfer, dipole moments, and other 

quantum mechanical aspects. 

 To create completely new CG force fields for the 5 additional analyte molecules, internal 

coordinates of each of them were modeled using the same elastic network approach used for the 

PEG-based polymers.
54

 The force-field parameters of FITC and the 5 additional analytes were 

calibrated (or trained) against their thermodynamic properties, specifically, against the 

octanol/water distribution (or partition) coefficients,
58

 log DOW, at the physiological pH = 7.4. 

Force-field training is conducted by iteratively modifying force-field parameters such that the 

simulated log DOW values (see Section 2.3) match the experimental log DOW values, which is 

typically carried out to obtain parameters of the MARTINI force field.
49

 The resulting force-field 

parameters for FITC and the 5 additional analytes are listed in Table S1. Note that the 

counterions associated with aspartate (Na
+
) and dopamine (Cl

–
) were modeled using the 

positively-charged Qd and the negatively-charged Qa particles in the MARTINI force field, 

respectively.
49

 Since experimental values of log DOW of FITC and the 5 additional analytes are 

not available, we used the empirical quantitative structure-activity relationship (QSAR) method 

to theoretically predict their log DOW values as our benchmark. The QSAR method, based on the 

extended group-contribution approach,
59, 60

 is freely available online at www.chemicalize.org.  

In addition, we noticed that both dopamine and riboflavin have multiple closely-

positioned hydroxyl groups (catechol or dihydroxyl in dopamine, and tetrahydroxyl in riboflavin), 

which are capable of forming strong hydrogen bonds between the two hydroxyl groups in the 

FITC groups (Table S1). Such multi-hydroxyl group feature is not observed in the other 9 

analytes studied here, and are also not accounted for explicitly in the original MARTINI force 

field. Therefore, additional interaction energies need to be added to the existing MARTINI force-
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field parameters. Specifically, this includes the Lennard-Jones (LJ) parameters for both 

hydroxyl-containing CG beads in dopamine (one SP2 bead) and riboflavin (two P4 beads) 

interacting with the hydroxyl-containing CG beads in FITC groups (two SNda beads). Note that 

all the other 9 analytes possess hydrogen-bonding groups (Fig. 1a) which are not as strong as the 

multi-hydroxyl groups in dopamine and riboflavin. Therefore, we compensated for the extra 

hydrogen-bonding energies between the multi-hydroxyl groups (in dopamine and riboflavin) and 

the hydroxyl groups in FITC by adding 5 kJ/mol to their interactive LJ potential energies, a value 

consistent with the difference between monohydroxyl and dihydroxyl hydrogen-bonding 

energies with a water molecule.
61

 Although a more precise hydrogen-bonding model beyond the 

non-bonded LJ potential used here could be developed at the coarse-grained level, such a model 

would be less valuable considering the already approximate nature of the parameters in the 

MARTINI force field. 

The adsorption process of the various analyte molecules on the SWCNT-polymer 

scaffold was initiated by randomly positioning 10 analyte molecules of each type around the 

scaffold. Note that the use of 10 analyte molecules corresponds to a bulk analyte concentration of 

~2 mM, which allows statistical accuracy in data sampling while satisfying the assumption of 

infinite dilution required for the subsequent calculation of Henry’s adsorption constants. The 

initial molecular conformation of the scaffold was taken from the last trajectory of the previous 

SWCNT-polymer scaffold simulation at 500 ns. The 10 analyte molecules were then allowed to 

diffuse freely for a very long simulation time of 4 µs in order to reach equilibration, as 

determined when the radial distribution function (RDF) of each species around the SWCNT was 

found to remain unchanged. The last 2 µs of the simulation was used for data analysis. We 

confirmed that the sampling time is sufficient to render long-term RDF data by monitoring the 
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dynamics of “on” (adsorption) and “off” (desorption) events during the simulation (Fig. S2), 

including verifying that a large number of such events were captured during the sampling period. 

Due to the larger diffusivities of the CG particles noted earlier,
49

 each system was effectively 

simulated for around 16 µs. The conformation of the polymer on the SWCNT is not fixed during 

the MD simulation, but evolves while the binding of analytes occurs. Therefore, contrary to ns 

AA simulations in which the polymer conformation is locked into a certain local minimum, the 

µs CG simulations carried out here allow sufficient sampling of many polymer conformations. 

 

2.3.  Simulation of Distribution Coefficients. In order to compute log DOW directly, the free 

energy of solvation of FITC and each of the 5 additional analyte molecules considered was 

calculated in both the octanol and water phases. Their corresponding primary ionization states at 

pH = 7.4 were predicted from www.chemicalize.org. These free-energy simulations were carried 

out under the isothermal-isobaric ensemble (NPT, fixed numbers of molecules, constant pressure 

of 1 bar, and constant temperature of 300 K).
55

 The DOW values of the 2 monosaccharides and the 

4 amino acids were obtained in Refs. 55 and 56, respectively. Given the free energies of 

solvation, computation of log DOW is straightforward. The difference between the analyte 

solvation free energy in the octanol phase, ∆GO, and the water phase, ∆GW, is the distribution 

free energy, ∆∆GOW, of the solute between a water-saturated octanol solution (consisting of 25 

CG water molecules and 450 CG octanol molecules
62

) and water (consisting of 1,000 CG water 

molecules because the solubility of octanol in water is minimal). Specifically,
55
 

OWOWOW DkTGGG log10ln−=∆−∆=∆∆     (1) 

Page 12 of 38Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



12 

 

Note that ∆GO and ∆GW were calculated as the free-energy difference, ∆GBA, of the solute in 

vacuum (state A) and in the condensed phase (octanol or water) (state B) using the 

thermodynamic-integration (TI) approach:
63

 

( )
∫ ∂

∂
=−=∆

B

A

d
U

GGG ABBA

λ

λ
λ

λ
λ
λ

     (2) 

andWBGG BAW )( =∆=∆
   

)( OBGG BAO =∆=∆    (3) 

where U(λ) denotes the potential energy function describing the total solute-solvent interaction, 

the average ...  is taken over the MD trajectory, and λ is a coupling parameter that regulates the 

strength of U and varies linearly from zero interaction (λA = 0, in vacuum) to full interaction (λB 

= 1, in the condensed phase). All the bonded interactions were interpolated linearly. To remove 

the singularities in the potentials for the non-bonded interactions, a soft-core approach was 

used.
64

 Calculations were performed at 19 intermediate λ values with a constant spacing of ∆λ = 

0.05 until a smooth curve for the free-energy derivative λ∂∂ /U was obtained, which was then 

integrated numerically using a trapezoidal scheme (Fig. S3a). For each individual λ point, 100 ns 

of CGMD simulation using a stochastic-dynamics (SD) approach was carried out, and the last 50 

ns of simulation was used for data analysis. The CG simulated log DOW values agree very well 

(within an error of ~0.4) with the QSAR predicted values (Fig. S3b). Note that a positive log 

DOW value indicates preferential partitioning into the octanol phase (hydrophobic), while a 

negative value indicates preferential partitioning into the water phase (hydrophilic). Therefore, 

the higher the log DOW value, the more hydrophobic the analyte molecule is. Note also that an 

error of ~0.4 in log DOW represents an error of ~2 kT in the calculations of ∆∆GOW. Most 

importantly, the CGMD simulated log DOW values match the trend in the QSAR predicted values.  
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3. EXPERIMENTAL METHOD 

SWCNTs were purchased from Nano-C. Amine difunctionalized poly(ethylene glycol) 

(NH2-PEG-NH2) was purchased from Creative PEGworks. Sodium cholate (SC), reaction 

reagents (fluorescein isothiocyanate (FITC), dichloromethane (CH2Cl2), dimethylformamide 

(DMF), N,N-diisopropylethylamine (DIEA), and dimethyl sulfoxide (DMSO)), and the 11 

analytes considered (Asp, Gly, His, Trp, fructose, glucose, estradiol, melatonin, thyroxine, 

dopamine, and riboflavin) were purchased from Sigma Aldrich and used as received, unless 

indicated otherwise. The synthesis scheme of FITC-PEG-FITC is shown in Scheme S1. Briefly, 

NH2-PEG-NH2 (5kDa, 0.1 mol/l) and FITC (0.22 mol/l) were dissolved in a mixture of CH2Cl2 

and DMF (1:1), followed by the addition of 0.2 mol/l of DIEA to the reaction mixture. After 

three hours, the reaction product was flocculated by ether (10x in volume) and re-dissolved in 

DMF, and this cycle was repeated twice. Finally, the product was flocculated by ether again, and 

collected using a vacuum filtration system. 

SWCNTs were first suspended in a 2 wt % SC aqueous solution using previously 

published methods.
24, 33

 Briefly, 1 mg/mL SWCNTs were added to 40 mL 2 wt% SC in 

NanoPure H2O, and were sonicated with a 6 mm probe tip at 40% amplitude (~12W) for 1 hr in 

an ice bath. The resulting dark black solution was ultracentrifuged in an SW32 Ti rotor 

(Beckman Coulter) at 153,700 RCF (max) for 4 hrs to remove unsuspended SWCNT aggregates 

and catalyst particles. FITC-PEG-FITC was then dissolved at 2 wt % in the SC-SWCNT 

suspension, and the mixture was placed in a 3.5 kDa MWCO dialysis bag and dialyzed against 

2L 1X PBS buffer (50 mM, pH 7.4) for 24 hours to remove free SC and allow the polymer to 

self-assemble on the nanotube surface.   

Page 14 of 38Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



14 

 

Polymer-wrapped SWCNT solutions were diluted to a final SWCNT concentration of 2 

mg/l.  The three analytes, Asp, Gly, and His, were initially dissolved in DMSO. The other 8 

analytes were dissolved in 50 mM PBS (pH 7.4). The resulting analyte solutions were added to 

the SWCNTs at the various bulk concentrations listed in Table S2, such that the final DMSO 

concentration was 1 vol%. The mixture was then incubated for 1 hr, and the resulting SWCNT 

PL was measured and repeated 3 times with a home-built near infrared (nIR) fluorescence 

microscope. Briefly, a Zeiss AxioVision inverted microscope was coupled to a Princeton 

Instruments InGaAs OMA V array detector through a PI Acton SP2500 spectrometer. The 

software package Winspec32 was used to collect the spectra. The sample excitation was from a 

785 nm photodiode laser, 450 mW at the source and 150 mW at the sample. A custom-written 

Visual Basic program communicates between the microscope stage and Winspec32, automating 

the process of taking the SWCNT spectra of the SWNT in a 96 well-plate. For more detailed 

discussions on the experimental method, please refer to our recently published work.
31

 

 

4. RESULTS AND DISCUSSION 

4.1. Morphology of the SWCNT-Polymer Scaffold. The molecular conformations of the 

polymer on the SWCNT are shown in Fig. 2a. Two polymer surface coverages were investigated: 

1.44 (low) and 2.41 (high) polymers per nm of the SWCNT. Note that the two surface coverages 

selected are close to those corresponding to the surfactant cholate ion adsorption case (≤ 3.60 

molecules/nm), as reported in recent MD simulations.
45

 In addition, the molecular weights of the 

FITC group (which is the only portion of the polymer that adsorbs onto the SWCNT surface) and 

the cholate ion are both ~ 400 g/mol, which make them similar in terms of their excluded 

volumes. In general, the flexible polymeric PEG backbone (red beads in Fig. 2a) forms a 
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polymer coating or “cloud” around the SWCNT. Most of the hydrophobic FITC groups (blue 

beads in Fig. 2a) bind closely to the nanotube surface to form tangled and twisted PEG “loops”. 

A closer examination of the distributions of FITC groups, polymeric PEG backbones, and water 

molecules around the SWCNT, through their CG particle number densities, ρ(r), in units of 

number of molecules per nm
3
, are shown in Fig. 2b. As shown in Fig. 2b (top), the sharp, 

primary peaks at r = 0.9 nm in the ρ(r) profile of FITC groups corroborate their close binding to 

the nanotube surface to form the new corona phase which is responsible for the sensing 

selectivity, while the nonzero ρ(r) regions beyond r = 1.3 nm indicates their minor detachment 

from the nanotube surface. As shown in Fig. 2b (middle), most of the PEG backbones do not 

bind to the nanotube surface (tiny peak at r = 0.9 nm), but instead extend far into the water phase 

(to around r = 6 nm) due to their hydrophilic nature. As shown in Fig. 2b (middle and bottom), 

the multiple peaks in the ρ(r) profile of PEG correlate with the ordering of the water molecules 

around the hydrophobic nanotube surface, which is well known in the literature,
65

 and is similar 

to previous simulation reports on water ordering around a graphene surface.
66

 As expected, the 

ρ(r) profiles of the FITC groups and the PEG backbones at low surface coverages are lower than 

those at high surface coverages. 

Based on the simulated distribution profiles, the simulation cell was divided into three 

distinct phases, as shown in Figs. 2b and 2c using three different colors: I – FITC phase (0 ≤ r ≤ 

R1), which is equivalent to the SWCNT surface; II – polymeric PEG phase (R1 ≤ r ≤ R2), and III 

– bulk analyte solution phase (R2 ≤ r ≤ R3). Note that: (i) R1 = 1.3 nm was determined based on 

the position of the local minima located to the right of the primary peaks in the ρ(r) profiles of 

the FITC groups (see Fig. 2b (top)), (ii) R2 = 6.0 nm was determined based on the fact that the 

ρ(r) profiles of the PEG backbones approach zero beyond r = 6.0 nm (see Fig. 2b (middle)), and 
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(iii) R3 = 9.7 nm simply reflects the size of the simulation cell used, which is sufficiently large to 

prevent interactions between the SWCNT-polymer scaffolds across the periodic image.  

The number of analyte molecules in phase i, Ni (i = 1, 2, and 3), was determined using 

their cumulative radial distribution functions (RDFs), N(r), where r is the distance to the 

nanotube central axis. Note that N(r), which is equivalent to the number of analyte molecules 

located within the cylindrical space of radius r and length Lz = 20.8 nm (corresponding to the 

length of the SWCNT along the z-axis of the simulation cell) was computed from the normalized 

RDFs, g(r), through integrations over the cylindrical space. Specifically,  

∫=
r

zdrrLrgrN
0

2)()( π       (4) 

)( 11 RNN =         (5) 

)()( 122 RNRNN −=        (6) 

)()( 233 RNRNN −=        (7) 

where Ri (i = 1, 2, and 3) is the boundary of phase i. Note that the N(r) profile was determined 

for each analyte type on the SWCNT-polymer scaffold under the bare SWCNT solution case (no 

polymer), in addition to the low-polymer and the high-polymer coverage cases.  

 

4.2. Binding Affinities of the Analytes. The binding affinities of the 11 analytes considered 

onto the SWCNT-polymer scaffold can be quantified in terms of the Henry’s constants. This 

corresponds to their physical adsorption at infinite dilution, reflecting the fact that their 

concentrations are generally very low in our experiments (see Table S2). Two Henry’s constants 
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K1 and K2 (both independent of the analyte concentration), in units of nm
2
, can be defined in 

phases I and II, respectively, with respect to bulk phase III. Specifically (see Fig. 2c), 

( ) ( )
3
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where θ1 and θ2 are the numbers of adsorbed analyte molecules per nm of the SWCNT-polymer 

scaffold (or linear adsorption surface coverages) in phases I and II, respectively, Ni (i = 1, 2, and 

3) is the number of analyte molecules in phase i determined using their cumulative RDFs from 

the MD simulations, C0 is the analyte bulk concentration determined in phase III, and Lz = 20.8 

nm is the length of the SWCNT along the z-axis of the simulation cell. Note that the two Henry’s 

constants are, as defined, intrinsic properties of the analytes, and are therefore independent of the 

analyte bulk concentrations C0. This follows because the concentration effects on K1 and K2 are 

cancelled out when θ1 and θ2 are divided (or normalized) by the bulk concentration C0, or from a 

simulations perspective, because N1 and N2 are normalized by N3 to yield concentration-

independent K1 and K2. 

Fig. 3a shows the simulated K1 values for each of the 11 analytes considered on the 

SWCNT-polymer scaffold for the bare SWCNT solution case (no polymers, red), and for the 

low-polymer (green) and high-polymer (blue) surface coverage cases. The information in Fig. 3a 

was re-plotted in Fig. 3b to illustrate the partial correlations between the K1 values for the no- 

polymer case and those for the low-surface coverage and high-surface coverage cases, indicating 

that the interactions between the SWCNT and the analytes contribute significantly to the 

simulated K1 values, in addition to the contribution from the polymer phase (indeed, the FITC 
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groups). The only two exceptions are dopamine and riboflavin, in which the low-polymer and 

high-polymer surface coverage cases have greatly enhanced K1 values compared to the case 

without polymers. This significant contribution to K1 from the polymer phase is due to the very 

strong hydrogen bonding between the hydroxyl groups in FITC and the multi-hydroxyl groups in 

dopamine and riboflavin, as discussed in Section 2.2. In general, the values of K1 increase from 

the no-polymer case to the low-polymer surface coverage case, as a result of additional analytes 

binding to the FITC groups stacked on the SWCNT surface (see the blue diamonds in Fig. 3b). 

On the other hand, the changes in K1 between the low-polymer and the high-polymer surface 

coverage cases do not exhibit a consistent trend, primarily due to the competing effects of the 

increased binding sites resulting from the FITC groups and the reduced binding sites available on 

the bare SWCNT surface (see the red squares in Fig. 3b). 

On the other hand, an examination of Fig. 3c shows that the simulated values of K2 

correlate inversely with the values of K1, except for fructose and glucose which both exhibit high 

K1 and K2 values (possibly due to their high affinity for both the PEG phase and the FITC 

groups). As expected, this inverse correlation occurs because the SWCNT surface and the PEG 

phase compete for analyte binding. Since the PEG phase is located away from the SWCNT 

surface, analytes adsorbed to this phase are not likely to contribute to sensor signals. Accordingly, 

unlike K1, K2 is not an appropriate measure of the binding affinity of an analyte, which is also 

clear from the strong correlation between K1 and the experimental results (see below for details). 

Since the value of K1 is analyte-specific and varies with respect to the polymer surface 

coverage, the averaged K1 value over the low-polymer and the high-polymer surface coverage 

cases, K1
avg

, would be a good representative value to quantify the binding affinity of each analyte. 

The K1
avg

 values and the associated standard errors in averaging the low-polymer and the high-
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polymer surface coverage cases are shown in Fig. 4a. Specifically, thyroxine exhibits the highest 

average binding affinity K1
avg

, followed by riboflavin, dopamine, tryptophan, estradiol, fructose, 

melatonin, and glucose. Three out of the four amino acids, except for tryptophan which is the 

only hydrophobic amino acid considered here, have almost no binding affinities to the SWCNT 

surface (all with K1 < 4 nm
2
).  

The fact that the values of K1 for the 11 analytes, particularly in the no polymer case, 

partially correlate with the ranking of their octanol/water distribution (partition) coefficients, 

DOW (see Fig. 4b) is consistent with the picture that the binding of analytes to the SWCNT-

polymer scaffold is analogous to the partition/distribution of the analytes between a hydrophobic 

phase and a hydrophilic phase. Recall that DOW is a quantitative measure of the intrinsic 

hydrophobicity of an analyte, and was used to obtain the CG force-field parameters of the 

analyte. Therefore, the hydrophobicity/hydrophilicity of the analyte molecules, as reflected in 

their distribution coefficients, DOW, is a key factor in determining their binding affinities. The 

specific interactions between the FITC groups and the analytes, combined with the 

hydrophobicity of the analytes for binding onto the SWCNT surface, control the overall binding 

affinities of the analytes on the SWCNT-polymer scaffold. Although there are no simple theories 

to quantify the specific interactions between the FITC groups and the analytes considered here 

(or many other types of analytes not considered), the molecular simulation method presented 

here can serve as a screening tool for case-by-case studies. 

 

4.3. Specific Binding due to the Polymer Anchors. As shown experimentally, the 

hydrophilic PEG phase of the polymer coating is merely responsible for the dispersion stability 

of the SWCNTs.
31

 Indeed, the PEG phase is distributed too far away from the SWCNT surface 
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so that it cannot promote any specific binding effects to attract analytes that lead to PL 

quenching. Therefore, specific binding towards certain analytes can be promoted only by the 

polymer anchors (the FITC groups here). The RDF profiles of highly-bound analyte molecules, 

including thyroxine, riboflavin, dopamine, estradiol, melatonin, tryptophan, and fructose, around 

the CG particles in the SWCNT (under no-polymer, and low-polymer and high-polymer surface 

coverage cases) and FITC groups (under low-polymer and high-polymer surface coverage cases) 

are shown in Fig. 5 (with corresponding simulation snapshots shown on the right column) to help 

clarify the specific binding effects. In general, the peak heights in the RDF profiles around the 

SWCNT correlate directly with the simulated analyte binding affinities K1 in Fig. 3a. 

More interestingly, the peak heights in the RDF profiles around the FITC groups show 

various analyte-specific features. For example, thyroxine, tryptophan, fructose, dopamine, and 

riboflavin (Fig. 5a, d-g) do exhibit higher binding affinities towards the FITC groups (higher 

RDF peak heights) compared to estradiol and melatonin (Fig. 5b-c). For dopamine and 

riboflavin, it is simply due to the highly strong hydrogen bonding energies between the hydroxyl 

groups in FITC and the multi-hydroxyl groups in dopamine and riboflavin. For thyroxine and 

tryptophan, this may be due to their amphiphilic chemical structures with hydrophobic moieties 

that are modeled by three SC4 beads adjacent to only one hydrophilic moiety, that is, modeled by 

the Qda or SP1 bead, as shown in Table S1 for thyroxine and in Ref. 56 for tryptophan. This 

structure can match the similar amphiphilic chemical structure of FITC (with three SC4 beads 

adjacent to one Nd bead, as shown in Table S1) and bind with each other closely like two 

aggregated surfactants in a small micelle or dimer. In the case of fructose (modeled by three 

hydrophilic beads, P1-P3-P4, in Ref. 55), the higher binding affinity towards the FITC groups 

may result from the strong binding affinity to the PEG phase (adjacent to the FITC groups), 
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which is reflected by the shifted peaks in the RDF profile of fructose away from the SWCNT (or 

towards the PEG phase). Similar scenarios also apply in the case of glucose. However, since both 

fructose and glucose act as reference/blank analytes (see Section 4.4 below) and are not able to 

quench the fluorescent response of SWCNTs, such specific binding effect will not affect the 

fluorescent signals of the sensor.  

The weaker binding affinities of estradiol and melatonin towards the FITC groups also 

helps explain why the presence of the polymer coating on the SWCNT, even at low-polymer 

surface coverage, is not able to enhance binding affinities of the no-polymer cases (Fig. 3b). On 

the other hand, tryptophan, fructose, and dopamine (Fig. 5d-e) exhibit enhanced binding 

affinities towards the FITC groups as the polymer surface coverage increases, due to the 

increased total number of FITC groups present. However, thyroxine, estradiol, and riboflavin 

(Fig. 5a-b) show, counter-intuitively, decreased binding affinities towards the FITC groups as 

the polymer surface coverage increases, suggesting that an increase in the number of FITC 

groups reduces the available binding sites for analytes with very large molecular sizes, as 

reflected by the number of CG beads used to model them. Specifically, thyroxine, estradiol, and 

riboflavin are modeled by 8, 6, and 8 beads, respectively, (Table S1), while tryptophan, fructose, 

and dopamine are modeled by only 5, 3, and 3 beads,
55, 56

 respectively.  

Competitive adsorption between the polymer FITC groups and the analytes are taken into 

account automatically in the simulations by allowing dynamic adsorption and desorption of the 

FITC groups or the analytes from the SWCNT surface. The FITC groups are more hydrophobic 

(or attractive to the SWCNT surface) than most of the analytes studied here, except for thyroxine 

and estradiol (as ranked by the partition coefficients (log Dow) reported in Fig. S3b, and the 

Henry’s constants K1 reported in Fig. 3a for the no-polymer case). Therefore, most analytes are 
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not able to compete with the polymers for adsorption. Even in the case of thyroxine and estradiol, 

due to the low analyte concentration studied here, they can replace only a very small number of 

the polymer FITC groups on the SWCNT surface (a total of 10 analytes in the system vs. 60 ~ 

100 FITC groups for low-polymer ~ high-polymer surface coverages, respectively), and hence, 

will not affect the overall findings reported here. 

 

4.4. Comparison with PL Quenching Experiments. As we indicated earlier, the 

experimentally-observed sensor signal (the degree of optical quenching in the PL spectra) upon 

the addition of analytes corresponds to a combined effect of the analyte binding affinity, K1, as 

well as of the ability of each adsorbed analyte molecule to quench the PL spectra, which we 

denote here by the unknown parameter, Q. Specifically, Q = 0 corresponds to the complete 

inability of an analyte to quench the PL spectra and generate a sensor signal, while Q > 0 

corresponds to the finite ability of an analyte to quench the PL spectra and generate a sensor 

signal. Based on the intuitive correlation between the experimental SWCNT sensor signals (the 

directly-observed degree of PL quenching upon analyte binding), F, and the analyte adsorption 

surface coverage on the SWCNT surface, θ1, one can propose a simple equation that relates F to 

θ1, including accounting for the factor of Q introduced above. Because θ1 and Q are independent 

of each other, a separation-of-variables type product rule can be used to correlate F with θ1 and 

Q. Specifically,  

0

0
1

I

II
QF F−
=⋅=θ       (10) 

where I0 and IF are the initial (or reference) and the final fluorescence intensities measured in the 

PL experiments, respectively. Using Eq. 8 for Henry’s adsorption isotherm in Eq. 10 yields: 
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QKf
C

F
QCKQF ⋅=≡→⋅=⋅= 1

0

011θ     (11) 

where C0 is the experimental bulk concentration of the corresponding analyte as listed in Table 

S2, and f is the analyte concentration-normalized degree of quenching for each analyte, in units 

of mM
–1

. Note that, for sensor applications, f is a better quantitative measure of the intrinsic 

selectivity of each analyte than F, because it does not depend on C0. Note also that C0 used in Eq. 

8 is computed from the CGMD simulations, and is conceptually the same as C0 used in Eq. 11. 

In Fig. 4a, we compare f with the simulated values of K1
avg

, averaged over the low-

polymer and the high-polymer surface coverage cases. Two distinct categories of analytes can be 

identified in the plot: (i) along the diagonal green dashed line, the K1
avg

 values of the three 

hormones (thyroxine, estradiol, and melatonin), dopamine, and riboflavin correlate well with the 

normalized degree of quenching, f, with a constant Q > 0, and (ii) along the red dashed line, the 

normalized degrees of quenching are zero, independent of the K1
avg

 values, for the four amino 

acids (Asp, Gly, His, and Trp) and the two monosaccharides (fructose and glucose), which 

implies that Q = 0. 

Category (i) demonstrates the success of the current physical adsorption model to explain 

the experimental sensor signals for analytes such as the three hormones (thyroxine, estradiol, and 

melatonin), dopamine, and riboflavin. The hormones studied also exhibit the same normalized 

degree of quenching under the same analyte adsorption surface coverage (linear number density) 

on the SWCNT-polymer scaffold among different hormone types based on the good linear 

correlation shown in Fig. 4a. Linear regression to the hormone data in this category gives rise to 

Q ~ 0.04 mM
−1

·nm
−2

, based on the definition of Q = f /K1 in Eq. 11. Note that 1 mM of analyte is 

equivalent to ~ 6.02 × 10
−4

 of analyte molecules per nm
3
. Therefore, based on the more 
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comprehensive definition of Q = F/θ1 (i.e., the degree of PL quenching per analyte surface 

coverage on the SWCNT-polymer scaffold) in Eq. 11, we converted it to Q ~ 0.04 / (6.02 × 10
−4

) 

nm ~ 70 nm/molecule, or Q ~ 0.7 (molecule/100 nm)
−1

 (i.e., 0.7 degree of PL quenching for each 

hormone molecule adsorbed on every 100 nm of the SWCNT-polymer scaffold). Note that the 

experimentally reported exciton diffusion length is ~100 nm for bare SWCNTs,
39, 40

 which gives 

a better physical picture that ~70% of the excitons will be absorbed by the analytes before they 

radiatively decay and emit signals. 

Category (ii) indicates that amino acids and monosaccharides cannot by recognized by 

the SWCNT sensor coated with the PEG-based polymers studied here, although some of them 

possess high binding affinities to the SWCNT surface (e.g., tryptophan and fructose). Therefore, 

these analytes can be categorized as reference/blank analytes without sensitivities (Q = 0), unless 

different surface coatings are introduced to selectively bind to these analytes and help interfere 

with surface excitons in the SWCNT, such as those demonstrated in a glucose sensor using 

boronic acid
67

 or glucose oxidase enzyme.
33

  

In addition to effects resulting from physical binding, it is possible that analytes, such as 

dopamine and riboflavin, can introduce different exciton diffusion pathways where excitons can 

travel far from the SWCNT surface and move along the polymer chains to reach the analytes. 

This could possibly explain their slight deviations from the linear diagonal region in Fig. 4a, as 

compared to the three hormones which exhibit good linear correlations in K1 vs. f. A recent 

exciton diffusion model based on experimental data suggests that the characteristic diffusion 

length (or mean-free path) of excitons along a (7,5) SWCNT is 3.9 nm,
68

 which is larger than the 

R1 = 1.3 nm value considered here for the FITC phase. In addition, note that dopamine and 

riboflavin are the only two self-fluorescent analytes among the 11 analytes considered here,
69, 70
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which could complicate the sensor signals, and make them special and unpredictable using just 

the physical adsorption mechanism. Understanding the exact exciton diffusion and decaying 

mechanism is still an active area of investigation, which is beyond the scope of the current work. 

Nevertheless, the combined CGMD simulation and adsorption theory framework presented here 

allows qualitative predictions of the distribution coefficient, DOW, and the resulting binding 

affinity, K1, of the analyte on the SWCNT-polymer scaffold. Even without quantifying the ability 

of each adsorbed analyte molecule to quench the PL spectra, Q, using quantum mechanics (QM) 

calculations, our framework can be used to screen out polymer candidates when designing 

sensors by identifying those analytes that cannot bind to the SWCNT-polymer scaffold. This 

could lead to the first step in fast sensor-selectivity screening across a large library of analytes of 

diverse chemical and electronic structures by simply comparing their distribution coefficients, 

DOW. 

 

5. CONCLUSIONS 

We combined large-scale CGMD simulations, physical adsorption/binding theories, and 

PL experiments to understand the physical-adsorption mechanism behind the selectivity of 

SWCNT-polymer sensors towards a large set of biologically important analytes. The analytes 

considered here include: three hormones (estradiol, melatonin, and thyroxine), four amino acids 

(Asp, Gly, His, and Trp), two monosaccharides (fructose and glucose), a neurotransmitter 

(dopamine), and a vitamin (riboflavin). The identification of two distinct categories of analytes 

demonstrates a very rich and complex picture for the correlation between the experimental 

sensor signals, f, and the simulated physical binding/adsorption affinities of the analytes on the 

SWCNT surface, K1. Specific binding affinities between the analytes and the FITC groups were 
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shown to be extremely important for the resulting K1 values under different polymer surface 

coverages, being very complex given the diversity in analyte chemical structures. While the 

FITC groups can enhance the binding affinity of some analytes due to specific interactions, they 

can also reduce the available binding sites of some analytes with large molecular sizes (e.g., 

estradiol, thyroxine, and riboflavin) when their surface coverage is increased.  

The specific interactions involve: (i) the strong binding of amphiphilic chemical 

structures within FITC towards similar amphiphilic structures within thyroxine, tryptophan, and 

fructose, in analogy to surfactant aggregations that form a micelle or dimer, and (ii) the highly 

strong hydrogen-bonding between the hydroxyl groups within FITC and the multi-hydroxyl 

groups within dopamine and riboflavin. This complex picture reflects the diversity in analyte 

types and the complexity in exciton diffusion pathways, which can be modeled by introducing an 

unknown parameter, Q, reflecting the ability of each analyte to quench the PL spectra. The 

simulation-modeling framework presented here predicts the experimental sensor selectivities 

well for all the analytes considered. Specifically, we found a good linear correlation between the 

sensor signals and the binding affinities for the three hormones considered, as well as consistent 

correlation, although not perfectly linear, for dopamine and riboflavin. In addition, we found that 

amino acids and monosaccharides are not sensitive to the sensor studied here, probably due to 

the inability of these analytes to interact with the surface excitons of the SWCNT via the PEG-

based polymer coating.  

Beyond specific binding to the FITC groups, the key factor determining the binding 

affinity of the analyte is its degree of hydrophobicity, as reflected in its distribution coefficient, 

DOW, in the bulk water/octanol system. Specific interactions between the FITC groups and the 

analytes can only be quantified using molecular simulations on a case-by-case manner. In spite 
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of the diversity in analyte chemical and electronic structures, the combined CGMD simulation 

and adsorption theory framework presented here can serve as a valuable baseline for screening 

out polymer candidates when designing sensors by identifying which analytes cannot bind to the 

SWCNT-polymer scaffold. This could serve as the first step in fast sensor-selectivity screening 

across a large library of analytes by simply comparing their distribution coefficients, DOW. 

Furthermore, in general, this framework can advance the understanding of physical adsorption at 

any nanomaterial-biological interfaces to complement experimental observations.
71, 72
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Figure 1. (a) Chemical structures of the 11 biologically-important analytes considered. Note that 

the colors used for the names of the analytes correspond to the colors of lines in Fig. 4 below for 

the same analytes.  (b) Chemical structure of the PEG-based polymer considered.  
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Figure 2. (a) Representative post-equilibrium simulation snapshots of the SWCNT-polymer 

scaffold studied here (left panel – side view, and right panel – front view). Color codes: white – 

carbon nanotube, red – PEG phase, and blue – FITC groups. (b) CG particle number densities, 

ρ(r), of FITC groups (top), PEG backbones (middle), and water molecules (bottom) around the 

SWCNT (at a distance, r, from the nanotube central axis) under both low (dashed lines) and high 

(solid lines) surface coverages. The lighter blue, red, and green areas represent the three phases 

in the simulated system, which are illustrated in detail in (c). (c) Illustration of the three phases in 

the simulated system using the simulation snapshot of the high coverage case in (a) as an 

example. 
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Figure 3. (a) Simulated Henry’s constants, K1, for each of the 11 analytes considered on the 

SWCNT-polymer scaffold for the bare SWCNT solution case (no polymer, red), the low 

polymer surface-coverage case (green), and the high polymer surface-coverage case (blue). The 

inset is zoom-in plot for the K1 values of Asp, Gly, and His. (b) Correlations between the 

simulated Henry’s constant, K1, for the no-polymer case and those for the low-surface coverage 

(blue diamonds) and the high-surface coverage cases (red squares). The black dashed line 

denotes the region of perfect correlation. (c) Simulated Henry’s constants, K2, for each of the 11 

analytes considered on the SWCNT-polymer scaffold. 
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Figure 4. (a) Comparison between the binding affinities of the analytes on the SWCNT surface, 

K1
avg

, averaged over the low-polymer and the high-polymer surface coverage cases, with the 

experimental PL quenching results, quantified by the normalized degree of PL quenching, f (see 

Eq. 11 for the definition). Two clear categories  of analytes can be identified along the green 

(diagonal) and the red (vertical) dashed lines as guides to the eyes. The standard deviations in the 

experimental PL quenching results (repeated 3 times for each analyte) and in the K1
avg

 values are 

shown with error bars. (b) Correlation between the simulated K1 values (for the no-polymer case) 

and the octanol/water distribution coefficients, DOW, for the 11 analytes considered. The values 

of DOW for the four amino acids (Asp, Gly, His, and Trp) and the two monosaccharides (glucose 

and fructose) were obtained in Refs. 56 and 55, respectively. The values of DOW for the other 5 

analytes were obtained using the QSAR method, as discussed in Section 2.2. The red dashed line 

is a guide to the eye for the overall trend. 
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Figure 5. Radial distribution functions (RDFs) of highly-bound analyte molecules around the 

CG particles of the SWCNT (left column) and the FITC groups (middle column) at various 

polymer surface coverages: (a) thyroxine, (b) estradiol, (c) melatonin, (d) tryptophan, (e) 

fructose, (f) dopamine, and (g) riboflavin. Corresponding simulation snapshots of the binding 

events of the above analytes are shown in the right column. The color code is the same as in Fig. 

2, with green color corresponding to analyte molecules. 
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