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We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter
represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for
instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal
to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives
an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which
is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and
then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations
in the surrounding active medium.

1 Introduction

Active matter is an exciting area of physics which has gath-
ered a lot of interest within the last few years. Active sys-
tems are those in which constituents take up energy from the
environment and exert non-thermal (“active”) forces on their
surroundings – generally to propel themselves. While less
studied than self-propelled hard-sphere particles (see Refs.1–5

for some examples out of many), the case of self-motile fluid
droplets has attracted considerable interest6–13. Such droplets,
which may provide a minimal model of a moving cell frag-
ment, show a diversity of propulsion mechanisms that involve
a coupling between motion and internal deformations. Our
goal here is to study a third class of system in which motil-
ity can arise spontaneously. We consider a droplet of passive,
isotropic Newtonian fluid embedded in an active polar liquid
crystal (or active gel), representing a fluid containing force
dipoles with long-range orientational order. These isotropic
droplets are set into motion by their creation of a non-trivial
force distribution in their immediate surroundings. This in-
teraction therefore harnesses the activity of the surrounding
medium, causing the passive droplet to move with finite ve-
locity under conditions we describe below.

Active gels are by now paradigms for the theory of active
matter physics1,2. Their hydrodynamics has received a lot of
attention14–20, because it entails a number of surprising purely
non-equilibrium effects, such as the creation of spontaneous
flow15. Active gels also exhibit an exotic response to external
flows and highly nontrivial microrheological properties21–25.
From an experimental point of view, the best known realisa-
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tions of active gels are actomyosin solutions26,27 and bacterial
suspensions28,29. In the former, the dipolar forces (exerted by
the myosin molecular motors) are contractile, while the lat-
ter are an examples of extensile active fluids. In both cases,
one should keep in mind that while standard active gel the-
ory is a very useful starting point, it probably provides at best
a rather coarse approximation of such systems. For instance,
in actomyosin systems, molecular motors often tend to form
large clusters26 which when present would lead to effects not
included in theories for one-component active fluids. Mean-
while bacterial suspensions of high enough concentration to
observe local liquid crystalline order are relatively uncommon
(although they do exist29). Very recently, Sanchez et al.30,31

have however proposed an intriguing minimal in vitro model
where microtubule bundles, formed by depletion interaction
due to polyethylene glycol, interact with kinesin motors; this
system may provide a simpler laboratory realisation of an ac-
tive extensile fluid, albeit nematic and not polar ∗.

We will show below that the inverted droplet geometry is
of high theoretical interest, because it leads to novel motility
scenarios. As we shall see, the isotropic droplets in our sys-
tem are moved around by the active forces in the surrounding
fluid, through two distinct mechanisms involving elastic de-
formations in the polarisation field, outside the droplet in the
active gel phase. In one case, motion is triggered by a localised
flow close to a topological defect which arises near the droplet
surface due to the anchoring of the director field at that sur-
face. In the second case, motion is powered by spontaneous
flow in the bulk, which is accompanied by a bulk elastic dis-

∗The fact that the active gel in Refs. 30,31 is nematic allows for topological
defects of half-integer charge, and this may lead to significant differences
for our system. This may be of relevance in the case where there is normal
anchoring at the droplet surface, when a hyperbolic hedgehog defect forms
(see e.g. Fig. 1). When defects are not present, on the other hand, we expect
the polar and nematic systems to behave similarly.
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tortion in the active phase. Besides characterising the physics
of these motile droplet configurations in our simulations, we
discuss how to test our predictions in the laboratory.

Our work is structured as follows. In Section 2 we introduce
the methods we employ to solve the hydrodynamic equations
of motion for our two dimensional model system. In Section
3 we report our results, starting from the baseline case of an
emulsion droplet inside a passive liquid crystal, before moving
on to the various active scenarios. In Section 4, we conclude
by discussing our results in view of current experiments on
active droplets and active matter more generally.

2 Simulation model and methods

The physics of an isotropic droplet dispersed in an active
polar liquid crystal can be described in terms of a set of
coarse-grained variables φ(r, t), P(r, t), ρ(r, t), v(r, t), which
are, respectively: an order parameter describing concentration
variations; the polarisation associated with the liquid crystal
phase †; the mass density (in our case constant to a good ap-
proximation); and the average velocity field, which governs
both the solvent and the solute flow. Working in two dimen-
sions, we construct our passive isotropic droplet by initializing
a circular region in which the concentration and the polari-
sation of the active material are zero in the interior (φ = 0,
P = 0). These quantities are finite outside (φ > 0, P 6= 0) and
initially uniform. The equilibrium properties of a purely pas-
sive system are encoded in a free energy, whose full expres-
sion is11,32,33

F [φ,P] =
Z

d3r{ a
4φ4

cr
φ

2(φ−φ0)2 +
k
2
|∇φ|2

− α

2
(φ−φcr)

φcr
|P|2 +

α

4
|P|4 +

κ

2
(∇P)2

+ β1P ·∇φ+β2(P ·∇φ)2}. (1)

This free energy combines two principal contributions: the
first two terms, which stem from a typical binary fluid for-
malism, and the remaining part which is borrowed from liquid
crystal theory. In particular the first term of Eq.(1) is a dou-
ble well potential allowing bulk phase separation into a dense
(exterior) and dilute (interior) phases in the droplet geometry.
The second term creates an interfacial tension between these
phases whose strength depends on k. The remaining terms in
the free energy (the ones taken from liquid crystals) are made
up of three different contributions. The first one, compris-
ing of all the term multiplied by the factor α, is the bulk free
energy associated with the polar phase, which contains terms
in the polarisation P up to the fourth order. In the quadratic

† The polarisation P represents the mesoscopic average orientation of the polar
particles (in our case these can be single actin fibre, bundles of actin filaments
or microtubules).

contribution, which also depends on φ, φcr is the critical con-
centration for the transition from isotropic (|P| = 0) to polar
(|P| > 0) states. The value of φcr is chosen such that activity
only arises in the region exterior to the droplet, once equilib-
rium values of the concentration φeq and polarisation Peq are
obtained by minimizing the free energy. The term in (∇P)2

creates an elastic penalty for local distortions of the polar or-
der, within the (standard) “one elastic constant” approxima-
tion34, with κ the resulting single elastic constant. Finally the
last two terms take into account the anchoring of P on the sur-
face of the droplet. The first of these, involving β1, models
homeotropic (normal) anchoring: at the surface of the droplet,
P will point inwards if β1 > 0 and outwards if β1 < 0. A sec-
ond term, quadratic in P and in the gradient of φ, needs to be
included when tangential (planar) anchoring is required. Such
anchoring arises when β1 = 0 and β2 is positive. The magni-
tude of β1 or β2 controls the anchoring strength; we assume
strong alignment throughout our simulations.

The dynamical equations describing the evolution of the
aforementioned coarse-grained variables are11

∇ ·v = 0, (2)

ρ

(
∂

∂t
+v ·∇

)
v = −∇P+∇ · (σact +σ

pass), (3)

∂φ

∂t
+∇ · (φv) = ∇

(
M∇

δF
δφ

)
, (4)

∂P
∂t

+(v ·∇)P = −Ω ·P+ξD ·P− 1
Γ

δF
δP

. (5)

The first two equations are, respectively, the continuity and the
Navier-Stokes equations for an incompressible fluid. The right
hand side of Eq.(3) represents the force density acting on the
fluid and is made up of two contributions, the first of which is
the gradient of an isotropic pressure field P and the second is
the gradient of the total stress tensor, which is in turn the sum
of an active and a passive term. The active part is given by

σ
act
αβ

=−ζφPαPβ, (6)

where, here and in what follows, Greek indices denote Carte-
sian coordinates, while ζ is the activity parameter which can
be negative or positive, for contractile or extensile particles,
respectively. This form of active stress can be directly de-
rived by summing the contributions from each force dipole
and coarse graining; the magnitude of ζ is then fixed by the
density and strength of the force dipoles33. These forces are
generated by using up energy, e.g. coming from ATP hydrol-
ysis14.

The passive contribution to the stress tensor is the sum of
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three different terms11

σ
visc
αβ

= η(∂αvβ +∂βvα), (7)

σ
elas
αβ

=
1
2
(Pαhβ−Pβhα)− ξ

2
(Pαhβ +Pβhα)

−κ∂αPγ∂βPγ, (8)

σ
inter
αβ

=
(

f −φ
δF
δφ

)
δαβ−

∂ f
∂
(
∂βφ

)∂αφ. (9)

The first of these term is the viscous stress, with η the shear
viscosity. The second is the stress due to elastic distortions in
the liquid crystal, with h = δF/δP the molecular field. The
constant ξ is related to the aspect ratio of active particles14: it
is positive for rod-like particles and negative for disc-like ones.
Here we set it positive as in previous works11,32. This param-
eter also controls whether particles are flow-tumbling or flow-
aligning under imposed shear. In the flow-tumbling case, ob-
served for small enough ξ, particles reorient chaotically (even
without activity), whereas in the flow-aligning case, which we
choose for simplicity thoughout this paper, they align at a fixed
angle to the flow direction, called the Leslie angle. The last
contribution to the stress tensor is an interfacial term caused
by concentration gradients at the perimeter of the droplet.

The time evolution of the concentration field φ(r, t) is de-
scribed by Eq.(4). This is a convection-diffusion equation;
M is a thermodynamic mobility parameter and δF/δφ is the
chemical potential. The dynamics of the vector polarisation
field P(r, t) is described by Eq.(5), which is a convection-
relaxation equation. On the right hand side D and Ω represent
the symmetric and the antisymmetric part of the the velocity
gradient tensor ∇v, and Γ is a parameter called the rotational
viscosity.

Eqs.(2-5) are solved numerically by using a hybrid lattice
Boltzmann method previously tested in similar systems, such
as liquid crystals35 or active matter11,32,36. By using lattice
Boltzmann, this method trades off small departures from in-
compressibility for much faster numerics in what is then a
fully local description of momentum transport. Meanwhile
φ and P are evolved using finite difference methods which are
more efficient for these quantities. Each time step, local in-
formation on the various fields is exchanged between the two
parts of the algorithm.

Where not explicitly stated, most of the runs were per-
formed on rectangular periodic lattices using the following
parameter values: a = 0.04, k = 0.06, Γ = 1, φ0 = 2, φcr = 1,
α = 0.1, η = 1. These are quoted in simulation units; for a
mapping to corresponding values in physical units, see Ap-
pendix 1 and the Figure captions. Additional parameters (e.g.
describing anchoring) are given in captions to the relevant Fig-
ures. Our simulations are two dimensional. For all the re-
ported results the geometry of the 2D simulation box is rect-
angular, with a longer size along the direction along which the

droplet was found to move: this minimises effects due to in-
teractions with the periodic images of the droplets along the
main flow direction.

The polarisation field is always set to zero initially inside
the droplet and different from zero outside, where there is the
liquid crystal. Furthermore, the concentration field is initially
zero inside the droplet, and equal to φ0 outside. We note that
this initial condition leads to a final droplet size, after equili-
bration, that depends on the anchoring condition. This does
not contradict the fact that our algorithm conserves the order
parameter φ, because for a droplet geometry in a finite con-
tainer, the values of φ in the two phases deviate in equilibrium
from those at the double-well minima of F (here φ = 0,2).

This effect is related to interfacial energetics, and indeed
is familiar for a simple fluid where the offset it is set by the
Laplace pressure. For a droplet in a liquid crystal it turns out
to be more pronounced for the normal anchoring case. We
interpret this as due to a stronger contribution of the elastic
deformations close to the droplet surface in the case of nor-
mal anchoring, causing a decrease in the value of φ in the po-
lar phase, and hence an increase in droplet size. This effect,
which could be countered by increasing the value of a in Eq. 1,
is not relevant when addressing the role of activity in droplet
motion, which is the subject of this paper.

3 Results

We now present our results. We first recap the physics of a
passive droplet in a polar passive liquid crystal, which is a
useful background, because it is the system our active mixture
reduces to for ζ = 0. We then study the active case, first where
the polarisation is normal to the droplet at its surface, and then
where it is instead tangential.

3.1 Equilibrium states of an isotropic droplet in a passive
polar liquid crystal

In the passive case, it is well known that if the polarisation
field is anchored normally to the surface of a droplet (or a solid
particle), then, if the anchoring is strong, a defect of topologi-
cal charge −1, called a hyperbolic hedgehog, forms37–39. We
note here that if our liquid crystal was apolar, rather than polar,
the droplet might instead have been surrounded by a Saturn
ring, a disclination loop of defects of half-integer charge: such
a defect is not, however, possible with a polar vector field,
such as our P. The creation of a defect of integer topologi-
cal charge (−1) near the droplet is a topological requirement
here, since the polarisation field far away from the droplet is
defect free, and the droplet itself with the normal anchoring at
the surface is equivalent to a hedgehog defect of topological
charge +1.
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Fig. 1b, which shows the equilibrium states of a single
isotropic droplet embedded in a passive polar liquid crystal
host, with normal anchoring of P at its surface, confirms this
expectation. The defect is also responsible for the changes in
the direction of P (initially set along x) as reported in Fig. 1c.
The two elongated bright patches partially surrounding the
droplet identify regions of strong splay-bend distortion where
P is almost fully along the y-direction, whereas the dark re-
gions far from the droplet indicate areas where the polarisa-
tion is almost completely along x. A similar structure was
originally discussed for nematic liquid crystals in the seminal
paper of Lubensky et al.40.

Changing the anchoring of P at the droplet surface from
normal to tangential changes the final state considerably.
Fig. 2 shows the equilibrium structure obtained with tangential
anchoring. The polarisation profile is less distorted now away
from the droplet, and the resulting pattern has a quadrupolar,
rather than dipolar, symmetry, with moderate splay-bend de-
formations surrounding the droplet (these are localised around
the four symmetric bright regions in Fig. 2c). We note that the
structure in Fig. 2c avoids topological defects in the bulk of
the liquid crystal by effectively breaking the anchoring where
the polarisation field touches the droplet along the x direction.
These points at which the anchoring is broken would lead, in
3D, to boojum-like surface defects, like those observed ex-
perimentally by Poulin et al. in41,42, where water droplets of
1 to 5µm in diameter were dispersed within a nematic liquid
crystal. (In that work, a polymer solution was used to induce
strong planar and degenerate anchoring of the director field at
the droplet surface, while a surfactant was added to stabilise
the droplets.)

3.2 Isotropic emulsion droplet in an active polar gel

We now turn to the results obtained when the droplet is em-
bedded into an active, rather than passive, polar fluid. In all
cases, the states shown in Fig. 1 and 2 were taken as initial
conditions for the runs with activity switched on. The system
we study might be realised in experiment by dispersing a (sur-
factant stabilised) droplet of a Newtonian fluid into a contrac-
tile actomyosin gel26,27, or perhaps into a mixture of extensile
microtubule bundles and kinesin motors. A controlled exper-
iment on either system might well be challenging in practice;
nevertheless, it might uncover significant new physics, as we
discuss below.

3.2.1 Homeotropic anchoring: contractile gel

We first consider the case in which P is homeotropically an-
chored normal to the droplet’s surface. Fig. 3 shows a plot
of the steady state drift velocity of a contractile polar fluid
as a function of ζ. Our numerical simulations show that for

any ζ 6= 0 the droplet is set in motion by the asymmetric po-
larisation pattern arising from the presence of the hyperbolic
hedgehog at its side. This polarisation pattern sets up an ac-
tive flow powering the droplet’s motion (Suppl. Movie 1). An
analysis of the droplet centre of mass velocity shows that for
|ζ| ≤ 0.00015 the speed increases linearly with the magnitude
of the contractile activity. Dimensional analysis further sug-
gests vdrift ∼ |ζ|R/η, however a full validation of this scal-
ing is difficult in our simulation, as increasing R would re-
quire an increase in system size to avoid finite size effects,
and this is known to affect the magnitude of bulk active flow
(see e.g.18,25). For |ζ|> 0.00015 there is a deviation from the
linear regime, and for sufficiently negative activity the droplet
motion becomes apparently chaotic (Suppl. Movie 2).

In Fig. 4 we show the steady states of both the polarisation
profile and the corresponding velocity field, for ζ =−0.0001,
which is within the linear velocity regime. The droplet moves
parallel to the positive x-direction, with the defect at its rear.
The droplet preserves its circular shape, and the hyperbolic
hedgehog follows it along during the motion. The flow field
around the propelled droplet is dipolar (i.e. is a stresslet far
from the droplet), and features vortices, which arise due to
the active force distribution in the bulk of the contractile gel.
There are forces pushing the droplet to the right due to the po-
larisation splay which are localised at the right and left bound-
ary; these are balanced by opposing forces to the left, again
driven by splay, and localised in the bulk of the active gel,
where this deformation is largest.

Our droplet becomes motile because of its effect on the bulk
polarisation field. In that sense, although it is motile, it is
not self-propelled. However, the dipolar (stresslet) fluid flow
is indistinguishable from that which would be expected for a
self-propelled object which exerts a force distribution around
its surface, mirroring that exerted here by the contractile gel.
As a result, the exterior flow field strongly resembles that ob-
served in the “direct” active emulsion case, where active gel
droplets self-propel when embedded in an isotropic fluid11.
An important difference is that in the current case there is no
activity threshold below which the droplet is static; this is be-
cause the anchoring breaks the symmetry in the polarisation
pattern even in the passive limit, due to the creation of the hy-
perbolic hedgehog, and the consequent dipolar nature of the P
field.

Intriguingly, this highly non-trivial velocity field leaves lit-
tle sign on the polarisation, which is almost unaffected by the
flow. In other words elastic interactions (due to κ and β1,2)
dominate over flow induced reorientation in this regime. In-
deed the Ericksen number which measures the ratio between
viscous and elastic effects, Er = ΓvR/κ, where Γ is the rota-
tional viscosity of the active gel, and v is the droplet speed, is
still small in our simulations (Er∼ 0.2 in Fig. 4).

To check that the presence of the images due to the pe-
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(a)

(b)

(c)

Fig. 1 a) Equilibrated concentration field of an isotropic droplet (dark/purple) in a passive polar liquid crystal (bright/yellow). b) Polarisation
field outside the droplet. Strong homeotropic (normal) anchoring is set on its surface; a defect of topological charge −1 is visible on the left.
c) Density plot of the absolute value of the y-component of P. Two bright (yellow) stripes, close to the droplet’s surface, idenfity regions
where its value is around 1. We initialised the system with a circular droplet, and with the bulk polarisation in the liquid crystal along the
x-direction, P = [1,0], on a lattice of dimensions Lx = 256, Ly = 64. The elastic constant is κ = 0.01. In equilibrium, the droplet attains a
radius of R∼ 17. To ensure strong normal anchoring of P at the droplet surface, we chose β1 =−0.01 and β2 = 0 in Eq. 1.

Page 5 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



  

(a)

(b)

(c)

Fig. 2 a) Equilibrium density field of an isotropic droplet (dark/purple) in a passive polar liquid crystal (bright/yellow). b) Polarisation field
outside the droplet. Strong tangential anchoring is set on its surface. c) Density plot of the absolute value of the y-component of P. Four
almost symmetric bright spots, close to the droplet’s surface, identify regions where its value is around 0.6. To set up the simulation, we
initialized the droplet as in Fig. 1, with the bulk polarisation in the liquid crystal initially along x. To ensure tangential anchoring, we set
β1 = 0 and β2 = 0.01. The elastic constant is κ = 0.01. In equilibrium, the droplet attains a radius of R∼ 11 (in simulation units).
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Fig. 3 Steady state drift velocity as a function of the activity for a contractile system with homeotropic anchoring on the droplet’s surface. For
|ζ|< 0.00015 (corresponding to a contractile active stress of 15 Pa, see mapping in Appendix 1) the dependence is linear, whereas for more
strongly negative values there is a deviation. The elastic constant is κ = 0.02 (2 pN).
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riodic boundary conditions do not lead to artifacts, we also
performed simulations with a larger lattice, and found similar
results (Suppl. Fig. 1).

It is also possible to derive analytical expressions for the
equilibrium polarisation, in the zero activity limit, and for the
active force distribution in the small activity limit, which help
understand our numerical results for this homeotropic anchor-
ing case. In 2D, and in polar coordinates (r and θ, with the
centre of the droplet as the origin) the polarisation along the
radial and angular directions can be found as in Ref.40, and are
explicitly given by pr = cos(α) and pθ = sin(α) respectively,
where:

α = θ− tan−1
(

r sin(θ)
r cos(θ)+Rc0

)
(10)

− tan−1
(

r sin(θ)
r cos(θ)+R/c0

)
where R is the droplet radius and Rc0 is the distance of the
hedgehog defect from the centre of the droplet. The resulting
profile makes sense only for r≥ R and compares well with the
numerics (compare Suppl. Fig. 2 and Fig. 1).

Simulations and intuition suggest that Eq. 10 still describes
the system well for small values of ζ, and in this limit the stress
will be dominated by the active contribution as the thermody-
namic one will be zero. The active force density can then be
written as f act

α = ∂βσact
αβ

(or in vector notation fact = ∇ ·σact); its
x contribution is plotted in Suppl. Fig. 3. After some algebra,
we can calculate the net force density on the droplet boundary
in the x-direction as an integral over θ, as follows:

1
2π

Z
π

−π

(∇ ·σact) · x̂dθ =−ζφ0

Rc0
. (11)

Hence, the total active force density on the droplet along the x
direction is positive in the contractile case (ζ < 0), which sug-
gests that the droplet will be pushed in the positive x direction,
as in our simulations (this conclusion can also be drawn from
inspection of the pattern of active force distribution, Suppl.
Fig. 3).

3.2.2 Homeotropic anchoring: extensile gel

Fig. 5 shows the case in which the active polar liquid crystal
is extensile (for ζ = 0.00001); again with normal anchoring.
The polarisation profile is virtually unchanged if compared to
the contractile case; according to our analytical calculation
reported above, one would thus expect the active forces to
change sign leading to motion in the opposite direction. Sim-
ulations confirm this expectation: the droplet now moves with
the defect at the front, rather than the rear (Suppl. Movie 3).
At the same time, the force distributions in Figs. 4 and 5 are
not related by a simple sign change. This is due in part to the

fact that an extensile fluid responds more to bend than to splay
deformations (indeed in 1D it is only unstable to bend1). On
the other hand, presumably as a result of the droplet collid-
ing as it moves forward with the region of large deformation
located at the defect core, the stability of the linear regime in
an extensile environment is much diminished. Chaotic mo-
tion starts to occur already for ζ = 0.00005, which is why a
much smaller value is used in Fig. 5. This means however that
the flow scale is much smaller in Fig. 5 than in Fig. 4, and
indeed small enough to be partly masked by so-called ‘spu-
rious currents’43. These are small but finite velocity values
that arise when using lattice Boltzmann simulations, even in
the quiescent state, due to the finite precision of the numerics.
Therefore our results for the steady motility of an emulsion
droplet with homeotropic anchoring in an extensile polar gel
should be viewed as qualitative, not quantitative, in character.

3.2.3 Tangential anchoring

A significantly different dynamics is observed when tangen-
tial anchoring is imposed on the droplet surface. For simplic-
ity, we focus here mainly on extensile gels, which leads to
more interesting physics in this case. (We briefly comment
below on the contractile version.) We note that this tangential
anchoring may be more easily achieved than normal anchor-
ing in experiments with extensile microtubule bundles such as
those in Refs.30,31, as, due to their high stiffness (or persis-
tence lengths) such bundles would presumably tend to follow
the surface of a spherical inclusion.

Because tangential anchoring leads to a symmetric polarisa-
tion profile around the droplet (Fig. 2), we would expect any
droplet motion to require symmetry breaking, and hence be
associated with a non-zero activity threshold. In line with this
expectation, we find that for small activity the droplet fails
to move (Fig. 6). Interestingly, though, for the activity val-
ues in Fig. 6 for which the speed is zero, the droplet is not
quite quiescent. Indeed, the values of ζ in Fig. 6 are already
large enough for spontaneous flow15–18 to set up within the
bulk of the extensile fluid (the threshold above which this oc-
curs decreases with system size L as L−2, hence it would be
zero in the limit of an infinite system). The associated active
flow shears the droplet, and continuously rotates it (Fig. 7).
The direction of this rotation is persistent within a simula-
tion, but varies according to the initial condition from one run
to another, consistent with a spontaneous symmetry breaking
mechanism. Note that the different geometry of the simula-
tion box in Fig. 7 and Fig. 8 is chosen in anticipation of the
direction of motion, which is perpendicular to the far field po-
larisation, rather than parallel to it as in Fig. 4 and in Fig. 5.

Fig. 6 shows also that for large enough ζ the droplet begins
to translate, in this case drifting downwards along the negative
y direction (again the direction of motion is selected by spon-

Page 8 of 17Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



  

(a)

(b)

x (lattice units)

x (lattice units)

y 
(l

at
ti

ce
 u

ni
ts

)
y 

(l
at

ti
ce

 u
ni

ts
)

Fig. 4 Polarisation field outside an isotropic droplet with homeotropic anchoring on its surface is reported in a) for the contractile case, with
ζ =−0.0001 (corresponding to a contractile stress of 10 Pa according to the mapping in Appendix 1) and κ = 0.02 (2 nN). A defect is still
visible on the left, close to the surface of the droplet. The corresponding velocity field profile is in b). The flow pushes the droplet forward
along the positive x-direction and four stretched vortices are generated by the contractile stress.
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Fig. 5 Polarisation field outside an isotropic droplet with homeotropic anchoring on its surface is reported in a) for the extensile case, with
ζ = 0.00001 (corresponding to an extensile stress of 1 Pa according to the mapping in Appendix 1) and κ = 0.02 (2 nN). As for the contractile
case, a defect is located on the left of the droplet, close to its surface. The corresponding velocity field profile is in b). Now the flow pushes the
droplet backward, along the negative x-direction and towards the defect. As the flow is much smaller (compare activity values in Fig. 5 and
Fig. 4), spurious currents due to (well known43) numerical artifacts in the lattice Boltzmann scheme show up; the overall pattern of the flow
field is still visible.
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Fig. 6 Steady state drift velocity as a function of the activity for an extensile system with tangential anchoring on the droplet’s surface. Two
different regimes, one in which the droplet is not moving (is at rest or rotates) and another one in which is moving, can be clearly
distinguished before and after ζ = ζc ' 0.000021 (or 2.1 Pa, see Appendix 1), respectively. Note the strong hysteresis observed on raising and
then lowering activity.

taneous symmetry breaking). This is shown in Suppl. Movie 4
and Fig. 8, where it can be seen that the droplet now also stops
rotating. Consistent with the change of symmetry, we find a
sharp nonequilibrium transition between rotating and transla-
tionally motile states of the droplet at around ζc ' 0.000021.
Indeed we observed that there is strong hysteresis associated
with this transition (see Fig. 6) which strongly corroborates its
discontinuous character. The motility of the droplet in Fig. 8
is caused by the bend distortions close to the droplet surface,
which lead to extensile active flows within the gel. In the
motile state, as expected of a moving droplet, the deforma-
tions are asymmetric. As was seen for the contractile droplet
with normal anchoring (Fig. 4), there are balancing currents,
now at the sides of the droplet, and due to opposing bend de-
formation deeper in the active fluid.

Finally, we briefly comment on the case of emulsion
droplets in contractile gels with tangential anchoring. Here
again, motion does not occur for small ζ as it requires spon-
taneous symmetry breaking, as for the case of the exten-
sile/tangential gels just analysed. Furthermore, one would ex-
pect splay, rather than bend, deformations to cause the mo-
tion in a contractile medium, so that movement should occur
along the far field polarisation rather than perpendicularly to
it. However, we find that in the region where the droplet moves
(for ζ≤−0.001 in our simulations), the active flow in the con-
tractile case is always unsteady, which leads to nonuniform
droplet motion (Suppl. Movie 5).

3.2.4 Confined systems

As previously anticipated the threshold for the onset of spon-
taneous flow in an active fluid is known to scale as the inverse
square of the system size, hence in a truly infinite system the
passive phase would always be unstable. However, real sys-
tems have a finite size, and are often bounded by solid walls,
and this can stabilise the passive phase for low activity ‡. We
therefore anticipate wall-bounded samples to behave very sim-
ilarly, at least qualitatively, to the periodic systems considered
thus far. To check that this is really the case, we also per-
formed simulations in which a Newtonian droplet is confined
between flat walls. For simplicity we have focused on the case
in which the host is a contractile polar gel and homeotropic
anchoring is imposed on the surface of the droplet. Further-
more, on both walls the polarisation is fixed parallel to the
boundary, the concentration of active material has neutral wet-
ting and the fluid velocity is zero (no-slip conditions). As in
the corresponding case with periodic boundary conditions (see
Fig. 4), the droplet is initially equilibrated in a passive gel and
the activity is switched on afterwards. Fig. 9 shows that, as ex-
pected, the presence of boundaries does not affect significantly
the physics of the droplet. In particular the droplet becomes
motile and moves to the right, along the positive x-axis with
the topological defect at its rear (as in Fig. 4). The fluid flow is
now almost completely along the direction of motion. Increas-
ing the activity ζ, the system exhibits a turbulent-like behavior,

‡ We also note that the periodic boundary simulations presented before can be
replicated in the lab by using arrays or lattices of droplets rather than a single
droplet.
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Fig. 7 Velocity field profile for an isotropic droplet with tangential anchoring on its surface with ζ = 0.00001 < ζc (ζ =1 Pa, see Appendix 1)
and κ = 0.02 (2 nN). The droplet rotates in anticlockwise direction due to a shear-like velocity field set up due to activity.
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Fig. 8 Polarisation field outside an isotropic droplet with tangential anchoring on its surface is reported in a) for the extensile case, with
ζ = 0.0001 (10 Pa, see Appendix 1)and κ = 0.02 (2 nN). Splay-bend distortions can be seen throughout the system, slightly more pronounced
close to the droplet’s surface. The corresponding velocity field profile is in b). The droplet is now moving along the negative y-direction. To
avoid interactions with the periodic images along the main flow directions our simulation box now has size Lx = 64 and Ly = 256.
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again as expected from previous work18,20,22 (data not shown).
All this suggests that the phenomenology we described would
be qualitatively similar with wall-bound systems (we hope to
report on more detailed and quantitative effects of confinement
elsewhere).

4 Conclusions

In conclusion, we studied here by computer simulations the
dynamics of a passive droplet embedded in a polar active gel,
either contractile (a simple model for actomyosin) or exten-
sile (a simple model for a fluid of microtubule bundles and
kinesin). We found that activity renders the physics of this
composite material highly nontrivial.

First, we considered normal anchoring of the polarisation
of the active gel at the droplet surface. Here the anchoring
leads to an asymmetric dipolar polarisation field in equilib-
rium in the absence of activity, where a hyperbolic hedgehog
appears at one side of the droplet. In the presence of any con-
tractile activity (even infinitesimal), these polarisation patterns
lead to an unbalanced force distribution, in which activity in
the exterior gel phase is transduced by splay deformations and
propels the droplet along an axis containing the defect and
the droplet centre, with the defect at the rear. We identified a
regime where the speed of the droplet increases with the ac-
tivity linearly whereas for larger activity the motion becomes
unsteady (and apparently chaotic). Extensile activity in the gel
leads once more to motility at all activity levels with no thresh-
old; however here the active flow pushes the droplet towards
the defect rather than away from it, and this extra interaction
leads to a significantly narrower linear regime.

Second, we studied the case of tangential anchoring of the
polarisation at the droplet boundary. This boundary condi-
tion might possibly be more readily realised experimentally,
as outlined in Section 3.2.3. Our computer simulations show
that this case leads to different physics, and to an interesting
nonequilibrium transition between a droplet which rotates due
to the spontaneous active flow in the host, and a steadily mov-
ing droplet. In these cases, activity in the surrounding gel is
transduced by bend deformations into either rotational motion
(with a threshold that vanishes at large system sizes) or trans-
lational motility (with a threshold that remains finite). The lat-
ter transition occurs via symmetry breaking, and shares some
similarities with the self-motile active droples in an isotropic
fluid studied in Ref.11. In contrast to the latter case, this tran-
sition appears discontinuous, and is associated with a large
hysteresis loop, in which a finite propulsion speed can be sus-
tained at a very small activity level by decreasing this from an
initially larger value.
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6 Appendix 1

Here we review the mapping between parameters used in our
simulation and physical units. For concreteness, we con-
sider the case of actomyosin (which is a contractile active
gel). A correspondence between simulation and physical units
in this context can be established by choosing length-scale,
time-scale and force-scale to be: L = 1µm, τ = 10ms and
F = 100nN, respectively11,32. All quantities are then deter-
mined thorough this correspondence, and their value in physi-
cal units in listed in Table I; for instance a contractile stress
ζ = 0.001 in simulation units corresponds to ζ = 100 Pa.
This is a reasonable value for actomyosin44, as an individual
myosin motor exerts a force of around 1 pN, and there can be
∼ 100 motors within a µm3 actomyosin volume for a 1 µM mo-
tor concentration, suggesting that that typical stress values are
(for that concentration) of order ∼ 100 pN/µm2=100 Pa. We
should also note that, as in previous lattice Boltzmann simula-
tions11,32, we chose the fluid mass density to be much larger
than the actual mass density of a real solvent (water)45. This
works so long as the Reynolds number (i.e. inertial effects)
remains small and speeds up the computations by several or-
ders of magnitude. In our case the Reynolds number is below
∼ 0.02 in all cases, which is small enough to be in the laminar
regime.

Finally, the extensile microtubule-kinesin gels of Ref.30,31

are also composite materials made up by cytoskeletal fila-
ments and molecular motors, the mapping to real units for
those systems would therefore be related to that of acto-
myosin, although slightly different values may be more ap-
propriate in that case (for instance the force exerted by a sin-
gle kinesin motor is∼ 5 pN, and microtubules are often longer
than actin fibres46).
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We study a Newtonian droplet in a polar active gel: we find that activity

makes the droplet move.
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