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We demonstrate that shapes with zero Gaussian curvature, except at singularities, produced by the growth-induced buckling of

a thin elastic sheet are the same as those produced by the Volterra construction of topological defects in which edges of an

intrinsically flat surface are identified. With this connection, we study the problem of choosing an optimal pattern of growth for

a prescribed developable surface, finding a fundamental trade-off between optimal design and the accuracy of the resulting shape

which can be quantified by the length along which an edge should be identified.

Non-uniform growth processes in elastic sheets have been

exploited to create a wide variety of target shapes1,2. The un-

derlying concept is that spatially nonuniform growth induces

in-plane stresses which are relieved if the sheet buckles3–5.

In the limit of infinitesimal thickness and free boundaries, the

resulting Gaussian curvature is determined entirely by the pat-

tern of growth and whether that growth can be realized physi-

cally6. Yet we may also produce Gaussian curvature by re-

moving a wedge from a sheet of paper and identifying the

newly cut edges, which indeed buckles the sheet into a cone

with singular Gaussian curvature at the tip7,8. This illustrates

a deep relationship between disclinations and Gaussian cur-

vature9, and has wide-ranging implications in the faceting

of viruses10 and fullerenes11, shape transitions in protein-

coated cell membranes12, and buckling in graphene13. In-

deed, the engineering of crystalline defects has been proposed

as a means to control shape elastically14.

It is clear that there must be a relationship between these

two processes in the limit of small curvatures: generalizations

of the Föppl-von Kàrmàn equations show that defects9 and

nonuniform growth15 enter the equations in the same man-

ner. Yet the relationship between metric-induced growth and

disclinations has not yet been explored in depth, and there is

little understanding of more complex patterns of disclinations.

In this paper, we will exhibit a mapping between surfaces with

only point singularities of Gaussian curvature produced by

non-uniform, isotropic growth and by the Volterra construc-

tion of disclinations and dislocations16. This mapping is be-

yond geometrical – it is an equivalence between minima of

the elastic energy formed with two different processes. Mak-

ing this relationship explicit, as we have done, has far reaching

consequences: not only can we exploit the mapping to predict
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Fig. 1 (color online) There are many ways of associating a

conformal coordinate system, appropriate to an isotropic growth

pattern, to a shape. Two domains are shown, both of which can be

mapped to the same sphere with different growth patterns. The

degree of growth required is related to the area between the

coordinate lines. These two domains are related by the mapping

w = g(z) = z/(1− z).

1–5 | 1

Page 1 of 5 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



shapes resulting from nonuniform growth using only paper,

scissors and adhesive, inverting the mapping allows us to find

growth patterns that can be more optimally implemented ex-

perimentally. These results also give a better sense of what the

limits are of growth-induced shapes and, indeed, we identify

two antagonistic trade-offs occurring in the design of realistic

structures.

Isotropic growth can be described in terms of a prescribed

metric, given by ds2 =Ω(x,y)(dx2+dy2), where Ω(x,y) gives

a multiplicative increase in area4. The function Ω(x,y) can be

controlled, for example, through the local monomer1 or cross

link density2 of a polymer gel that, subsequently, swells in

a solvent. The resulting equilibrium shape is then described

by a solution to a set of covariant equations (see, for exam-

ple,17–19), the precise form of which is not needed in our anal-

ysis here. Covariance of the equilibrium equations implies the

simple result that the solutions are invariant with respect to

changing how points on the surface are labeled. Therefore,

if we introduce a new coordinate system (u,v) such that the

growth is described by the metric ds2 = Ω̃(u,v)[du2+dv2], the

physical shape of the solution remains invariant. Starting from

the same buckled surface, then, we can produce two different

flat domains by “ungrowing” according to either 1/Ω(x,y) or

1/Ω̃(u,v) (Fig. 1). Thus, we arrive at our first mathemati-

cal result: the (u,v) domain and growth pattern Ω̃(u,v) and

the (x,y) domain with growth pattern Ω(x,y) yield the same

three-dimensional solution to the equilibrium equations (Fig.

1).

For isotropic growth, the mapping between (x,y) and (u,v)
is most compactly expressed using complex coordinates z =
x+ iy and w = u+ iv. In a domain of the complex w−plane,

ds2 = 2Ω(w,w)dwdw. Similarly, we define an analytic func-

tion g(z) such that w = g(z) maps a domain in the z−plane

to one in the w−plane. It follows that the prescribed metric

is ds2 = 2Ω[g(z),g(z)]|∂g(z)|2dzdz, where ∂ ≡ (∂x − i∂y)/2.

Consequently, a domain in the z−plane with isotropic growth

Ω[g(z),g(z)]|∂g(z)|2 (1)

will produce the same shape as the domain g(z) in the

w−plane with isotropic growth Ω[w,w].
In what follows, let us restrict ourselves to isotropic growth

processes resulting in surfaces with zero Gaussian curvature,

K, except at isolated singularities. According to Gauss’ theo-

rema egregium, one has

∇2 lnΩ =−2KΩ =−2∑
i

Kiδ
2(x− xi)Ω(xi), (2)

so that the total Gaussian curvature of the surface is
∫

dA K =∫
d2x Ω(xi)K = ∑i Ki. Thus, we obtain the metric

Ω(z,z) = |eh(z)|∏
i

|z− zi|
−Ki/π , (3)
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Fig. 2 (color online) (a) A domain with two opposite sides

identified (dashed lines) rolls up to form a cylinder. (b) An annular

domain with metric Ω = (R/r)2 also buckles into a cylinder (inset:

the corresponding growth pattern, where Ω is areal swelling ratio).

(c) This growth pattern has been tested by numerical minimization

of a bead and spring model and (d) can also be seen in 3-d

reconstructed images from experiments using halftone gel

lithography (scale bar: 200 μm).

where h(z) is an arbitrary, analytic function.

To proceed, start with a domain in the w−plane having met-

ric, ds2 = 2dwdw = 2|∂g(z)|2dzdz. Thus,

∂g(z) = eh(z)/2 ∏
i

(z− zi)
−Ki/(2π), (4)

defines a mapping g(z) from a domain in the w−plane with

Ω(w,w) = 1 to a domain in the z−plane with metric given

by Eq. (3). This result, in combination with the general

covariance of the elastic equations implies that a pattern of

growth, corresponding to a surface with K = 0 except at dis-

tinct singularities, buckles into the same shape as a domain

with no growth at all. As we will see below, the correspon-

dence requires us to identify some of the boundaries in the

w−plane, thereby restoring the Gaussian curvature singulari-

ties that drive buckling.

The simplest example with which to illustrate the equiva-

lence is the growth pattern, Ω(z,z) = R2/|z|2, defined on an

annulus of inner radius r0. The mapping to the w−plane is

given by (Fig. 2),

g(z) =

∫
dz

R

z
= R ln(z/R). (5)

Since the logarithm is not single-valued, one must define a

branch cut on the complex plane across which g(z) will be

discontinuous. One might choose, for example, a branch cut
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along the positive real axis. Setting z = reiθ with 0 ≤ θ < 2π
then implies

g(reiθ ) = R ln(r/R)+ iRθ . (6)

Therefore, the region just above the positive real axis is

mapped to the real axis in the w−plane while the line just be-

low the positive real axis is mapped to the line x+ i2πR. Since

these two regions are connected across the positive real axis in

the z−plane, the mapping requires us to identify the real axis

with the line at 2π iR in the w−plane. This, of course, is a

standard construction for a cylinder.

To confirm this, we performed simulations of a film de-

scribed by a system of points connected by springs. The

growth pattern is encoded by choosing equilibrium spring

lengths according to Ω(z,z), as described in Refs.4,20. The

resulting shape is, indeed, cylindrical and, even though it was

produced from an annulus with a very different growth pattern

near the inner and outer boundary, the result is nevertheless

reflection symmetric (Fig. 2c). Even thick cylinders, which

show a gentle flaring at both edges, maintain the symmetry

one would expect from the mathematical equivalence encoded

in Eq. (6).

To realize the mapping of topological defects to metrics

with singularities in Gaussian curvature experimentally, we

use halftone gel lithography (described in detail elsewhere2)

to pattern poly(N-isopropyl acrylamide-co-acrylic acid-co-

benzophenone acrylamide-co-fluorescein acrylate) (PNipam)

films of thickness ∼ 10μm and lateral dimensions of 300

– 700 μm. Halftoning relies on the bending elasticity of

the finite-thickness sheet to smooth out the sharp changes

in swelling defined by highly crosslinked dots in a lightly

crosslinked matrix, yielding effectively smooth variations in

swelling. Target metrics were discretized into a pattern of

dots on a hexagonal lattice using MATLAB (Mathworks), and

converted to AutoCAD (Autodesk) format for printing (Front

Range Photomasks) as a chrome on glass mask with a res-

olution of 3μm. Gel sheets were prepared by drop-casting

a polymer solution in chloroform on a sacrificial polyacrylic

acid film. For each object, two photo-masks were used to de-

fine regions with different degrees of crosslinking using an in-

verted optical microscope (Zeiss Axiovert 200) and a fluores-

cence excitation lamp (EXFO X-Cite 120 Q) as a UV source.

The patterned film was next developed by Ethanol: water mix-

ture (1:2 by volume) and released by swelling in phosphate

buffered saline (PBS) solution (containing 1 mM NaCl and 1

mM phosphate buffer, pH 7.2). The shape of the swelled gel

film was then characterized using a laser scanning confocal

fluorescence microscope (Zeiss LSM 510 Meta) using ImageJ

for 3D reconstruction. Fig. 2d shows a cylindrical film pro-

duced from an initially flat annulus, using halftone gel lithog-

raphy to pattern the swelling of a photo-crosslinkable polymer

film.
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Fig. 3 (color online) (a) Domain in the w−plane for a dipole of

strength K|z0|
2/(2π) =−10−1. (b) Resulting growth pattern in the

z−domain. (c) The physical dipole formed by the corresponding

growth pattern using halftone gel lithography (scale bar: 200 μm)

and (d) numerical minimization. Only one of the two possible

dipolar geometries identified in8 is seen.

Eq. (4) provides us with a connection between Gaus-

sian curvature and the Volterra construction of a disclination

formed by removing a wedge of fixed angle. To make this

connection explicit, consider an annulus with Ω = |z/R|−K/π ,

which buckles into a cone2. This shape is equivalent to a do-

main with no growth under the mapping

g(z) =
(z/R)1−K/(2π)

1−K/(2π)
. (7)

Again, there is a branch point at the origin and infinity; choos-

ing the branch cut along the positive real axis, we find that we

must identify the two radial lines across a wedge of angle K.

More generally, we see that singularities of Gaussian curva-

ture can naturally be identified with a Schwarz-Christoffel-like

transformation

g(z) =

∫
dz ∏

i

(z− zi)
−(θ̄i−θi)/(π+θ̄i) (8)

where a wedge of angle θ becomes one of angle θ̄ . When

θ̄ = π we obtain the traditional Schwarz-Christoffel transfor-

mation; in our correspondence, however, we require θ̄ = 0.

A pair of oppositely-charged singularities, corresponding to

two opposite disclinations, can be formed from the growth pat-

tern Ω(z,z) = |z− z0|
−K/π |z+ z0|

K/π . The mapping ∂g(z) =
(z− z0)

−K/(2π)(z+ z0)
K/(2π) has three branch points: z0, −z0,

and ∞. Thus, we must draw branch cuts that go through all

three of these branch points to prevent the mapping from be-

ing multivalued. We can accommodate this with two branch

cuts: from z0 to infinity and −z0 to infinity; thus, we come

to the intuitive conclusion that the resulting shape requires us

to remove a wedge of angle K from one singularity and add a

wedge of angle K to the other. The shapes of such structures

have been studied elsewhere8.

Yet, in a 2D crystal a pair of opposite disclinations corre-

sponds to a dislocation in which a row of atoms is removed.

And indeed there is another way to draw branch cuts through

the branch points at ±z0 and ∞: consider choosing a single

branch cut from −z0, passing through z0 and continuing to in-

finity. This shape requires only one cut which, as seen in Fig.
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3(a) requires only the removal of material. Indeed, far from the

singularities, the resulting branch cut appears to be equivalent

to the removal of a constant width of material, exactly the way

an edge dislocation requires the removal of a row of atoms

from a 2D crystal. To see this more clearly, we can study

the far-field limit by taking z0 → 0 while K|z0| simultane-

ously remains constant. We find g(z) = z−(z0K/π) ln(z/|z0|).
Thus two radial lines on the z−plane are mapped to horizontal

lines in the w−plane that are separated by g(rei2π)− g(r) =
i2K|z0|/π . We can interpret this gap as a dislocation with

Burger’s vector i2K|z0|/π (Fig. 3). Continuing in this man-

ner, a pair of dislocations can be formed with only an internal

branch cut, which forces us to remove material from the inte-

rior of a domain.

Finally, we discuss how to produce the inverse mapping

from a flat domain to a growth pattern (Fig. 4a). As a con-

crete example, we consider forming a tetrahedron by folding

an equilateral triangle. The growth pattern is described by

Ω(z,z) = Ω0|e
h(z)|2|z3 −R3|−1. (9)

As there are many growth patterns associated the choice of

h(z) and Ω0, we require some criteria to select among them.

For convenience, we set Ω0 = 1.

To set h(z), note that the local, areal growth, Ω, obtained in

any experiment must be bounded between Ωmin ≤ Ω ≤ Ωmax.

For K = 0 surfaces, such as those we are considering, the cores

of each singularity can never be accommodated in a finite

range of growth and, so, those cores must be excised. Since

these cores represent the smallest and largest swelling in any

growth pattern associated with Eq. (3), we can formulate our

search for an optimal growth pattern to be one that minimizes

the area that must be excised around the singularities.

If we naively set h(z) = 0, Ω(z, z̄) decreases to zero as |z|
becomes large. This immediately suggests the use of virtual

singularities of opposite charge just outside the boundary of

the domain, so that Ω(z, z̄)→ 1 as |z| → ∞. The closer we are

able to place these virtual singularities, the more uniform the

growth will be. We proceed with the ansatz

|eh(z)|2 = |z3 −D3|−1, (10)

where D > R is chosen outside of the material domain. The

closer D is to R, the more uniform Ω(z,z) will be away from

the vicinity of the singularities. The associated mapping is

∂g(z) =

(
z3 −D3

z3 −R3

)1/2

. (11)

From Eq. (8), we identify each singularity with a wedge of

deficit angle π , consistent with identifying the two halves of

each side of the triangle about its midpoint. With the virtual

singularities, however, the entire side is not identified. Indeed,
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Fig. 4 (color online) (a) Fold pattern for a tetrahedron with

singularities removed. We only Identify segments of the sides of

length L, which indicated with thick, blue lines. (b) The growth

pattern and domain corresponding to (a) for B/R = D/R = 1.75.

The holes and boundary are chosen so that, Ωmax/Ωmin = 3 to

correspond with our experimental system. (c) Results of numerical

minimization of (b) for a tetrahedron of thickness 0.08R (inset) and

result of folding (a) in poly(vinyl siloxane). (scale bar: 10mm) (d)

On the other hand, numerical minimization in which the each of the

three positive singularities have Gaussian curvature 1.3π closes

comparatively well.

consider the radial length L between the boundary of the core

of the singularity and the outer boundary of Fig. (4b) in the

sheet after it has grown to its final buckled configuration. Eq.

(9) gives

L = R

∫ B/R

1
dx

|x3 − (D/R)3|

|x3 − 1|
. (12)

This length L must agree with the length of side in Fig. 4a

to be identified. In particular, these lengths are identical be-

cause the w−plane does not grow at all. This has the propen-

sity to alter the resulting shape somewhat from a completely

closed tetrahedron when the thickness is finite (Fig. 4c). Thus,

Eq. (12) identifies one essential trade-off: we can make the

tetrahedron growth pattern arbitrarily uniform by taking D and

B → R while simultaneously keeping the image singularities

outside the boundary. However, we do this at the expense of

shortening L, the length of side that is identified in Fig. 4(a).

Beyond this, there is a second trade-off related to the reso-

lution necessary to encode the growth pattern. The maximum
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growth occurs on the boundary of the positive Gaussian cur-

vature singularities and the minimum near the virtual singu-

larities. Therefore, the closer a virtual singularity is to a real

singularity, the more rapid the change in growth pattern be-

tween them. We expect, therefore, that even though a more

uniform pattern overall can be achieved by introducing virtual

singularities, the region between the singularities and defects

must still be accurately represented. Mathematically, we can

compute how quickly distance from the singularity at z = R

changes as a function of Ω,

dx

dΩ
=

D3 −R3

3[(Ω− 1)4(D3 −ΩR3)2]1/3
. (13)

Thus dΩ/dx → ∞ as D → R. How to put a bound on dΩ/dx

clearly depends on details of a material system, but it is clear

that the closer D is to R, the more detailed the growth pat-

tern must be near the boundaries of the sample. This suggests

that, at least generically, the resolution to which the metric can

be programmed must be balanced with the range of swelling

available.

To corroborate our theoretical results, we have simulated

the growth pattern in Eq. (11) with D/R = 1.75 and boundary

B = D (Fig. 4c). The tetrahedron does not close. To corrobo-

rate this shape, we also folded a tetrahedron from a thin elas-

tic sheet of poly(vinyl siloxane) (Elite Double 32, Zhermack)

using the pattern in Fig. 4a. Attaching the relevant corners

with narrow strips of silicone adhesive (ARclad IS-8026, Ad-

hesives Research, Inc.) results in a remarkably similar open

tetrahedron (Fig. 4c, inset). One way to close the tetrahedron

would be to use a larger range of growth, which would allow

us to develop shapes equivalent to identifying a larger length

along the boundaries of Fig. 4a. Alternatively, increasing the

Gaussian curvature at each of the three singularities to ≈ 1.3π
does result in an imperfectly closed tetrahedron (Fig. 4d).

Even though our analysis only applies, strictly speaking, to

surfaces with zero Gaussian curvature almost everywhere, we

still believe that the results lend some insight into the opti-

mal design of more general shapes by isotropic growth. In

particular, one could imagine approximating a smooth sur-

face using only singularities of Gaussian curvature, much as

smooth charge densities approximate discrete charges in elec-

trodynamics. Moreover, our notion of using virtual singulari-

ties corresponds with Chebyshev’s principle, which states that

optimal growth patterns (those having the smallest variation

of lnΩ) also have constant Ω on their boundary21. This result

can also be understood in terms of an electrostatics analogy:

lnΩ is analogous to the electric potential, and the boundaries

act as conductors. Thus the charge density on the boundary

adjusts to the presence of the Gaussian curvature within to

minimize the total “electric field.”

In summary, we have demonstrated a mapping between the

buckling of developable surfaces due to nonuniform growth

and the buckling of elastic sheets with a prescribed configura-

tion of Volterra defects. This mapping provides new insights

into the trade-offs between the growth pattern and the resulting

shape: though there are many potential growth patterns cor-

responding to the same Gaussian curvature, and indeed ones

with a very small range of growth are possible, the ones with

largest range of growth will produce better approximations to

the desired shape.
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