Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Chemical Sciences

ARTICLE

Aqueous solubilization of hydrophobic supramolecular metal-organic nanocapsules

H. Kumari,^a S. R. Kline^b and J. L. Atwood^{*a}

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

www.rsc.org/

Micelles of metal-seamed C-propylpyrogallol[4]arene-based $[(PgC_3)_n M_{4n} L_{0-4n}]$ L=ligand,M=metal] hexamers and dimers in water have been formulated using non-ionic surfactants and characterized using in situ scattering techniques. Polysorbitans (tween 20, tween 40, tween 80) are utilized to solubilize (PgC3)6Cu24 and (PgC3)6Ni24L24 hexamers, $(PgC_3)_2Ni_8L_8$, $(PgC_3)_2Zn_8L_8$, and $(PgC_3)_2Co_8L_8$ dimers in water. The dimensions of micelles of tweens (PgC3)nM4nL0-4n dimers and hexamers are studied using dynamic light scattering (DLS; hydrodynamic radius/ R_h) and small-angle neutron scattering (SANS). SANS data is fitted to a polydisperse core-shell-sphere model (static radius/R_{HS}) and used to calculate the radius of gyration (R_{o}). An increase in radius of the tween 20(C12)- and tween 40(C16)-based micelles is observed with an increase in the radius of the nanocapsule (dimer vs. hexamer); however, given the longer alkyl tails of tween 80 (C18:1, cis 9), a progression in radius is not observed for tween 80-enclosed micelles due to the unsaturation (C9) and bent alkyl tail of the surfactant. The $R_{g}:R_{h}$ ratios are close to 0.77 value for the control (0.62), tween 20 \subset dimeric (0.67) and tween 20chexameric (0.68) micelles that demonstrates the sphericity of micelles in water. In contrast, the higher R_{ν}/R_{h} ratio (0.76 to 0.93) of tween 80-based micelles is indicative of more elongated micellar species in aqueous solution.

Introduction

The design of supramolecular complexes with surfactants, such as sodium dodecyl sulfate with poly(amido amine)/PAMAM dendrimers¹, *n*-octyltrimethyl ammonium hexafluorophosphate with pillar[n]arenes²⁻⁴ and cetyltriethylammonium bromide (CTAB) with p-sulfonatedcalix[4,6]arene⁵ or the synthesis of polymer-surfactant based systems, such as crown-ether based polymer,⁶ pluronic-CTAB or pluronic F88-CTAC (cetyl-triethyl ammonium chloride) block copolymers, is often intriguing.7-9 The design of such complex architectures is difficult; however, tailoring their architectures for modified chemical and physical properties is even more challenging. One can introduce structural modifications into these systems as a function of surfactant, probe or co-surfactant concentration. Such alterations in structural properties can then be studied using timeresolved fluorescence anisotropy, small-angle neutron scattering (SANS) or dynamic shift measurements.⁷⁻⁹ The structural properties of surfactant-based complexes are interesting because of their varied applications in industrial and material science. For example, calixarene-based nanoemulsions (a) aid in the extraction of uranium from contaminated solutions,¹⁰ (b) selectively extract membrane proteins¹¹ and (c) form artificial transmembrane ion-channels.¹²

Inspired by the huge possibilities of practical applications, we identified metal-seamed pyrogallol[4]arene- (PgC_nM , where n is the alkyl tail length and M is metal) based nanocapsules as suitable

surfactants.¹³⁻¹⁷ The candidates for co-complexing with sites available within these PgC_nM-based encapsulation nanocapsules render them captivating candidates for practical applications such as drug delivery.^{13, 18-22} These macrocycles, PgCs, have been shown to encapsulate several flourophore probes, such as pyrene, pyrene butanol, ADMA, pentacene and acanapthene.18-22 Structurally similar to PgC_n, resorcin[4]arenes (RsC_n) have also been shown to encapsulate insulin monomer as a guest moiety.²³

Although significant efforts have been directed towards the synthesis²⁴ and encapsulation¹⁸ of metal-seamed organic nanocapsules (MONCs),²⁵⁻³² their stability in solution has been less explored. Previous studies have shown the formation of MONCs in various organic solvents.²⁴ Specifically, the formation of pyridinecoordinated zinc-seamed C-alkylpyrogallol[4]arene / (PgC_n)₂Zn₈ dimeric capsules in dimethylsulfoxide / DMSO or copper-seamed Calkylpyrogallol[4]arene / (PgCn)6Cu24 hexameric capsules in acetone or methanol.²⁴ Each dimeric and hexameric nanocpasule is composed of two and six pyrogallol[4]arene units, respectively, with 4:1 metal to pyrogallol[4] arene ratio. The dimers $[(PgC_n)_2Zn_8L_8]$, $(PgC_n)_2Co_8 L_{8-10}$, $(PgC_n)_2Ni_8 L_8$ have pentacoordinated metal centers with external ligands / L (pyridine or DMSO) whereas the hexamers may ((PgCn)6Ni24L24) or maynot ((PgCn)6Cu24) have external ligands on their metal centers, confirmed by single-crystal X-ray diffraction studies (Figure 1).²⁴

These capsules, in particular dimers, have shown ligand exchange and encapsulation of protonated guests without compromising the host framework. More recently we have demonstrated the solution stability of these hexameric (R = 10 Å) and dimeric (R = 7 Å (without ligand /9 Å (with ligand)) nanocapsules in solvents such as methanol, acetone and DMSO.³³⁻³⁵

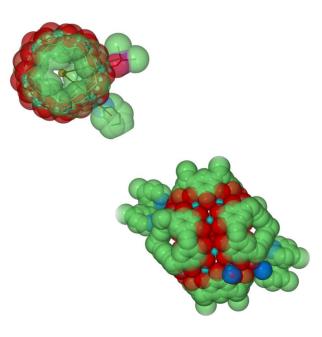


Figure 1. The top view of a metal-seamed pyrogallol[4]arene based dimer with external metal-coordination ligands (DMSO/pyridine) showing the overall increase in diameter of capsule with ligands (top left). The front view of a metal-seamed pyrogallol[4]arene based hexamer with four external pyridine ligand (bottom right). Space filling representations are shown to illustrate the size of spheres. Colour codes: C:green; O:red; M: tuqouise; N:blue.

Notably, the metal-seamed pyroagllol[4] arenes are insoluble in water except those with C1 alkyl tails, which restrains their practical applications and bioavailability. The aqueous solubilzation of these nanoassemblies via surfactants, can potentially aid in making macrocycles more bioavailable. The current study focuses on the solubilization of these metal-seamed organic nanocapsules (MONCs) in water using non-ionic surfactants. Specifically, we make stable solutions of (PgCn)6Cu24 (without external metalcoordinated ligands) hexamer, (PgCn)6Ni24L24 (with external metalcoordinated ligands) hexamer and $(PgC_n)_2Ni_8L_8$ dimer. (PgC_n)₂Co₈L₈ dimer and (PgC_n)₂Zn₈L₈ dimer in water using nonionic surfactants, namely tweens (polysorbitans). The solution structures of these micellar complexes are investigated using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Also, appropriate comparisons/conclusions are drawn between the dimensions of micelles obtained from the two techniques. To our knowledge, this is the first study on aqueous solubilization of metal-seamed pyrogallol[4]arenes.

Results and discussion

A uniform dispersions of $(PgC_3)_6Cu_{24}$ hexameric, $(PgC_3)_2Ni_8L_8$ and $(PgC_3)_2Zn_8L_8$ dimeric micelles in water were prepared by the aid of a surfactant-cosurfactant mixture. The surfactants reduced the interfacial tension between the hydrophobic capsular surface and the hydrophilic aqueous phase. The type of non-ionic surfactant for solubilization was chosen based on the calculated hydrophilicity index (HLB) values. A broad range of solubility index was tested for optimization with hydrophobic (span 80: HLB value 4.3) and hydrophilic (tween 80: HLB value 15; tween 60: HLB value 14.9; tween 40 HLB value 15.6; tween 20 HLB value 16.7) non-ionic surfactants; however, stable dispersions of MONCs were obtained exclusively with hydrophilic surfactants. Small volume fraction (1/100th of surfactant concentration) of cosurfactants aided in obtaining uniform dispersions of more hydrophobic hexameric formulations. Figure 2 gives a pictorial model of a hexameric nanocapsule enclosed in a micelle.

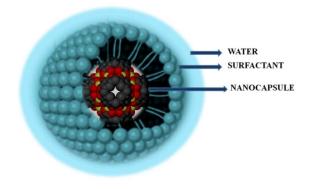


Figure 2. Space-filling representation of the surfactant solubilised hexameric *C*-alkylpyrogallol[4]arene nanocapsule.

Samples were prepared by mixing capsules with surfactants at $(0.4 \text{ to } 0.6) \text{ m}^3/\text{ m}^3$ concentration (described as volume concentrations) and cosurfactants \approx (10 to 100) µl (e.g. butanol). The resultant co-complex was mixed with water, heated and sonicated to obtain a transparent micellar solution (Figure 3). The dissolution of nanocapsules in water was confirmed by UV-vis spectroscopy experiments (supporting information; SI) and the colour of aqueous solutions (Figure 3). These micellar solutions of MONCs were then characterized by DLS and SANS measurements that vielded hydrodynamic radius (R_h) and radius of gyration (R_g) values, respectively. Both R_h and R_g represent the radius of the micelle; however, the R_h value for a given MONC is typically larger than R_g, accounting for the viscosity drag at the surface of micelles. DLS yields the radius based on how fast micelles move in solvent, hence the name "dynamic" whereas SANS fit is a "static" fit, that is a snapshot (time-averaged) of the radius of scatterers. The scattering event happens on a much shorter time scale than the particles are moving, so it is "static".

The control and surfactant-solubilized MONCs were centrifuged and filtered through 0.1 μ m or 0.02 μ m filters before DLS analysis. DLS is sensitive to dust particles, hence filtration is an essential step for light scattering measurements. The assays were performed at 20°C with an acquisition time of 10 sec and sensitivities of 10% and

Chemical Science

Journal Name

50% on Dyna-Pro software for DLS. Note that the sensitivity did not affect the quality of data. The SANS measurements were performed on the NG-3 SANS instrument at the NIST Center for Neutron Research, Gaithersburg, MD.³⁶ Of the various surfactant combinations utilized, polyoxyethylene (20) sorbitan monoplamitate, (C18:1; tween 80), polyoxyethylene (20) sorbitan monopalmitate, (C16:0; tween 40)

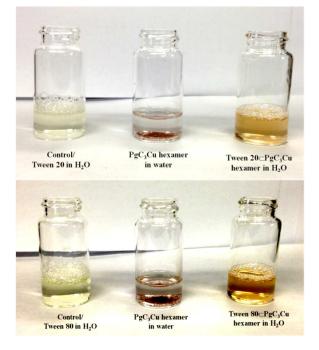


Figure 3. Top: H_2O soulibilzed samples from left to right: tween 20 in H_2O , PgC_3Cu hexamer in H_2O ; tween $20 \square PgC_3Cu$ hexamer in H_2O ; Bottom: H_2O soulibilzed samples from left to right tween 80 in H_2O , PgC_3Cu hexamer in H_2O , tween $80 \square PgC_3Cu$ hexamer in H_2O .

and polyoxyethylene (20) sorbitan monolaurate, (C12:0; tween 20) provided stable solutions for $(PgC_3)_2M_8L_8$ dimers, where M=Zn, Co, Ni and $(PgC_3)_6Ni_{24} L_{24}$ and $(PgC_3)_6Cu_{24}$ hexamers (Figure 4). The surfactant concentrations of 0.4 m³/m³ and 0.6 m³/m³ were used to solubilize dimers and hexmers, respectively, accounting for the higher hydrophobicity of hexamers. DLS studies were conducted on $(PgC_3)_6Cu_{24}$ hexamers and $(PgC_3)_2Zn_8 L_8$ dimers whereas SANS measurements were conducted on $(PgC_3)_6Cu_{24}$ and $(PgC_3)_2Ni_8L_8$ and $(PgC_3)_2Co_8L_8$ dimers. Similarities in overall metric dimensions of nanocapsules, irrespective of the type of metal involved, allow us to make appropriate comparisons between SANS and DLS measurements.^{33, 37, 38}

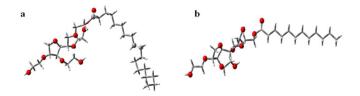


Figure 4. (a) Tween 80 surfactant molecule showing its double bond at the C9 position and bent structure of the surfactant molecule; (b) Tween 20 surfactant molecule. Color codes: C:grey; O:red; H:white

The DLS measurements of aqueous solutions of hexamers and dimers yielded regularization histograms, representing the size distribution of the distinct, resolvable species or population of nanoparticles in solution. The regularization histogram of both $(PgC_3)_6Cu_{24}$ hexamers and $(PgC_3)_2Zn_8 L_8$ dimers shows monomodal distributions, indicating the presence of single discrete micellar entity. At 0.6 m³/ m³ surfactant concentrations, the R_h of tween $20 \subset (PgC_3)_6Cu_{24}$ micelle (r = 4.2 nm) is about 2 Å smaller than that of tween $40 \subset (PgC_3)_6Cu_{24}$ micelle (r = 4.4 nm). This can be attributed to the difference in the alkyl tail lengths of tween 20 (n = 12) and tween 40 (n = 16). Interestingly, the R_h of tween $80 \subset (PgC_3)_6Cu_{24}$ micelle (r = 3.8 nm) is smaller than that of tween $20/40 \subset (PgC_3)_6Cu_{24}$ micelle due to the unsaturation at cis-C9 position and the bent shape of the tween 80 (n = 18) surfactant molecule (Figure 4; Table 1).

Table 1. Hydrodynamic radius of water solubilised $(PgC_3)_6Cu_{24}$ hexamers and $(PgC_3)_2Zn_8L_8$ dimers

(PgC ₃) ₆ Cu ₂₄ hexamers							
А.	0.6 m ³ / m ³	$\frac{(e_g \circ 3)(e \cdot 2)}{R_h(nm)}$	B.	0.4 m ³ / m ³	R _h (nm)		
1	Tween-20	4.24	1	Tween-20	3.68		
2	Tween-40	4.44	2	Tween-40	4.05		
3	Tween-80	3.79	3	Tween-80	3.77		
(PgC ₃) ₂ Zn ₈ L ₈ dimers							
А.	0.6 m ³ / m ³	R _h (nm)	В.	0.4 m ³ / m ³	R _h (nm)		
1	Tween-20	3.83	1	Tween-20	3.77		
2	Tween-40	4.16	2	Tween-40	4.04		
3	Tween-80	3.63	3	Tween-80	3.66		

At lower surfactant concentrations of 0.4 m³/m³, stable solutions are obtained with the aid of butanol cosurfactant (10 µl). The R_h for (PgC₃)₆Cu₂₄ micelles varied from 3.7 nm to 4.1 nm to 3.7 nm for tween-20, tween-40 and tween-80, respectively (Table 1; Figure 2). Although similar trends in radius are observed at 0.4 m³/ m³ and 0.6 m³/ m³ surfactant concentrations, slight differences in R_h and molar masses are observed due to the presence of co-surfactant.

The number of pyrogallol[4]arene units in dimeric (2 arenes) versus hexameric (6 arenes) nanocapsules account for the lower hydrophobicity of dimers. Thus, the solution of $(PgC_3)_2Zn_8L_8$ dimeric micelles are much more easily stabilized in aqueous media at both 0.4 m³/ m³ and 0.6 m³/ m³ polysorbitan concentrations without the aid of cosurfactant. The DLS measurements of tween $20 \subset (PgC_3)_2Zn_8 L_8$, tween $40 \subset (PgC_3)_2Zn_8 L_8$ and tween $80 \subset (PgC_3)_2Zn_8 L_8$ yielded R_h values of 3.8 nm, 4.0 nm and 3.7 nm at 0.4 m³/ m³ and 3.8 nm, 4.2 nm and 3.6 nm at 0.6 m³/ m³ surfactant concentrations, respectively (Table 1; SI). Note the trends of radius with respect to the alkyl tails of surfactants are similar for dimers and hexamers (Table 1).

For SANS measurements, we used deuterated solvents to improve the contrast and to obtain coherent scattering, which possess the structural information. The control sample of surfactants and surfactant \subset (PgC₃)_nM_{4n} L_{0.4n}/nanocapsule were prepared in D₂O. Unlike the DLS measurements, we do not filter the samples for SANS studies and hence lower surfactant concentrations (0.2 m³/m³) are preferred to ensure no aggregation and to obtain good scattering statistics (supporting information). The micellar samples were filtered exclusively for DLS measurements to ensure (a) no the dust particles/aggregates affect the autocorrelation curves and (b) expulsion of aggregates which may result at higher surfactant concentration. The filtration of higher surfactant concentrations for DLS measurements and use of lower concentration (without filtration) for SANS measurements aided in obtaining monodisperse solutions of nanocapsule enclosed micelles, confirmed by scattering measurements and UV spectroscopy.

The SANS data for the control samples of tween 20 and tween 80 in D₂O as well as tween $20 \subset (PgC_3)_2Co_8 L_8$ (dimer), tween $20 \subset (PgC_3)_6Ni_{24}L_{24}$ (hexamer), tween $80 \subset (PgC_3)_6Ni_{24}L_{24}$ (hexamer, with external metal-cordinated ligands) and tween $80 \subset (PgC_3)_6Cu_{24}$ (hexamer, without external metal-coordinated ligands) in D₂O best fitted to the polydisperse core-shell hard sphere model (Table 2; Figure 5; SI). The presence or absence of external ligands corresponds to the square planar and square pyramidal coordination environment on the metal centers (Figure 1).

Table 2. SANS result summary of Polydisperse core-shell sphere model of $(PgC_3)_nM_{4n}L_{0-4n}$ nanocapsule-enclosed micelles in D_2O (tween 20 and tween 80)

surfactantradii (nm)thickness (nm)with Shell (nm)Tween 20acetone1.2041.6352.839Tween 20acetonitrile1.2291.6012.830Tween 20isopropanol1.2061.6112.817	sqrt 6.2 6.5 5.8 1.5
(nm) Tween 20 acetone 1.204 1.635 2.839 Tween 20 acetonitrile 1.229 1.601 2.830	6.5 5.8
Tween 20 acetonitrile 1.229 1.601 2.830	6.5 5.8
	5.8
Tween 20 isopropanol 1.206 1.611 2.817	
	1.5
Tween isopropanol 1.704 1.662 3.366 $20 \subset (PgC_3)_2 Co_8 L_8$ dimer	
Tween acetonitrile 2.466 1.295 3.761 $20 \subset (PgC_3)_6 Ni_{24}L_{24}$ hexamer	2.5
Tween 80 DMSO 1.542 1.988 3.530	9.2
Tween None 2.409 1.726 4.135 $80 \subset (PgC_3)_6Cu_{24}$ hexamer (without ligands)	2.6
Tween DMSO 1.937 1.700 3.637 $80 \subset (PgC_3)_2 Ni_8 L_8$ dimer	3.7
Tween $80 \subset$ DMSO 2.902 1.654 4.556 (PgC_3)_6Ni_{24}L_{24} hexamer (with ligand)	5.5

The average core radius (surfactant) of ≈ 1.2 nm and ≈ 1.5 nm and shell thickness (surfactant + D₂O) of ≈ 1.6 nm and ≈ 1.9 nm was

observed for tween 20 and tween 80 micelles in D₂O, respectively. Thus, an overall radius (core+shell) of ≈ 2.8 nm and ≈ 3.4 nm exists for tween 20 and tween 80 control samples, respectively. Similarly, the scattering data fit for tween $20 \subset (PgC_3)_2 Co_8 L_8$ (dimer), tween $20 \subset (PgC_3)_6 Ni_{24}L_{24}$ (hexamer), tween $80 \subset (PgC_3)_2 Ni_8 L_8$ (dimer), tween 80 (PgC3)₆Cu24 (hexamer) and tween 80 (PgC3)₆Ni24L24 (hexamer) micelles yielded the average core radius (nanocapsule+surfactant) of 1.7 nm, 2.4 nm, 1.9 nm, 2.4 nm and 2.9 nm, respectively, and a shell thickness of 1.6 nm, 1.3 nm, 1.7 nm, 1.7 nm and 1.7 nm, respectively. A progression in core+shell radius exists as a function of nanocapsule radius within the micelles. The overall diameter increases from 3.3 nm for a dimer, 3.7 for a hexamer for tween 20 based micelles, whereas it changes from 3.2 nm for a dimer to 4.1 nm for (PgC₃)₆Cu₂₄ hexamer (without ext. ligands) to 4.6 nm for a $(PgC_3)_6Ni_{24}L_{24}$ hexamer (with ext. ligands) for tween 80 based micelles.

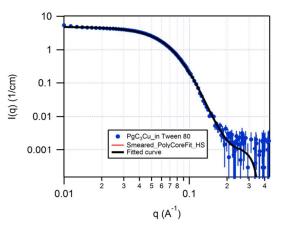


Figure 5. Small-angle neutron scattering (SANS) data fit (Polydisperse coreshell Hard Sphere fit) of tween \subset PgC₃Cu hexamer in D₂O. The blue points are the SANS data points, the red line is the smeared model curve (underneath the black curve: not visible) and the black line is the fitted curve. The error bars on the SANS data represent one standard deviation.

Nanocapsules solubilized in Tween 20: SANS vs. DLS

The DLS results indicate an increase in the radius of the micelle with an increase in the radius of template/nanocapsule enclosed. Specifically, the radius varies from 3.5 nm to 3.8 nm to 4.2 nm (at $0.6 \text{ m}^3/\text{m}^3$) for control/tween 20 to tween $20 \subset (PgC_3)_2 Zn_8 L_8$ dimer to tween $20 \subset (PgC_3)_6 Cu_{24}$ hexamer, respectively, in water. The difference between the diameter of a micelle and a micelle with a dimer is about 0.6 nm while that for a hexamer is about 1.4 nm. This increase in diameter is smaller than the expected 1.8 nm diameter of $(PgC_3)_2 Zn_8 L_8$ dimer + micelle and 2.0 nm diameter of a $(PgC_3)_6 Cu_{24}$ hexamer + micelle (from SANS); ^{33, 35} however, the observed increase can be explained based on the fact that the micelles are formed with/without the template nanocapsule (Table 3).

Table 3. SANS and DLS result summary of $(PgC_3)_nM_{4n}L_{0\mbox{-}4n}$ nanocapsule-enclosed micelles in D_2O (tween 20)

TWEEN 20 DLS versus SANS Result Summary

DLS	Blank tween 20	$R_{h} = 3.5$		
SANS	Blank tween 20	$R_{\rm HS} = 2.8$	2.16	0.62
DLS	tween 20 \subset (PgC ₃) ₂ Zn ₈ L ₈ dimer	$R_{h} = 3.8$		
SANS	tween 20 \subset (PgC ₃) ₂ Co ₈ L ₈ dimer	$R_{\rm HS} = 3.3$	2.54	0.67
DLS	tween 20 \subset (PgC ₃) ₆ Cu ₂₄ hexamer	$R_h = 4.24$		
SANS	tween 20 \subset (PgC ₃) ₆ Ni ₂₄ hexamer	$R_{\rm HS}$ = 3.8	2.90	0.68

It is important to note the SANS data analysis of a typical -(PgC₃)₂Cu₈/(PgC₃)₂Ni₈ dimer (without ligands), (PgC₃)₂Zn₈L₈ dimer (with ligands), and $(PgC_{3})_{6}Cu_{24}$ hexamer in acetone/methanol/DMSO yields a radius of 0.7 nm, 0.9 nm and 1.0 nm, respectively.^{33, 35} The solid-state structure of all dimers indicate the presence of external ligands; however, the only zinc-seamed framework retain the external ligands in DMSO solvent.33, 35 Hence, the radius of (PgC₃)₂Zn₈L₈ dimer is uniquely higher in non-polar solvent by about 2 Å than that of (PgC₃)₂ Cu₈/(PgC₃)₂Ni₈ dimers. Note that the overall framework of dimers is stable in solution and gas phases, with and without external ligands.^{33, 35}

Similar to the DLS measurements, the SANS measurements reveal an increase in the radius of an empty micelle from r = 2.8 nm to that of a dimer r = 3.3 nm to that of a hexamer r = 3.8 nm for a polycore_HS model (Table 3; SI). This difference in radius (between SANS empty versus dimeric micelles) of 0.5 nm for the dimer is smaller than the expected (0.7 to 0.9) nm radius difference and it indicates that there is a fractional change in the mean radius of a sphere when a comparatively smaller dimeric nanocapsule occupies the center of the cavity of the micelle. On the contrary, the radius difference of ≈ 1.0 nm between SANS empty versus hexameric micelles is similar to the 1.0 nm radius of hexamers (in DMSO). Radius of gyration (R_g) values obtained from the static radius values (R_{HS}) yield similar trends in radius dimensions ($R_g = 0.77*R_{HS}$; Table 3).

Comparing the DLS (R_h) vs. SANS (R_{HS}) radius values, we get a difference of 0.7, 0.5 and 0.5 nm between R_{HS} and R_h for the blank, dimeric and hexameric samples, respectively (Table 3). The R_g/R_h ratio ≈ 0.77 (Table 3) indicate the sphericity of micelles and the presence of a large solvent sheath around the micelles. The solvent sheath can be attributed to the high HLB value for tween 20 (16.7) and close association of surfactant polar head groups with water. Interestingly, the difference in radius between the dimer-enclosed micelle and hexamer-enclosed micelle is 0.47 nm on DLS and 0.46 nm on SANS that is close to the observed difference in R of 0.48 nm (with ligands on a hexamer) between the dimers and the hexamers themselves.

Nanocapsules solubilized in Tween 80: SANS vs. DLS

Similar to the tween 20 solubilization experiments, the DLS measurements and data analysis of tween 80 samples reveal an increase in radius of the micelles of tween 80 (r = 3.3 nm) to that of the tween $80 \subset (PgC_3)_2Zn_8$ dimer (r = 3.6 nm) and to that of tween $80 \subset (PgC_3)_6Cu_{24}$ hexamer (r = 3.8 nm), at 0.6 m³/m³ concentration. The difference between the diameter of a micelle and tween $80 \subset (PgC_3)_2Zn_8L_8$ dimer is about 0.72 nm and that with

hexamer is about 1.02 nm. This increase in diameter is smaller by about 6 Å than with tween 20 solubilization; nonetheless, it can be explained based on the fact that the micelles of tween 80 have bent hydrophobic tails at carbon length C9 interacting with the alkyl chains of the nanocapsules, whereas tween 20 has an elongated straight chain of 12 carbon atoms (Figure 4). The bent structure of the chains could reasonably account for the differences in size of the nanocapsule-enclosed micelles in the two surfactants (Table 4).

Table 4. SANS and DLS result summary of PgC_3M nanocapsuleenclosed micelles in D_2O (tween 80)

TWEEN 80 DLS versus SANS Result Summary				
		R (nm)	R _g	R _g /R
			nm	h
DLS	Blank tween 80	$R_{h} = 3.27$		
SANS	Blank tween 80	$R_{HS} = 3.53$	2.7	0.83
011110	Blaink tween oo	ICHS 5.55	2	0.00
DLS	tween 80 (PgC ₃) ₂ Zn ₈ L ₈ dimer	$R_{h} = 3.63$		
SANS	tween 80⊂(PgC ₃) ₂ Ni ₈ L ₈ dimer	$R_{HS} = 3.60$	2.7	0.76
BANG		K _{HS} 5.00	7	0.70
DLS	tween 80⊂(PgC ₃) ₆ Cu ₂₄ hexamer	$R_{h} = 3.78$		
			3.1	
SANS	tween 80⊂(PgC ₃) ₆ Cu ₂₄ hexamer	$R_{\rm HS} = 4.14$	9	0.84
	tween 80⊂(PgC ₃) ₆ Ni ₂₄ L ₂₄ hexamer		3.5	
SANS	with ligands	$R_{\rm HS} = 4.56$	1	0.93

In contrast to the average R_g / R_h ratio of ≈ 0.7 for the tween 20 blank samples, the tween 80 blank samples (r = 3.44 nm) show an increase in the R_g/R_h ratio > 0.77 indicative of less compact species. A possible explanation for this result is the inability of tween 80 molecules to organize in a compact uniform micellar arrangement due to the bent shape of the alkyl tails from unsaturation at the C9 position (Figure 4). Furthermore, the SANS measurements reveal an increase in the radius of micelles of tween $80 \simeq (PgC_3)_2 Ni_8 L_8$ dimer (r = 3.6 nm) to tween $80 \simeq (PgC_3)_6 Ni_{24}L_{24}$ hexamer-with external ligands (r = 4.14 nm) to tween $80 \simeq (PgC_3)_6 Ni_{24}L_{24}$ hexamer-with external ligands (r = 4.56 nm). This increase in radius suggests templation and corresponding rearrangement of the surfactant (tween 80) or possible reduction in aggregation number of surfactant around the nanocapsules (Table 4).

Conclusions

Chemical Science

In conclusion, commercially available non-ionic surfactants (polysorbitans / tweens) are efficient in facilitating the solubilization of MONCs $((PgC_3)_6Cu_{24})$ $(PgC_3)_6Ni_{24}L_{24}$, $(PgC_3)_2Ni_8L_8$ $(PgC_3)_2Zn_8L_8$ $(PgC_3)_2Co_8L_8$ in water. In situ scattering measurements reveal an increase in the radius of the micelles with an increase in the length of the alkyl tails of surfactants (tween 20, C12 vs. tween 40, C16) or with an increase in radius of the nanocapsule (hexamer vs. dimer). In contrast, tween 80 (C18:1, 9) though with long alkyl chain length, forms comparatively smaller-sized micelles (given the longer alkyl tail of surfactants) owing to the presence of a double bond at the C9 position in the alky tail and the bent structure of the surfactant. Combined DLS and SANS data analyses of tween 20 based micelles yield the ratios of radius of gyration to hydrodynamic radius (R_g/R_h) of ≈ 0.7 , demonstrating the spherical

nature of micelles in solution. The lower ratios of R_g/R_h for tween 20 based micelles versus tween 80 based micelles clearly indicate the effect of the shape of surfactant in governing the architecture and compactness of micelles in solution. The solution studies conducted herein presents, for the first time, complex fluids of nanocapsules with surfactants. Future studies will focus on temperatue and shear effects to further investiagte their material properties.

Acknowledgements

We thank NSF for support of this work (J.L.A). This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772 (S.R.K.), NSF grant CHE-89-08304. Certain trade names and company products are identified to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily best for the purpose. We also thank Prof. Carol A. Deakyne for valuable discussions.

Notes and references

^aDepartment of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, MO 65211 (USA)

^b NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899 (USA)

- C. Wang, E. Wyn-Jones, J. Sidhu and K. C. Tam, *Langmuir*, 2007, 23, 1635-1639.
- Z. Zhang, Y. Luo, B. Xia, C. Han, Y. Yu, X. Chen and F. Huang, *Chem. Commun.*, 2011, 47, 2417.
- C. Han, F. Ma, Z. Zhang, B. Xia, Y. Yu and F. Huang, Organic Letters, 2010, 12, 4360-4363.
- Z. Zhang, B. Xia, C. Han, Y. Yu and F. Huang, Org. Lett., 2010, 12, 3285-3287.
- Y. Zhou, C. Liu, H. Xu, H. Yu, Q. Lu and L. Wang, Spectrochim. Acta, Part A, 2007, 66A, 919-923.
- X. Ji, J. Li, J. Chen, X. Chi, K. Zhu, X. Yan, M. Zhang and F. Huang, Macromolecules, 2012, 45, 6457-6463.
- P. K. Singh, M. Kumbhakar, R. Ganguly, V. K. Aswal, H. Pal and S. Nath, J. Phys. Chem. B, 2010, 114, 3818-3826.
- P. K. Singh, M. Kumbhakar, H. Pal and S. Nath, J. Phys. Chem. B, 2008, 112, 7771-7777.
- P. K. Singh, M. Kumbhakar, H. Pal and S. Nath, J. Phys. Chem. B, 2009, 113, 1353-1359.
- A. Spagnul, C. Bouvier-Capely, M. Adam, G. Phan, F. Rebiere and E. Fattal, *Int. J. Pharm.*, 2010, **398**, 179-184.
- 11. FR Pat., 2931695, 2009.
- K. S. J. Iqbal, M. C. Allen, F. Fucassi and P. J. Cragg, *Chem. Commun.*, 2007, 3951-3953.
- P. Jin, S. J. Dalgarno, C. Barnes, S. J. Teat and J. L. Atwood, J. Am. Chem. Soc., 2008, 130, 17262-17263.
- P. Jin, S. J. Dalgarno, J. E. Warren, S. J. Teat and J. L. Atwood, *Chem. Commun.*, 2009, 3348-3350.
- H. Kumari, S. R. Kline, W. Wycoff, R. L. Paul, A. V. Mossine, C. A. Deakyne and J. L. Atwood, *Angew. Chem.*, 2012, **51**, 5086–5091.
- R. M. McKinlay, P. K. Thallapally and J. L. Atwood, *Chem. Commun.*, 2006, 2956-2958.
- R. M. McKinlay, P. K. Thallapally, G. W. V. Cave and J. L. Atwood, Angew. Chem., 2005, 44, 5733-5736.
- S. J. Dalgarno, S. A. Tucker, D. B. Bassil and J. L. Atwood, *Science* 2005, **309**, 2037-2039.
- D. B. Bassil, S. J. Dalgarno, G. W. V. Cave, J. L. Atwood and S. A. Tucker, *J. Phys. Chem. B*, 2007, **111**, 9088-9092.
- S. J. Dalgarno, D. B. Bassil, S. A. Tucker and J. L. Atwood, Angew. Chem., Int. Ed., 2006, 45, 7019-7022.

- K. K. Kline, D. A. Fowler, S. A. Tucker and J. L. Atwood, *Chem. A Eu. J.*, 2011, **17**, 10848-10851.
- J. L. Whetstine, K. K. Kline, D. A. Fowler, C. M. Ragan, C. L. Barnes, J. L. Atwood and S. A. Tucker, *New J. Chem.*, 2010, 34, 2587-2591.
- 23. H. Kumari, S. R. Kline and J. L. Atwood, Chem. Commun., 2012, 48, 3599.
- 24. S. J. Dalgarno, N. P. Power and J. L. Atwood, *Coord. Chem. Rev.*, 2008, 252, 825-841.
- R. W. Saalfrank, H. Glaser, B. Demleitner, F. Hampel, M. M. Chowdhry, V. Schunemann, A. X. Trautwein, G. B. M. Vaughan, R. Yeh, A. V. Davis and K. N. Raymond, *Chem.--Eur. J.*, 2002, 8, 493-497.
- 26. T. McMurry, K. Raymond and P. Smith, Science, 1989, 244, 938-943.
- 27. D. W. Johnson and K. N. Raymond, Inorg. Chem., 2001, 40, 5157-5161.
- 28. D. L. Caulder, R. E. Powers, T. N. Parac and K. N. Raymond, *Angew. Chemie. Int. Ed.*, 1998, **37**, 1840-1843.
- N. Takeda, K. Umemoto, K. Yamaguchi and M. Fujita, *Nature*, 1999, 398, 794-796.
- K. Suzuki, M. Kawano and M. Fujita, Angew. Chem., Int. Ed., 2007, 46, 2819-2822.
- R. L. Paul, S. P. Argent, J. C. Jeffery, L. P. Harding, J. M. Lynam and M. D. Ward, *Dalton Trans.*, 2004, 3453-3458.
- 32. S. P. Argent, H. Adams, L. P. Harding and M. D. Ward, *Dalton Trans.*, 2006, 542-544.
- H. Kumari, A. V. Mossine, S. R. Kline, C. L. Dennis, D. A. Fowler, S. J. Teat, C. L. Barnes, C. A. Deakyne and J. L. Atwood, *Angew. Chemie.*, 2012, 51, 1452-1454.
- 34. H. Kumari, S. R. Kline, N. J. Schuster and J. L. Atwood, *Chem. Commun.*, 2011, 47, 12298.
- 35. D. A. Fowler, A. S. Rathnayake, S. Kennedy, H. Kumari, C. M. Beavers, S. J. Teat and J. L. Atwood, *J. Am. Chem. Soc.*, 2013, **135**, 12184-12187.
- C. J. Glinka, J. G. Barker, B. Hammouda, S. Krueger, J. J. Moyer and W. J. Orts, J. Appl. Crystallogr., 1998, 31, 430-445.
- R. M. McKinlay, G. W. V. Cave and J. L. Atwood, *Proc. Natl. Acad. Sci.* , 2005, **102**, 5944-5948.
- J. L. Atwood, E. K. Brechin, S. J. Dalgarno, R. Inglis, L. F. Jones, A. Mossine, M. J. Paterson, N. P. Power and S. J. Teat, *Chem. Commun.*, 2010, 46, 3484-3486.